
Leveraging Complexity in Software for Cybersecurity

[Extended Abstract]

Robert C. Armstrong
Sandia National Laboratories
Livermore, California 94551

rob@sandia.gov

Jackson R. Mayo
Sandia National Laboratories
Livermore, California 94551

jmayo@sandia.gov

ABSTRACT

A method for assessing statistically quantifiable improve-
ments in security for software vulnerabilities is presented.
Drawing on concepts in complexity theory, undecidability,
and previous work in high-reliability systems, we show that
ensembles of similar implementations have statistical value
even though each by itself is inscrutable. Research questions
are identified that may allow practical application of these
concepts.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection; C.4 [Computer Sys-
tems Organization]: Performance of Systems—fault toler-
ance; D.2.8 [Software Engineering]: Metrics—complexity
measures

General Terms

Security, Reliability, Design, Measurement

Keywords

complexity, cybersecurity

1. INTRODUCTION
Complexity of software is an artifact of the complex things

we require computers to do [9]. Their capacity for computa-
tion is inextricably connected to the fact that they are also
unpredictable, or rather capable of unforeseen emergent be-
havior [5]. Vulnerabilities are one of those behaviors.

1.1 Defining Complexity
Too often complexity is taken to mean “profoundly com-

plicated” or sometimes that which is simply complicated.
This ephemeral definition suggests a sliding relative scale
where one item can be said to be “more complex” than an-
other subjectively. A more satisfying and exact approach

Copyright 2009 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
CSIIRW ’09, April 13–15, Oak Ridge, Tennessee, USA
Copyright 2009 ACM 978-1-60558-518-5 ...$5.00.

is needed. For our purposes we will claim that a necessary
condition for a system to be called formally complex is that
the computational capability of the system is at least Turing
complete. This definition coheres with a few of the proper-
ties that we look for in complex systems:

1. Turing complete systems cannot be decided (i.e., pre-
dicted, or said to be bounded) ahead of running them
to see what they do (Turing’s Halting Problem and
Rice’s Undecidability Theorem [1]). This irreducibility
is a hallmark of emergent behavior in complex systems.
While this definition probably extends to non-cyber
complex systems (as in biology and economics), it is
clearly true for computers and networks of computers1.

2. Complex systems’ emergent behavior cannot be pre-
dicted from even a perfect knowledge of the constituent
parts that compose the complex system, a ramification
of undecidability.

This does not mean that there are not programs that
are simple enough to be analyzed by formal methods and
other tools. In those cases, boundedness properties of the
code can be asserted and proved, making the behavior well-
understood under a wide variety of circumstances. Formal
verification [4] is accomplished by automatically following
all salient execution paths to understand their consequences.
However, probably the vast majority of codes are of the sort
that are too complex for this analysis, the number of paths
growing beyond the capacity of even the largest machines.
It is this latter case on which we concentrate in this work.
We consider systems that are undecidable and for which
vulnerabilities can only be discovered anecdotally but not
thoroughly. Because their containing programs are unan-
alyzable, these vulnerabilities cannot be guaranteed to be
found by any means.

2. THE BURDEN AND OPPORTUNITY OF
COMPLEXITY IN CYBERSECURITY

Except for supply-chain exploits calculated to compromise
downstream consumers, vulnerabilities are unintentional ar-
tifacts incidental to an implementation of an intentional de-
sign. Here we will focus on software systems, but most of
the concepts transfer, in modified form, to hardware and
networks. It is useful as an object of study to separate the

1Real computers are not strictly Turing complete because
they have finite memory, but for any execution that “fits” in
the computer’s memory the question is moot.

feature set (i.e., the designed inputs, outputs, and state that
a program produces) from the complete set of things the pro-
gram can be caused to do. This feature set can be defined
concretely as a set of tests that verify a program’s adherence
to it—fitting neatly within the philosophy of Test Driven De-
velopment [2]. Under normal conditions these tests cannot
be made exhaustive pragmatically. The test suite ensures
that the program performs in the foreseen ways to the fore-
seen input history. But we know that it will almost certainly
perform in other ways to unforeseen input histories; some of
these will be benign, some faults, and others vulnerabilities.

2.1 Observation 1: Many Implementations for
a Single Design

It is useful to observe that for most feature sets there is a
large number of implementation programs—an infinite num-
ber if there is no other restriction. If as a part of the feature
set we bound the implementation program size, then we can
define a finite set of all implementation programs for that
particular feature set. The total number of such programs is
related only to the properties of the designed feature set and
the program size bound. If, for example, the bound is set
below the Kolmogorov complexity analogue of the feature
set (i.e., the smallest program implementing the feature set)
then the set of implementations is empty. The implementa-
tion “entropy” of the feature set F can be considered to be
SF = log n(F), where n(F) is the total number of possible
implementations of feature set F—a measure of how diverse
F is. This definition is consistent with the definition of en-
tropy as “the number of ways of changing the inside such
that the outside stays the same.”

Assuming that F itself does not require vulnerabilities in
every implementation, we can be certain that within the
complete set of implementations IF , each will have diverse
vulnerabilities not shared by all (Figure 1). It is important
to note that if one vulnerability is shared by all possible im-
plementations, this is the same as the feature set requiring
a vulnerability: The designed feature set itself has a vul-
nerability. In this way we can unambiguously say that each
vulnerability has a probability less than unity of being found
in any member of IF . To the extent that no implementation
vulnerability is “encouraged” by the feature set (i.e., made
more probable than any other vulnerability), vulnerabilities
can be considered incidental and can be assumed to be un-
correlated. Since we stipulate that this software is complex,
providing the opportunity for many different types of vulner-
abilities, we can speculate that any particular vulnerability
will be rare.

2.2 Observation 2: Ensembles of Undecidables
Yield Meaningful Statistics

A second observation is that although every implementa-
tion is undecidable with regard to possible vulnerabilities, an
ensemble of implementations may permit meaningful quan-
titative statistics. Consider an ensemble of implementations
chosen from IF . If each of these members is run with the
same input history, then nominally all of the responses will
be the same. If, as part of that input history, an exploit
for a particular vulnerability is present, it will likely suc-
ceed only for a minority of the ensemble (Figure 2). It is
clear that statistics can be formed relating the likelihood of
compromise for a specific fraction of the ensemble.

Even though the vulnerabilities of each member imple-

Figure 1: Here the “feature set” F is the collection
of designed inputs and outputs that a program pro-
duces. There is a large set IF of possible imple-
mentations of the given feature set, each different
in their unrelated implementation particulars. As-
suming that the design of the feature set is sound,
security “holes” (red dots) in programs happen as a
result of the implementation only, and not the fea-
ture set.

mentation are unknowable, the ensemble itself is more pre-
dictable. We can say what percentage of the ensemble is vul-
nerable to attack and with what likelihood given the statis-
tics of the implementation set. This property of ensembles
of undecidables can be used to turn complexity against the
attacker and in favor of the defender. A number of possibil-
ities exist for exploiting this property and will be discussed
in the conclusion.

3. N-VERSION TECHNIQUE ADAPTED TO
CYBERSECURITY

An obvious application of ensembles is closely related to
N-version software techniques [6] for high-reliability, fault-
tolerant systems used in aerospace and other time-critical
systems and recently applied to cybersecurity [7, 8]. Here
we are seeking to identify wrong responses from an other-
wise correct implementation [3]. In this technique, differ-
ent versions implementing the same feature set compare re-
sponses to detect a fault and vote the collective response of
the ensemble. In the past this concept has been restricted to
fault-tolerant systems. Typically, practical application of N-
version software requires that all versions be hand-coded in a
Chinese-wall style where different programmers are given the
specification and have no other communication. This extra
effort is deemed worthwhile for critical control systems, as
in spacecraft or aircraft, where the control software is fairly
simple. The expense presents a problem for more complex
software, where getting just one version is burdensome.

However, the benefits of using many diverse implemen-

Figure 2: Turing completeness and undecidability cause security holes to be unknowable in the general case to
programmers, users, and attackers. Implementations that are identical (monoclonal) are equally susceptible
to the discovery of a security hole by an adversary. Diverse implementations are less so, depending on the
number of variants.

Figure 3: An idealized graph compares the linear
scaling of defender effort with the exponential scal-
ing of attacker effort for a system that votes diverse
software implementations.

tations can be very substantial (Figure 3), based on the
theoretical scaling of the work required for a defender to
produce such variants (linear) in comparison to the work re-
quired for an attacker to defeat a robust voting system by
finding a shared vulnerability among most of the variants
(exponential). Although in practice the variants will not be
fully randomized as assumed in this comparison, the voting
mechanism can still provide an increase in robustness as long
as some diversity is available.

There are other differences in generalizing these ideas into
the cybersecurity arena. Faults in the N-version technique
are not considered hazardous to the overall system and fault-
ing versions are considered benign as long as they are in the
minority and lose the vote. In the case of a cyber attack,
however, the fault becomes an exploited vulnerability and
the compromised implementation must be removed from the
ensemble or it will pose a danger to the entire system. Be-
cause of this necessity, it would be advantageous to generate
new implementations automatically that will not repeat the
same vulnerability. An automatic means for generating new
implementation versions from one or a few existing imple-
mentations is needed. In the following section, we sketch
a system for accomplishing these goals using a simple ge-
netic algorithm for finding new implementations and a vot-
ing scheme for eliminating outliers.

4. EXAMPLE SYSTEM FOR GENERATING
DIVERSE IMPLEMENTATIONS

4.1 Genetic Programming Techniques for Code
Transformation

Generation of software variants by hand is time-consuming
and expensive. Furthermore, people tend to approach tasks
in similar ways and make similar mistakes, limiting the soft-
ware diversity that can be achieved through human coding,
even by separated developers [3]. On the other hand, the
field of genetic programming has the ambitious goal of en-
abling software to be created automatically based on a spec-
ified feature set (objective function), by imitating the bio-
logical processes of mutation and natural selection; but such
an approach has not been successful in creating realistically
complex software from scratch.

We propose that an effective method for generating di-
verse software implementations is to start with an initial
human-written implementation that passes the test suite for
its feature set, and to use the mutation techniques of genetic
programming for the sole purpose of introducing variations
in implementation details, while preserving (but not improv-
ing) functionality as measured by the test suite. This ap-
plication of genetic programming should be more tractable
because, rather than exploring an astronomically large space
in search of an optimum in the fitness “landscape,” we are
starting at an optimum (a functional program) and merely
diffusing along the manifold of such optima. Natural se-
lection among the mutated codes need only keep them as
functional as the initial one. Each mutation may contribute
only a small amount of diversity, but over many generations,
substantial randomization may be achievable.

Possible mutations include various “semantically invari-
ant” code transformations, some of which are implemented
in current compilers. In general, any change in machine code
has the potential to alter software behavior in some observ-
able way, if only in execution timing. But under certain
programming-model assumptions, there are transformations
that can be proved not to affect the behavior of interest (the
semantics). In the standard C programming model, for ex-
ample, the order in which data values are stored on the stack
does not affect behavior, and so stack randomization is con-
sidered semantically invariant.

When the assumptions of a given programming model are
violated (e.g., by a buffer overflow bug), two consequences
occur: A potential vulnerability is introduced (e.g., stack
smashing), and the corresponding “semantically invariant”
transformations acquire nontrivial effects on software behav-

ior (e.g., versions compiled with different stack randomiza-
tion will not respond identically to attack). Thus, by con-
structing mutations from code transformations with various
types of semantic invariance, and voting the resulting ensem-
ble, robustness to various vulnerabilities can be achieved.
Furthermore, the correlation between the responses of vari-
ants to a given malicious input, and their implementation
differences, can help diagnose the type of vulnerability be-
ing exposed.

4.2 Component-Based Software for Combina-
torial Leverage

Whether by hand or by an automated genetic approach,
practical difficulties may limit the number of diverse im-
plementations that can be generated. An effective way to
exploit the availability of even a relatively small number of
variants is by breaking software into “components,” each of
which has defined functionality, with its own feature set and
test suite. This component-based architecture is supported
by several currently used programming models. Variant im-
plementations of a given component, like variant alleles of
a biological gene, are in principle interchangeable without
impairing overall functionality. The creation of variants for
each component, and the arbitrary reshuffling of these vari-
ants into complete programs, can generate a much larger
number of diverse implementations of the entire program.

A potential disadvantage of the component approach is
that the interfaces between components can themselves be
a source of vulnerabilities that are not diversified away. Be-
cause the components’ interaction pattern is fixed in this
example, a portion of the initial implementation has been
encoded and frozen into a more complex (and likely less an-
alyzable) feature-set specification. We expect that the most
efficient generation of diversity will involve a preferred level
of decomposition for a given system, a tradeoff between the
combinatorial advantage of many fine-grained components
and the greater flexibility and analyzability of fewer coarse-
grained components.

5. SUMMARY AND FUTURE RESEARCH
We provide an analysis of software as an implementation

of a feature set and argue that vulnerabilities not coerced
by the feature-set design are random across the possible
implementations. Nonetheless, a vulnerability, indeed any
property of the software not already tested out, is undecid-
able and undetectable except anecdotally (via code analyz-
ers, etc.). We show, however, that one can reason statis-
tically about a diverse ensemble of such implementations.
Although the scope of the work is to understand vulnerable
software theoretically, we also speculate on how such an en-
semble could be created in practice and the open questions
related to its efficacy.

All of these potential applications of implementation en-
sembles rely on achieving sufficient diversity, and here there
is no helpful theory. It is unlikely that the complete im-
plementation set IF is needed for any feature set F ; any of
these potential applications can function with a small num-
ber of sufficiently diverse members. This brings up several
research questions:

1. What is a valid metric for software diversity in this
case? Here we seek a sort of “Hamming distance” for
differing implementations of the same feature set.

2. What is sufficient diversity to foil an attack with some
probability? This is likely dependent on the class of
vulnerability as well as the inherent entropy SF of the
feature set.

3. What automated means can be found to create new
diverse implementations? Genetic programming holds
out little hope for finding implementations of complex
software ab initio, but there may be schemes to create
diversity using one or a few hand-coded implementa-
tions as a starting point.

The simple genetic algorithm example we present answers
each of these questions in one way or another, with varying
degrees of adequacy, and serves as a focus of discussion.

A reasonable question, outside the scope of this work, is
whether there is another construct beyond ensembles that
might also circumvent the undecidability of complex soft-
ware. It is a curiosity that ensembles in statistical physics
are a theoretical artifice to reduce an overabundance of infor-
mation into global averaged properties such as temperature
and pressure. Conversely, here each member of the ensem-
ble is unknowable but some relative information is gained
by looking at them collectively. An interesting future inves-
tigation might leverage this observation to seek constructs
other than ensembles that might have similar properties and
arrive at them more straightforwardly.

6. ACKNOWLEDGMENTS
Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the U.S. De-
partment of Energy under contract DE-AC04-94AL85000.

7. REFERENCES
[1] Rice’s theorem.

http://en.wikipedia.org/wiki/Rice’s_theorem.
[2] K. Beck. Test Driven Development: By Example.

Addison-Wesley Professional, 2002.
[3] S. S. Brilliant, J. C. Knight, and N. G. Leveson.

Analysis of faults in an N-version software experiment.
IEEE Transactions on Software Engineering,
16:238–247, 1990.

[4] E. M. Clark, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

[5] S. A. Kauffman. The Origins of Order:
Self-Organization and Selection in Evolution. Oxford
University Press, 1993.

[6] B. Littlewood, P. Popo, and L. Strigini. Modeling
software design diversity. ACM Computing Surveys,
33:177–208, June 2001.

[7] J. Oberheide, E. Cooke, and F. Janhanian. CloudAV:
N-version antivirus in the network cloud. In
Proceedings of the 17th USENIX Security Symposium,
San Jose, CA, July 2008.

[8] B. Salamat, T. Jackson, A. Gal, and M. Franz.
Intrusion detection using parallel execution and
monitoring of program variants in user-space. In
Proceedings of EuroSys’09, Nürnberg, Germany, April
2009.

[9] S. Wolfram. A New Kind of Science. Wolfram Media,
Champaign, IL, 2002.

