
Leverageable Semantics Definitions and
Contract Reasoning for a

Technical Architecture Description Language

John Hatcliff
Jason Belt
Robby

HCSS 2023 – May 8, 2023

Danielle Stewart
Todd Carpenter
Ryan Peroutka
August Schwerdfeger

This material is based on research sponsored in part by US Army and DARPA

Kansas State University Galois

DISCLAIMER: The views and conclusions contained in this presentation are those of the author and should not be interpreted as representing the official policies,
either express or implied, of any agency or department of the U.S. Government, Kansas State University or Galois, inc

Software Engineering Institute
(Carnegie Mellon University)

Jerome Hugues
Lutz Wrage

+ collaborators from Collins Aerospace and seL4 team

HAMR

HAMR - Hatcliff -- Kansas State

HAMR – tool chain for model-driven development of high-assurance embedded systems
(from Adventium Labs/Galois and Kansas State)

Modeling, analysis, and
verification in the AADL
modeling language

Deployments aligned
with AADL run-time on
multiple platforms

se
L4

 D
ep

lo
ym

en
t

Lin
ux

 D
ep

lo
ym

en
t

JV
M

De
pl

oy
m

en
t

Component development
and verification in
multiple languages

• C
• Slang

• high integrity subset of Scala
• contract verification framework
• translates to C

• CakeML (ML-variant with verified compiler)

Leveraging analyses from AADL
community

1

Slang Contracts
and Automated Verification via Symbolic Execution (Logika)

HAMR - Hatcliff -- Kansas State 2

Slang applications can be integrated with Scala and Java and executed on
JVM or transpiled to JS or C. The generated C has bounded memory usage
and no garbage collection & compatible with verified CompCert compiler.

Slang Contract

Application Code

Drill down display for verification
conditions and SMT interaction

Verification Drill-
down Controls

DARPA SBIR w/
Adventium (Galois)

Slang – high-integrity subset of Scala + Logika verification in IntelliJ IDE

Logika Verification
Featureful, Integrated Capabilities

HAMR - Hatcliff -- Kansas State 3

Logika uses a server-based architecture with a suite of SMT solvers (Z3, CVCx, Alt-
Ergo), massive parallelization, with “always on” smart incremental checking

Logika verification of Slang
code in IntelliJ IDE on iPad

...connected to 80-core
server to run verification

See https://drive.google.com/uc?export=download&id=1vkBNWM8pocSz8jUG-E16zdVleELZr2Sk
for Slang / Logika overview talk given at the Trusted Computing Center of Excellence Symposium

From a TCCOE
conference
demo video of
Logika in
January 2022

https://drive.google.com/uc?export=download&id=1vkBNWM8pocSz8jUG-E16zdVleELZr2Sk

DARPA CASE Approach

 Capture
requirements for
cyber-resiliency

 Analyze design
 Transform design
 Verify new

design against
requirements

 Build / Deploy

HAMR - Hatcliff -- Kansas State

HAMR was developed by Kansas State and Galois researchers on a team led by Collins Aerospace
(Darren Cofer)

Wrap legacy untrusted
component in a VM in
micro-kernel partition

Insert attestation managers
to ensure data is coming
from a trusted source.

Control non-interference by
allocating components to
different partitions in
microkernel

Transform
Architecture

seL4 verified micro-
kernel technology is a
core technology

4

HAMR
Focus

DARPA CASE Final Demonstration

HAMR - Hatcliff -- Kansas State 5

HAMR used with Collins BriefCASE tool chain adding new functionality to CH-47 mission computing...

Goal: Semantic Consistency End-to-End

HAMR - Hatcliff -- Kansas State 6

An
al

ys
is

an
d

ve
rif

ica
tio

n
re

su
lts

m

ov
ed

 u
p

an
d

do
w

n
ab

st
ra

ct
io

n
la

ye
rs

Se
m

an
ti

c
Co

ns
is

te
nc

y

HAMR is supported by a suite of inter-related formal semantics artifacts to
aid end-to-end semantic consistency

Executable
Reference
Semantics
(purely functional)

Mechanized
Formal
Semantics
(in progress)

Operational
Semantics Rules
(in Latex)

Goal: Semantic Consistency End-to-End

HAMR - Hatcliff -- Kansas State 7

HAMR is supported by a suite of interlated formal semantics artifacts to aid
end-to-end semantic consistency

Executable
Reference
Semantics
(purely functional)

Mechanized
Formal
Semantics
(in progress)

Operational
Semantics Rules
(in Latex)

John Hatcliff, Jerome Hugues, Danielle Stewart,
and Lutz Wrage.
“Formalization of the AADL Run-Time Services”.
(ISOLA 2022)

(Kansas State team, University of Aarhus)

Formalizing AADL Run-Time Services

HAMR - Hatcliff -- Kansas State 8

Model

RunTime
(abstract)

Run Time
Services
Abstract Machine
Steps for Real-time
Tasking & Comm

...

Dispatch
Thread

Execute
Application
Code

Port
Data/Event
Transfer

Inter-Thread
Communication

Periodic
Sporadic
...

Event
Data
...

Immediate
Delayed
...

The formal semantics in this talk focuses on the AADL Run-Time Services...

AADL Standard Description is Informal

HAMR - Hatcliff -- Kansas State 9

Description (excerpts) of the Receive Input service
in the previous version of AADL standard…

Narrative description..

High-level API that omits
specifics of what aspects
of thread/system state are
updated and the
semantics of the
updates...

Formalizing AADL Run-Time Services

HAMR - Hatcliff -- Kansas State 10

Model

RunTime
(abstract)

Run Time
Services
Abstract Machine

...

The formal semantics is a specification for implementing AADL run-time on different platforms

Se
m

an
ti

c
Co

ns
is

te
nc

y

This Talk:
Formal
SemanticsThis Talk:

Impact:
Architecture and
Conformance
framework for
adding new
HAMR backends

HAMR Backends: Linux, seL4, ...

HAMR code generation
provides implementations of
services on different platforms

Formalizing AADL Run-Time Services

HAMR - Hatcliff -- Kansas State 11

Model

The formal semantics guides the design of an integrated model and code-level
contract framework that supports both verification and property-based testing

Se
m

an
ti

c
Co

ns
is

te
nc

y

... ...

HAMR translates
model-level contracts
into code-level
contracts (both logic-
based and executable)

Component application code

Show code satisfies
contract via randomized
property-based testing

Verify code satisfies
contract via symbolic
execution

...then we can
conclude that
application code
satisfies model-level
contract

AADL Modeling Concepts

HAMR - Hatcliff -- Kansas State

Selected thread
pattern

Implied API
Pattern for
application code
to access port
communication,
etc.

Developer
configures
computational
structure

Selected
communication pattern

Event
Data

Event Data
…

AADL Port & Connection
Property Options

buffered notifications
shared data cells
(or data distribution service)

buffered messages
(message passing middleware)

+ QoS, buffer sizes, latencies, etc

Periodic
Sporadic
Hybrid
…

AADL Thread
Property Options

+ timing, scheduling
constraints, etc.

12

...an AADL contract language should
be aligned with these patterns.

HAMR Code Generation

HAMR - Hatcliff -- Kansas State

Platform configuration
information

System
Build

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Code gen for
Component &
Threading
Infrastructure

Code gen for
Application APIs

Application
Code

Application
Code

Application
Code

Application Code
Development

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

Code gen for
Communication
Infrastructure

13

HAMR Code Generation

HAMR - Hatcliff -- Kansas State

Platform configuration
information

System
Build

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Auto-generated
Component Infrastructure
Code for Platform

Code gen for
Component &
Threading
Infrastructure

Code gen for
Application APIs

Application
Code

Application
Code

Application
Code

Application Code
Development

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

Auto-Generated
Run-Time
Communication
Infrastructure
Code for Platform

Code gen for
Communication
Infrastructure

14

Component Application Code Interfaces
Generated from AADL Model

HAMR Overview (Part 2 - Slang)

…Interfaces/APIs/Skeletons for application code
are auto-generated from AADL model

Skeleton for
application code
entry pointAADL Model

Implied Semantics

Application Code
Skeleton in Slang

auto-generated

Periodic Thread
w/ data ports

Component Application Code Interfaces
Generated from AADL Model

HAMR Overview (Part 2 - Slang)

…Interfaces/APIs/Skeletons for application code
are auto-generated from AADL model

Adding
application code
to skeletonAADL Model

Implied Semantics

Application Code
Skeleton in Slang

auto-generated

Periodic Thread
w/ data ports

Component Application Code Interfaces
Generated from AADL Model

HAMR Overview (Part 2 - Slang)

AADL Model
Implied Semantics

Application Code
Skeleton in Slang

auto-generated

Periodic Thread
w/ data ports

Get
Reading a value from the
regulator_mode input data
port using auto-generated API

Putting a value from the
heat_control output data
port using auto-generated API

Put

…Interfaces/APIs/Skeletons for application code
are auto-generated from AADL model

AADL Port and Thread
Execution Semantics

Application Code

AADL Component Application Memory Boundary

Input
Application
Port State

Output
Application
Port State

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

-I
np

ut
s

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

-O
ut

pu
ts

(2) Compute,
Run to
Completion

(3) Send
outputs

From AADL standard…

On each dispatch, AADL threads follow a well-known input-compute-output pattern for real-time
tasks that aid analysis and verification…

gets puts

(1) Receive
inputs

HAMR - Hatcliff -- Kansas State 18

“Analyzeable Real-
Time Systems”
Burns & Wellings

AADL Port and Thread
Execution Semantics

Application Code
Input
Application
Port State

Output
Application
Port State

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

-I
np

ut
s

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

-O
ut

pu
ts

(2) Compute,
Run to
Completion

(3) Send
outputs

From AADL standard…

On each dispatch, AADL threads follow a well-known input-compute-output pattern for real-time
tasks that aid analysis and verification…

gets puts

(1) Receive
inputs

HAMR - Hatcliff -- Kansas State 19

“Analyzeable Real-
Time Systems”
Burns & Wellings

Abstractly, a function from input ports states (and local
data) to output port states (and updated local data)

Key Concepts

HAMR - Hatcliff -- Kansas State

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
eApplication Code

(Entry Points)

Thread Application Memory Boundary

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

Input
Infrastructure

Port State
(IPS)

Input
Application
Port State

(APS)

... ...
Event-like Port

Data Port

Receive_Input

Event-like Port

Data Port
...

InitEP

ComputeEP

Towards Formalism: Clarify key elements of the thread state and the run-time service
operations on elements

Key Concepts

HAMR - Hatcliff -- Kansas State

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
eApplication Code

(Entry Points)

Thread Application Memory Boundary

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

Receive_Input

Input
Infrastructure

Port State
(IPS)

Input
Application
Port State

(APS)

... ...
Event-like Port

Data Port

Event-like Port

Data Port
...

InitEP

ComputeEP
Output

Infrastructure
Port State

(IPS)

Output
Application
Port State

(APS)

... ...

Send_Output

Towards Formalism: Clarify key elements of the thread state and the run-time service
operations on elements

Key Concepts

HAMR - Hatcliff -- Kansas State

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
eApplication Code

(Entry Points)

Thread Application Memory Boundary

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

Receive_Input

Input
Infrastructure

Port State
(IPS)

Input
Application
Port State

(APS)

... ...
Event-like Port

Data Port

Event-like Port

Data Port
...

InitEP

ComputeEP
Output

Infrastructure
Port State

(IPS)

Output
Application
Port State

(APS)

... ...

Send_Output

Get_Value

Put_Value

Towards Formalism: Clarify key elements of the thread state and the run-time service
operations on elements

Key Concepts

HAMR - Hatcliff -- Kansas State

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
eApplication Code

(Entry Points)

Thread Application Memory Boundary

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

Receive_Input

Input
Infrastructure

Port State
(IPS)

Input
Application
Port State

(APS)

... ...
Event-like Port

Data Port

Event-like Port

Data Port
...

InitEP

ComputeEP
Output

Infrastructure
Port State

(IPS)

Output
Application
Port State

(APS)

... ...

Send_Output

Get_Value

Put_Value

X1, X2, ..., Xn

Thread Local Variables (persistent)

Towards Formalism: Clarify key elements of the thread state and the run-time service
operations on elements

Key Concepts

HAMR - Hatcliff -- Kansas State

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
eApplication Code

(Entry Points)

Thread Application Memory Boundary

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

Receive_Input

Input
Infrastructure

Port State
(IPS)

Input
Application
Port State

(APS)

... ...
Event-like Port

Data Port

... ...

Send_Output

Event-like Port

Data Port
...

InitEP

ComputeEP

Get_Value

Put_Value
Output

Infrastructure
Port State

(IPS)

Output
Application
Port State

(APS)

X1, X2, ..., Xn

Thread Local Variables (persistent)

DispatchStatus

Dispatch Status

Towards Formalism: Clarify key elements of the thread state and the run-time service
operations on elements

Formalization of Thread State

HAMR - Hatcliff -- Kansas State 25

The concepts of state in this diagram now become part of the formalization of a thread
state…

Receive Input Runtime Service

HAMR - Hatcliff -- Kansas State

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
eApplication Code

(Entry Points)

Thread Application Memory Boundary

Co
m

m
un

ica
tio

n
In

fra
st

ru
ct

ur
e

Receive_Input

Input
Infrastructure

Port State
(IPS)

Input
Application
Port State

(APS)

... ...
Event-like Port

Data Port

... ...

Send_Output

Event-like Port

Data Port
...

InitEP

ComputeEP

Get_Value

Put_Value
Output

Infrastructure
Port State

(IPS)

Output
Application
Port State

(APS)

X1, X2, ..., Xn

Thread Local Variables (persistent)

DispatchStatus

Dispatch Status

Let’s consider the formalization for Receive Input run-time service…

Receive Input Runtime Service

HAMR - Hatcliff -- Kansas State 27

Rules formalizing the behavior of Receive Input runtime service

Formalization clarifies
that on these portions
of the thread state
are modified by the
service. Different behaviors

for data ports vs
event data ports

Rules take into
account different
dequeuing policies
configured by AADL
properties

Artifact Correspondence/Traceability

HAMR - Hatcliff -- Kansas State 28

…from Executable Functional Model in Slang

Slang Executable Semantics: There is a 1-to-1 correspondence between the
mathematical definition of the state and the representation in the executable specification…

…in the executable model, simple logging gives a nice way to see the
state transitions of the semantics

Receive Input Runtime Service

HAMR - Hatcliff -- Kansas State 29

Executable functional specification
Code clarifies that
only these parts of
the thread state are
modified by the
service.

Different behaviors
for data ports vs
event ports

Following the rules,
the code takes into
into account different
dequeuing policies
configured by AADL
properties

Application: Contracts

HAMR - Hatcliff -- Kansas State 30

Model

The formal semantics guides the design of an integrated model and code-level
contract framework that supports both verification and property-based testing

Se
m

an
ti

c
Co

ns
is

te
nc

y

... ...

HAMR translates
model-level contracts
into code-level
contracts (both logic-
based and executable)

Component application code

Show code satisfies
contract via randomized
property-based testing

Verify code satisfies
contract via symbolic
execution

...then we can
conclude that
application code
satisfies model-level
contract

Coming up
next!

Application:
Integrated Model/Code Contract Language

HAMR - Hatcliff -- Kansas State 31

KSU / Adventium Labs (now Galois) ARMY SBIR Phase II...

AADL Model-Level
Contracts

Slang Component
Implementation

HAMR Code
Generation

Code-Level
Executable
Contracts +
InfrastructureAutomated property-

based testing

Verify via SymExe

Verified C Component
Implementation

Slang C Transpiler

Handwritten C
component code with
automated testing

Slang C Transpiler

C executable contracts
and property-based
testing infrastructure

Contract Translation
and Embedding / Weaving

Code-Level
Logic-based
Contracts

John Hatcliff, Danielle Stewart,
Jason Belt, Robby, August
Schwerdfeger, “An AADL
Contract Language
Supporting Integrated
Model- and Code-Level
Verification”, (HILT 2022) –
(journal version – end of May)

GUMBO – AADL Contract Language

 Data type invariants
 Port invariants (integration

constraints)
 Event-based / Shared-data based

inter-thread communication
 Local state declarations with invariants
 Pre/Post conditions for AADL thread

code entrypoints
 Initialize Entry Point
 Compute Entry Point

 Periodic
 Sporadic (collection of event handlers)

 Support for fixed width scalars (e.g.,
Float32)

 Support for almost all of the AADL
Data Modeling Annex

HAMR - Hatcliff -- Kansas State 32

GUMBO Contract Language Features

Inspired by previous work
on AGREE and BLESS

Example in
this talk

FAA Requirements Engineering
Management Handbook (REMH)

 Written for the FAA by engineers at
Rockwell Collins (David L. Lempia,
Steven P. Miller)

 Includes example of an “Isolette”
(infant incubator)

REMH

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/research/

• 6 Real-time Tasks
• ~36 component-level requirements
• Interestesting modal behavior

Illustrate with the Isolette example from FAA REMH

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/research/

Focus of Example
Isolette Thermostat – heat controller for incubator

Focus of demo

Decomposing Thermostat
The FAA REMH decomposes the Isolette into a control system and safety monitor
with three tasks each

Decomposing the Thermostat into Regulate
Temperature and Monitor Temperature
functions.

Control/Regulate

Safety Monitor

Using AADL to Represent Design

AADL-integrated STPA for ICE Apps

AADL Model

Manage Heat Source
Thread (Task)

AADL model originally developed by Brian Larson
(creator of BLESS specification and verification framework)

This example is worked completely from end-to-end from
requirements, to contracts, to automatically tested and verified code,
to deployment on seL4, Linux, JVM, JavaScript, and the artifacts are
publicly available.

Manage Heat Source Thread
AADL Interface for Manage Heat Source Thread

Desired Temperature Range
(set points)

Subsystem Mode

Current Temperature

Desired On/Off
state for heater

Requirements to Contracts

HAMR - Hatcliff -- Kansas State 38

FAA REMH requirements for Manage Heat Source task

Requirements for control laws of this task...

Requirements to Contracts

HAMR - Hatcliff -- Kansas State 39

GUMBO contracts are written together with the thread interface in the AADL
OSATE IDE (using AADL Annex clause)

Component
interface

Developer
formalizes
requirements

Component
contract

AADL GUMBO Contracts for Manage Heat Source Thread, with
traceability to REMH requirements.

Manage Heat Source Contracts

OSATE AADL Editor

Developer
formalizes
requirements

Manage Heat Source Contracts
AADL GUMBO Contracts for Manage Heat Source Thread, with
traceability to REMH requirements.

Mode condition
Compare current
temperature to
desired range

Set the desired state
of the heater

...

...

OSATE AADL Editor

Application:
Property-based (Contract-based) Testing

HAMR - Hatcliff -- Kansas State 42

KSU / Adventium Labs (now Galois) ARMY SBIR Phase II...

AADL AADL-Level
Contracts

Slang Component
Implementation

HAMR Code
Generation

Code-Level
Executable
ContractsCheck via property-

based testing

Verify via SymExe

Contract Translation
and Embedding / Weaving

Code-Level
Logic-based
Contracts

Next: Property-
based Testing with
Random Values

Manage Heat Source Contracts
Translation of model-level GUMBO contracts to Slang code-level
executable contracts
AADL GUMBO Contract (clause)

auto-generated

Application
Code Code

Model

Slang Executable Contract (clause)

Traceability info automatically embedded

auto-generated

Library of
Executable
Contracts

Auto-Generated Property-based
Testing Harness

For every thread component, HAMR auto-generates property-based testing infrastructure for
inserting values into component input ports and for checking values of output ports.

HAMR Overview (Part 2 - Slang)

HAMR-generated AADL
Thread Infratructure

Repeatedly dispatch
with random values and
check post-condition

Thread
Application
Code

Executable
Contracts

X1, X2, ..., Xn

Integrated
Pre-condition
Boolean
Function

Integrated
Post-condition
Boolean Function

Models & contracts

Gen(T1)

Gen(T2)

Gen(T3)

Default random value
generators for each
input port (based on
port type and data
invariants)

Customize as
necessary

Demo

HAMR - Hatcliff -- Kansas State 45

Property-based Testing

Scaling Up –
Server-Based Deployment

 Random generators and contract-based tests are farmed out to a
configurable family of servers

 Test vectors and results are serialized for flexible deployment, reporting,
and replay of the tests

 Currently hosted using our Jenkins setup, but easy for HAMR to
automatically generate deployment scripts, e.g., for AWS, in the future

HAMR - Hatcliff -- Kansas State 46

Map/Reduce Structure for Server-based
Deployment of Contract-based Testing

HAMR generates a server-based deployment to run the framework in a
distributed/parallel fashion...

...

. . .

. . .

. . .Distribution

Parallelization Servers

Continous Integration /
Delivery of Formal Methods

Application:
Usable, Workflow Integrated Verification

HAMR - Hatcliff -- Kansas State 47

KSU / Adventium Labs (now Galois) DARPA SBIR Phase II...

AADL AADL-Level
Contracts

Slang Component
Implementation

HAMR Code
Generation

Code-Level
Executable
ContractsCheck via property-

based testing

Verify via SymExe

Contract Translation
and Embedding / Weaving

Code-Level
Logic-based
Contracts

Next: Integrated
Verification via
Symbolic Execution

Demo

HAMR - Hatcliff -- Kansas State 48

Verification against contracts using Symbolic Execution

Galois / NRC RTS Example

HAMR - Hatcliff -- Kansas State 49

This methodology has also been applied end-to-end (down to JVM, Linux,
seL4) for Galois’ open source implementation of a nuclear reactor trip
system (US NRC funded work) – available end of May

Voting 1

Voting 2

Actuator 1

Actuator 2

Instrumentation 1

Instrumentation 2

Instrumentation 3

Instrumentation 4

Core Finite
State

Machine
UI I/O

Programming
I/O

Debugging
I/O

RISC-V
CPU 1

RISC-V
CPU 2

RISC-V
CPU 3

Pressure
Sensor 1

Pressure
Sensor 2

Temperature
Sensor 1

Temperature
Sensor 2

FPGA Actuator 1

Actuator 2

RTS System

Actuation LogicRoot

Instrumentation

Hardware

Computation

Text

Actuators

Sensors

Focus of HAMR
illustration effort: models
in AADL, implementations
in Slang (transpiled to C)

Single AADL component for each (Slang
implementations (“mock”s) realizing
test harness for Actuation Logic

Verifying Deployed Infrastructure Code

HAMR - Hatcliff -- Kansas State 50

Model

RunTime
(abstract)

Run Time
Services
Abstract Machine

...

Ongoing work: Using Logika refinement checking to verify that deployed
infrastructure satisfies the semantics...

Se
m

an
ti

c
Co

ns
is

te
nc

y

Linux
deployment

Slang imperative
implementation
of AADL RTS

Semantics - Slang purely functional implementation of AADL RTS

Slang-to-C
Transpiler
+ C Compiler

Conformance to semantics proved
using Logika refinement checking

Automatically Verifying
AADL RTS Implementation

HAMR - Hatcliff -- Kansas State 51

Assume well-formedness
conditions on both spec and
implementation state.

Using Logika refinement checking, we can automatically verify that Slang-based implementation
of AADL run-time services conforms to Slang purely functional refence semantics

Verification of ReceiveInput service implementation

Assume refinement relation
holds between spec and
implementation pre-state.

Run the spec...

Run the implementation...

Prove refinement relation holds between
spec and implementation post-state.

Conclusion

 Foundations provided by a formal / mechanized
semantics of AADL Run-Time Services

 Semantics artifacts will be in the HAMR release in mid-summer
 Next steps: adding timing information, code-generation verification with

connections to seL4 proofs
 Developer-friendly tool integrated contract framework for both

testing and verification
 Already available in HAMR distribution

 Continuing work on system-level verification and testing
 Looking for funding to develop additional HAMR backends for DoD

platforms of interest

HAMR - Hatcliff -- Kansas State 52

HCSS Theme: “Semantically Rigorous and Integrated High-Level
Abstractions”

