
© NICTA 2010 From imagination to impact

Let’s build secure systems
on a correct kernel

June Andronick

© NICTA 2010 From imagination to impact 2

Gerwin Klein

Credits

(part of) the Trustworthy Embedded Systems crowd

© NICTA 2010 From imagination to impact
3

Agenda

1. carefully design your system
2. prove that the design enforces P
3. prove correctness of the TCB
4. prove isolation

Secure Systems
For 1 critical system:

- 1 desired security property P
- an interactive theorem prover
- a bit of patience

“à la NICTA“

© NICTA 2010 From imagination to impact
4

Motivation

Aim: Trustworthy Embedded Systems

Target: real-world, usable systems
(low-level, performant)

code-level guarantee
at reasonable cost

“cannot get root login remotely”

“cannot get control of
brakes via audio system”

“bug in user interface
cannot harm patient”

“confidential info cannot
flow to public domain”

Embedded
System

© NICTA 2010 From imagination to impact
5

Approach

How to prove this is trustworthy?

Embedded
System

Hardware

Software

© NICTA 2010 From imagination to impact
6

Hardware

Software

Kernel

1. Trustworthy foundation

Userland

How to prove this is trustworthy?

Approach

functional correctness for 10,000 loc

seL4 microkernel①
Formal functional spec

Code

Formal proof
of refinement

Result: “Every behavior of the code
 is a behavior of the spec”

Corollary: “execution always defined”
(no buffer overflows, …)

Assumptions: - compiler + linker
- assembly code (600 loc)
- hardware (ARMv6)
- cache/TLB
- boot code (1,200 loc)

WOR
K I

N

PRO
GRE

SS

➙ seL4

© NICTA 2010 From imagination to impact
7

Hardware
KernelseL4 microkernel

Userland

How to prove this is trustworthy?

2. Strategic componentized security architecture

Approach

functional correctness for 10,000 loc

①

②

➙ seL41. Trustworthy foundation

formal guarantees for >1,000,000 loc

Idea: Strong guarantees about whole system
 without needing to reason about all of its code

© NICTA 2010 From imagination to impact
8

Hardware
KernelseL4 microkernel

Userland

Trusted
Component

Code

Untrusted
Component

Code

Components

How to prove this is trustworthy?

Approach

2. Strategic componentized security architecture
formal guarantees for >1,000,000 loc

functional correctness for 10,000 loc

①

②

➙ seL41. Trustworthy foundation

Idea: Strong guarantees about whole system
 without needing to reason about all of its code

How: Using seL4’s access control (capabilities)

© NICTA 2010 From imagination to impact
9

Kernel

Trusted
Component

Code

Untrusted
Component

Code

Components

How to prove this is trustworthy?

Approach

2. Strategic componentized security architecture
formal guarantees for >1,000,000 loc

functional correctness for 10,000 loc

①

②

➙ seL41. Trustworthy foundation

Idea: Strong guarantees about whole system
 without needing to reason about all of its code

How: Using seL4’s access control (capabilities)

t1 t2

vspace1 vspace2

ep
send(ep) receive(ep)

ReadCap_epWriteCap_ep

send(WriteCap_ep) receive(ReadCap_ep)

seL4 microkernel

Hardware

seL4 microkernel

Hardware

© NICTA 2010 From imagination to impact

Hardware
seL4 microkernel

Components

Careful design

System Implementation

Trusted
Component

Code

Untrusted
Component

Code

Security
Architecture

10

1a. minimal Trusted Computing Base

© NICTA 2010 From imagination to impact

11

Case-study

1 2 3 4

Classified Networks

D

User Terminal

SEC
RET

RES
TRI

CTE
D

TOP
 SE

CRE
T

Goal:
Data from one classified
network must not reach
another

© NICTA 2010 From imagination to impact

12

Secure Access Controller (SAC)

1 2 3 4

Classified Networks

D

User Terminal

C

SAC
Control

SAC
Goal:

Data from one classified
network must not reach
another

Assumptions:
– User terminal will not

leak data
– All networks are

otherwise malicious

Secure Access Controller

 Switch to Network:
TS
 S
 R
 U

Login as: Bob
Logout

Currently selected connection: None

© NICTA 2010 From imagination to impact

13

Design

1 2 3 4

Classified Networks

D

User Terminal

C

SAC
Control

SAC

A B

SAC

© NICTA 2010 From imagination to impact

14

Minimal TCB

A B

D

C

Nic-C Nic-A Nic-B

Nic-D

Gigabit
Network Card

Drivers

10,000 LoC
Web Server

5000 LoC Network routing

60,000 LoC

We don’t want to rely on this complex, huge code
➜ We use seL4 dynamic capability access control

© NICTA 2010 From imagination to impact

15

A B

D

C

Gigabit
Network Card

Drivers

10,000 LoC
Web Server

5000 LoC Network routing

60,000 LoC

RouterSAC
controller

Nic-D

Nic-C Nic-A Nic-B

We don’t want to rely on this complex, huge code
➜ We use seL4 dynamic capability access control

Minimal TCB

© NICTA 2010 From imagination to impact

16

A B

D

C

SAC

Nic-C Nic-A Nic-B

Nic-D

RouterSAC
controller

Router

Router
Manager

Timer

SAC
controller

Router

Timer

Router
ManagerTrusted

Untrusted

We don’t want to rely on this complex, huge code
➜ We use seL4 dynamic capability access control

rw
rw

rw

rwcg

r
rw

w
w

w

rw

rw

rw
rw

Minimal TCB

© NICTA 2010 From imagination to impact

17

A B

D

C

SAC

Nic-C Nic-A Nic-B

Nic-D

RouterSAC
controller

Router

Router
Manager

Timer

SAC
controller

Router

Timer

Router
ManagerTrusted

Untrusted

rw
rw

rw

rwcg

r
rw

w
w

w

rw
rw

rw

: Implementation

Virtualised Linux
10,000,000 LoC

Hand-written
300 LoC

Virtualised Linux
10,000,000 LoC

Hand-written
1,500 LoC

Minimal TCB

© NICTA 2010 From imagination to impact

Hardware
seL4 microkernel

Components

Back to the general picture

System Implementation

Trusted
Component

Code

Untrusted
Component

Code

Security
Architecture

18

✓

Now: how to set-up the system with this design?

Problem: reality is not that simple

?

1a. minimal Trusted Computing Base

© NICTA 2010 From imagination to impact

19

Nic-C Nic-A Nic-B

Nic-D

RouterSAC
controller

Router

Router
Manager

Timer

SAC
controller

Router

Timer

Router
Manager

rw
rw

rw

rwcg

r
rw

w
w

w

rw

rw

rw
rw

Back to the example
This is what we agree on the whiteboard

Now we need to implement this with actual kernel objects

© NICTA 2010 From imagination to impact

20

Back to the example

.

.

.

tcb_ctr
cnode_ctr

pd_ctr

f11

pt_ctr1 pt_ctrn

f1i fn1 fnj

.

.

.

. . .

.

ep

. . .

.

.

.

.

tcb_rm
cnode_rm

pd_rm

f'11

pt_rm1 pt_rmn

f'1i f'n1 f'nj

.

.

.

. . .

.

.

CTR EP RM

rcvsend

SAC
controller

Router
Managerr

This is what we agree on the whiteboard

Now we need to implement this with actual kernel objects

Every arrow is a capability!

© NICTA 2010 From imagination to impact
21

capability distribution

Example:
obj1 ≡ Tcb[0 "→ CNodeCap 3, ...]
obj3 ≡ CNode[302 "→ CNodeCap 9 ! Read" , ...]

© NICTA 2010 From imagination to impact

Hardware
seL4 microkernel

Components

Back to the general picture

System Implementation

Trusted
Component

Code

Untrusted
Component

Code

Security
Architecture

22

Formal Cap
Distribution

capDL: capability
 distribution
 language

➙ used for the security analysis

1a. minimal Trusted Computing Base

1b. verified set-up (preferably automatic)

1c. verified abstraction (preferably automatic)

© NICTA 2010 From imagination to impact
23

Agenda

1. carefully design your system
2. prove that the design enforces P
3. prove correctness of the TCB
4. prove isolation

Secure Systems
For 1 critical system:

- 1 desired security property P
- an interactive theorem prover
- a bit of patience

“à la NICTA“

s0
∗→ s ⇒ P(s)

© NICTA 2010 From imagination to impact

Security Proof

Theorem:

24

Hardware
seL4 microkernel

Components

System Implementation

Trusted
Component

Code

Untrusted
Component

Code

lemma sacSecurity:
 (SAC-startup →* s) ⇒
 ¬ is_contaminated s NicA

s0
∗→ s ⇒ P(s)

s0 ≡

© NICTA 2010 From imagination to impact

Security Proof

Theorem:

Where:
RW

RW

25

Hardware
seL4 microkernel

Components

System Implementation

Trusted
Component

Code

Untrusted
Component

Code

RM_id -> Some ({cap_r_to_SAC_C, ...}, not_contaminated)
SAC_C_id -> Some ({cap_rw_to_NIC_C, ...}, not_contaminated)
NIC_A_id -> Some ({}, not_contaminated)
NIC_B_id -> Some ({}, contaminated)

s0
∗→ s ⇒ P(s)

s0 ≡

let pc = program counter(c, s) in
let i = inst(prg, pc) in

s
t→ s′ s

u→ s′∨s → s′≡

s
t→ s′ ≡ let tc ∈ trusted component(s) in

step(tc, s, i, s′)

let prg = program(tc) in

© NICTA 2010 From imagination to impact

Security Proof

Theorem:

Where:
RW

RW

26

Hardware
seL4 microkernel

Components

System Implementation

Trusted
Component

Code

Untrusted
Component

Code

RM_prg ≡
 [SysOp (SysRead cap_r_to_SAC_C),
 SysOp (SysRemoveAll cap_C_to_R),
 SysOp (SysDelete cap_C_to_R),
 ...]

s0
∗→ s ⇒ P(s)

s0 ≡

let pc = program counter(c, s) in
let i = inst(prg, pc) in

s
t→ s′ s

u→ s′∨s → s′≡

s
t→ s′ ≡ let tc ∈ trusted component(s) in

s
u→ s′ ≡ let uc ∈ untrusted components(s) in

step(tc, s, i, s′)

let prg = program(tc) in

© NICTA 2010 From imagination to impact

Security Proof

Theorem:

Where:
RW

RW

27

step(uc, s, any inst, s′)

Hardware
seL4 microkernel

Components

System Implementation

Trusted
Component

Code

Untrusted
Component

Code

© NICTA 2010 From imagination to impact

Hardware
seL4 microkernel

Components

Security Proof

System Implementation

Trusted
Component

Code

Untrusted
Component

Code

Formal
Security
Property

Formal
proof of
property

System’s behavior

Trusted:
formal description

Untrusted:
any behavior - only
restricted by caps

s
t→ s′

s
u→ s′

Security
Architecture

s → s′
s0

∗→ s ⇒ P(s)?

28

Interleaving model

Formal Cap
Distribution

© NICTA 2010 From imagination to impact
29

Agenda

1. carefully design your system
2. prove that the design enforces P
3. prove correctness of the TCB
4. prove isolation

Secure Systems
For 1 critical system:

- 1 desired security property P
- an interactive theorem prover
- a bit of patience

“à la NICTA“

© NICTA 2010 From imagination to impact

Hardware
seL4 microkernel

Components

Verified TCB

Kernel Security
Model

System Implementation

Trusted
Component

Code

Untrusted
Component

Code

uses

Security
Architecture

30

Formal Cap
Distribution

Formal
Security
Property

Formal
proof of
property

s0
∗→ s ⇒ P(s)System’s behavior

Trusted:
formal description

Untrusted:
any behavior - only
restricted by caps

s
t→ s′

s
u→ s′

s → s′

Interleaving model

Kernel Functional
Specification

© NICTA 2010 From imagination to impact
31

Agenda

1. carefully design your system
2. prove that the design enforces P
3. prove correctness of the TCB
4. prove isolation

Secure Systems
For 1 critical system:

- 1 desired security property P
- an interactive theorem prover
- a bit of patience

“à la NICTA“

© NICTA 2010 From imagination to impact

uses

Hardware
seL4 microkernel

Components

Proof of access control

Kernel Security
Model

System Implementation

Trusted
Component

Code

Untrusted
Component

Code

uses

 Proof of AC

uses

Security
Architecture

32

Formal Cap
Distribution

Formal
Security
Property

Formal
proof of
property

s0
∗→ s ⇒ P(s)System’s behavior

Trusted:
formal description

Untrusted:
any behavior - only
restricted by caps

s
t→ s′

s
u→ s′

s → s′

Interleaving model

Kernel Functional
Specification

NICTA Copyright 2010 From imagination to impact

What is AC good for?

33

Trusted

LinuxLinux

NICTA Copyright 2010 From imagination to impact

What is AC good for?

34

Trusted

LinuxLinux

P P?
Examples

• R does not write to
NicB if it does not have
a write capability to it

• R does not change
RM’s program counter

Question: for all operation op s.t.

what is allowed to change in s’ ?
s

op−→ s′

NICTA Copyright 2010 From imagination to impact

Example

35

Then in which condition may tcb_b change
and what is allowed to change?

.

.

.

tcb_a

cnode_a

pd_a

f11

pt_a1 pt_an

f1i fn1 fnj

.

.

.

. . .

.

ep

. . .

.

.

.

.

tcb_b

cnode_b

pd_b

f'11

pt_b1 pt_bn

f'1i f'n1 f'nj

.

.

.

. . .

.

.

If tcb_a is running in state s

Send

Blocked
Running

where s is:
If op is set_thread_state tcb_b v

NICTA Copyright 2010 From imagination to impact

Example

36

.

.

.

tcb_a

cnode_a

pd_a

f11

pt_a1 pt_an

f1i fn1 fnj

.

.

.

. . .

.

ep

. . .

.

.

.

.

tcb_b

cnode_b

pd_b

f'11

pt_b1 pt_bn

f'1i f'n1 f'nj

.

.

.

. . .

.

.

Send

Blocked
Running

Obvious (but wrong) solution:
only the thread-state field of tcb_b is allowed to change
and only under the following conditions:
 - tcb_a has a cap to tcb_b in state s
 - or tcb_a has a cap to an endpoint tcb_b is waiting on in state s
 - or tcb_a has a cap to the untyped region containing tcb_b, in state s

- or ...
Policy closely depends on state

If tcb_a is running in state s where s is:
If op is set_thread_state tcb_b v

NICTA Copyright 2010 From imagination to impact

Solution: Labelling

37

.

.

.

tcb_a

cnode_a

pd_a

f11

pt_a1 pt_an

f1i fn1 fnj

.

.

.

. . .

.

ep

. . .

.

.

.

.

tcb_b

cnode_b

pd_b

f'11

pt_b1 pt_bn

f'1i f'n1 f'nj

.

.

.

. . .

.

.

Static graph G: A EP B
RcvSend

UNIVUNIV

A EP B

State must be subset a of G

We prove:
1. Graph preservation

(authority confinement)
2. Access control at the

label level
G is subjective: current label contains the

(untrusted) running thread

Given by user

NICTA Copyright 2010 From imagination to impact

Solution: Labelling

38

A EP B
RcvSend

UNIVUNIV

then for any operation op that changes s to s’,
for any object obj of label B,

If A is the running label in G

obj can only be changed if A=B or in 4 small precise cases, as:
“obj is a TCB blocked on an endpoint of label EP,
and (A,Send,EP) ⊆G
and only the thread-state of obj can be changed, to Running”

A EP B
RcvSend

UNIVUNIV

We prove:
1. Graph preservation

(authority confinement)
2. Access control at the

label level

© NICTA 2010 From imagination to impact
39

Agenda

1. carefully design your system
2. prove that the design enforces P
3. prove correctness of the TCB
4. prove isolation

Secure Systems
For 1 critical system:

- 1 desired security property P
- an interactive theorem prover
- a bit of patience

“à la NICTA“

40
© NICTA 2010 From imagination to impact

uses

Hardware
seL4 microkernel

Components

Kernel Security
Model

System Implementation

Trusted
Component

Code

Untrusted
Component

Code

uses

 Proof of AC

uses

Security
Architecture

Formal Cap
Distribution

Formal
Security
Property

Formal
proof of
property

s0
∗→ s ⇒ P(s)System’s behavior

Trusted:
formal description

Untrusted:
any behavior - only
restricted by caps

s
t→ s′

s
u→ s′

s → s′

Interleaving model

Kernel Functional
Specification

Conclusion

© NICTA 2010 From imagination to impact

Conclusion

41

Challenges:
Automation

verified code generator
from high level code

Integration
system trace reasoning,
concurrency

Confidentiality
preserved by
refinement

Proof engineering
• refactoring
• efficient proof rerun

Results so far:
Case study sec. proof

seL4 enforces integrity

capDL

seL4 correctness proof

certification: ST

seL4 binary and formal
spec released

© NICTA 2010 From imagination to impact
42

Questions?

