

Lessons from Twenty Years of Industrial Formal Methods

Dr. Steven P. Miller Advanced Technology Center Rockwell Collins

© Copyright 2012 Rockwell Collins, Inc. All rights reserved.

© Copyright 2012 Rockwell Collins, Inc. All rights reserved.

1992 AAMP5 Microcode Verification

- 1994 AAMP-FV Microcode Verification
- 2003 ADGS-2100 Window Manager
- 2007 CerTA FCS UAV Adaptive Flight Control
- 2012 Conclusions

AAMP5 Microcode Verification (1993-94)

- Advanced Architecture Microprocessor
 - Family of Rockwell Collins microprocessors
 - Used in a variety of civil and military aircraft
 - Approximately 500,000 transistors
 - Very low power consumption
 - CISC architecture with 209 instructions
- Formal Verification of the Microcode
 - Sponsored by NASA Langley Research Center
 - Performed by Rockwell Collins and SRI International
 - Manually modeled the AAMP5 in PVS
 - Prove the correctness of the microcode
- Results
 - Completed verification of 11 representative instructions

AAMP5 Microcode Verification - Lessons

- Proof Could be Used to Find Design Errors
 - Found one actual error in the process of creating the model
 - Systematically found two seeded errors through proof
- Creating a Separate Verification Model Diminishes Benefit
 - Costly to create and review
 - Results are suspect since verification is not of the "real thing"
- Is Formal Verification Too Expensive?
 - 308 hours per instruction

1992 AAMP5 Microcode Verification

1994 AAMP-FV Microcode Verification

- 2003 ADGS-2100 Window Manager
- 2007 CerTA FCS UAV Adaptive Flight Control
- 2012 Conclusions

AAMP-FV Microcode Verification (1994-95)

- Safety Critical Member of the AAMP Family
 - Intended for use in ultra-critical applications
 - Designed but not fabricated
 - Approximately 100,000 transistors
 - Simpler design with 80 instructions
- Formal Verification of the Microcode
 - Sponsored by NASA Langley Research Center
 - Performed by Rockwell Collins and SRI International
 - Repeat of the AAMP5 Verification
- Results
 - Completed verification of 57 instructions
 - Cost per instruction dropped to 38 hours

AAMP-FV Microcode Verification - Lessons

- Your First Attempt is Probably Not a Good Measure of Cost
 - Cost dropped from 308 to 38 hours/instruction
- Pick the Right Problem
 - The AAMP-FV was intended for use in ultra-critical applications
- Amortize Costs Through Reuse
 - Model libraries, tool expertise, design expertise
- Formal Verification Can be Mastered by Real Engineers
 - Real issue is motivation, not ability
 - Perception of difficulty can be a very real barrier

- 1992 AAMP5 Microcode Verification
- 1994 AAMP-FV Microcode Verification

2003 ADGS-2100 Window Manager

- 2007 CerTA FCS UAV Adaptive Flight Control
- 2012 Conclusions

Rockwell Collins Formal Verification Framework

ADGS-2100 Window Manager

Example Requirement: Drive the Maximum Number of Display Units Given the Available Graphics Processors Counterexample Found in 5 Seconds Checked 573 Properties -Found and Corrected 98 Errors in

Early Design Models

No Errors Discovered in the Field

© Copyright 2012 Rockwell Collins, Inc. All rights reserved.

Highly Prone to Design Errors Modeled in Simulink Translated to NuSMV 4,295 Subsystems 16,117 Simulink Blocks Over 10³⁷ Reachable States

ADGS 2100 Window Manager - Lessons

- There is Always Some Part That Can Be Formally Verified
 - Often the part of greatest concern to the developers
 - May require some modification for analysis
- Don't Let the Lack of a Formal Semantics Prevent Useful Work
 - Assign a formal semantics that matches the implementation
 - Use your tools to find bugs early in development
- Practicing Engineers Will Do Model Checking
 - Hide the formal methods behind the scene
 - Automate the translation to and from their domain
- At Some Point, You Have to Let Go

- 1992 AAMP5 Microcode Verification
- 1994 AAMP-FV Microcode Verification
- 2003 ADGS-2100 Window Manager

2007 CerTA FCS UAV Adaptive Flight Control

2012 Conclusions

Properties

48

6

8

62

CerTA FCS Phase I

Totals

 Sponsored by AFRL Wright Patterson VA Directorate 		Subsystem/ Blocks	Charts / Transitions / TT Cells	Reachable State Space
 Compare FM & Testing Testing team & FM team 	Triplex voter	10 / 96	3 / 35 / 198	6.0 * 10 ¹³
 Lockheed Martin UAV Adaptive Flight Control System 	Failure processing	7 / 42	0/0/0	2.1 * 10 ⁴
 Redundancy Management Logic Modeled in Simulink 	Reset manager	6 / 31	2 / 26 / 0	1.32 * 10 ¹¹

- Translated to NuSMV model checker

Rockwell Collins

... for each of ten control surfaces

5/61/198

N/A

23 / 169

Phase I Results

	Effort (% total)	Errors Found
Testing	60%	0
Model-Checking	40%	12

CerTA FCS Phase I - Lessons

- Model Checking Can be Less Expensive than Testing
 - Better at finding intermittent, race, and rare sequence errors
 - Testing has always been expensive
- Errors Can be Found Early
 - Savings are amplified by avoiding rework 120 100
 100
 100
 100
- Complex Semantics are an Opportunity
 - Engineers quickly realize the value of formal verification tools
- Commercial Tools Like Simulink/Stateflow are an Advantage
 - Hard to train thousands of engineers in formal verification
 - Easy to design formal verification tools around a commercial tool

CerTA FCS Phase II

- Sponsored by the AFRL Wright Patterson VA Directorate
- Can Model-Checking be Used on Large, Non-linear Systems?
 - Lockheed Martin Adaptive UAV Flight Control System
 - Extensive Use of matrix arithmetic
 - Inputs 33 floating point inputs (including one 3 x 6 matrix)
 - Outputs -6 floating point values
 - 166 Simulink subsystems
 - 2000+ basic Simulink blocks
 - Translated to Prover model checker
- Challenges
 - Verification of floating point matrix arithmetic
 - Verification of Stateflow *flowcharts* with cycles
 - Compositional Verification

- Final Results
 - Identified five previously unknown errors
 - Identified several implementation errors that were being masked by defensive programming

CerTA FCS Phase II - Lessons

- Numerically Intensive Systems are Still a Challenge
 - Floating point arithmetic
 - Non-linear arithmetic
- Need for Compositional Verification
 - More like theorem proving than model checking
 - Use model checking for leaf nodes
 - Theorem proving for composing the results
- Modeling and Analysis of Architectures
 - Assign assume/guarantee contracts to components
 - Use contracts rather than model for compositional verification

- 1992 AAMP5 Microcode Verification
- 1994 AAMP-FV Microcode Verification
- 2003 ADGS-2100 Window Manager
- 2007 CerTA FCS UAV Adaptive Flight Control

2012 Conclusions

Lessons

- Most Systems have Large Parts that can be Formally Verified
 - Often the parts causing the most problems
 - Tools are ready today if we choose wisely
- Finding Errors Early is One of the Most Important Benefits
 - Industry understands they need to find errors sooner
 - Formal methods provides a systematic way of doing this
- Formal Methods Will Find Errors that Traditional Methods Miss
 - Especially good at finding the errors hiding in the corners
 - There is still a role for testing an reviews
- Take Advantage of the Ease of Repeating Formal Verification
 - Greatest benefit comes when models are changing rapidly

Lessons

- Take Advantage of the Formalisms Already in Use in Industry
 - Easier to build new tools than to retrain thousands of engineers
 - Don't let great be the enemy of good
- Verify the Models the Developers Care About
 - Automate the translation to your verification tools
- Expect Costs to Drop Rapidly with Experience
- Pick Your Problems Carefully
 - Use the right tools for the problem
 - Can the verification add real value?
 - Is it important?

Future Directions

Theorem Provers

- Deal with arbitrary models
- Concerns are ease of use and labor cost

• Large Finite Systems (<10²⁰⁰ States)

- Implicit state (BDD) model checkers
- Easy to use and very effective

• Infinite State Systems

- SMT-Based model checkers
- Large integers and reals
- Limited to linear arithmetic
- Ease of use is a concern

• Floating Point Arithmetic

- Most modeling languages use IEEE 754 floating point numbers
- Decision procedures
- Non-Linear Arithmetic
 - Multiplication/division of real variables
 - Transcendental functions (trigonometric, ...)

System Architectural Modeling & Analysis

System Architecture Development

Backup Slides

 $\textcircled{\sc copyright}$ 2012 Rockwell Collins, Inc. All rights reserved.

AAMP7G Microprocessor Intrinsic Partitioning

- Formal proof of the MILS security partitioning implemented in the AAMP7G microprocessor
- Example of the industrial use of theorem proving using ACL2
- Developed formal description of separation for uniprocessor, multipartition system (GWV)
- Modeled trusted AAMP7G microcode in ACL2
- Constructed machine-checked proof of separation of the AAMP7G model
- Model subject of intensive code-to-spec review with AAMP7G microcode
- Satisfied formal methods requirements for NSA AAMP7G certification awarded in May 2005
 - "verified using Formal Methods techniques as specified by the EAL-7 level of the Common Criteria"
 - "capable of simultaneously processing unclassified through Top Secret Codeword Information"

AAMP7G Intrinsic Partitioning - Lessons

- Problems for Which Interactive Theorem Proving is Valuable
 - Problems that are inherently important
 - Not suitable for model checking
 - Design artifacts need to be stable
 - Verification provides lasting value that can be replicated
- Better if the Verification Model is Automatically Translated
 - Links the verification to the "real thing"
 - Usually more reliable than human review
 - Lowers the cost of verification