
Local temporal reasoning
Eric Koskinen	

Visiting Assistant Professor	

New York University	

!
6 May 2014	

!
Joint work with Tachio Terauchi

Making sure programs operate correctly

Making sure programs operate correctly

Safety Don’t crash! (Nothing bad happens.)
SLAM, Blast, Astrée, etc.

so many other	

 important properties	

 missing!

Making sure programs operate correctly

Safety Don’t crash! (Nothing bad happens.)

Liveness Something good eventually happens.

SLAM, Blast, Astrée, etc.

Terminator, ARMC, etc.

Prove that the
program finishes.

“Every time a client connects to the web	

server, eventually web server gives a response.”

Temporal Logic

Safety Don’t crash! (Nothing bad happens.)

Liveness Something good eventually happens.

“Every time a client connects to the web	

server, eventually web server gives a response.”

G(¬crash)

F(finish)

Terminator, ARMC, etc.

G(request ⇒ F(response))

Temporal Logic

Safety Don’t crash! (Nothing bad happens.)

Liveness Something good eventually happens.

“Every time a client connects to the web	

server, eventually web server gives a response.”

Terminator, ARMC, etc.

Rich properties, but TL tools 	

only for hardware verification.

Temporal
Logic

property
C

program

Proofcounter-
example

/*
 * StreamServerPort -- open a "listening" port to accept connections.
 *
 * Successfully opened sockets are added to the ListenSocket[] array,
 * at the first position that isn't -1.
 *
 * RETURNS: STATUS_OK or STATUS_ERROR
 */ !
int
StreamServerPort(int family, char *hostName, unsigned short portNumber,
 char *unixSocketName,
 int ListenSocket[], int MaxListen)
void body()
{
 /* Initialize hint structure */ !
#ifdef HAVE_UNIX_SOCKETS
 if (family == AF_UNIX)
 {
 /* Lock_AF_UNIX will also fill in sock_path. */
 /* if (Lock_AF_UNIX(portNumber, unixSocketName) != STATUS_OK) */
 /* return STATUS_ERROR; */
 service = sock_path;
 }
 else
#endif /* HAVE_UNIX_SOCKETS */
 {
 snprintf(1, sizeof(1), "%d", portNumber);
 service = 1;
 } !
 ret = getaddrinfo_all(hostName, service, &hint, &addrs);
 if (ret || !addrs)
 {
 if (hostName) {
 /* ereport(LOG, */
 /* (errmsg("could not translate host name \"%s\", service \"%s\" to address: %s", */
 /* hostName, service, gai_strerror(ret)))); */
 } else {
 /* ereport(LOG, */
 /* (errmsg("could not translate service \"%s\" to address: %s", */

(G ¬error) ⇒ F (added>0 ∧ F ret=OK)

int StreamServerPort(int family, ...)
PostgreSQL StreamServer

Proving this statically is challenging.	

Reason about termination.	

Reason about reachability.

Temporal
Logic

property
C

program

Proofcounter-
example

Interpolation,

abstraction refinement
termination  reasoning

Temporal
Logic

property
C

program

Interpolation,

abstraction refinement
termination  reasoning

Proofcounter-
example POPL’11CAV’11PLDI’13

Award

Temporal
Logic

property
C

program

Proofcounter-
example

Apache,
PostgreSQL,

Windows OS code

!

Experiments
Ti

m
e

to
 p

ro
ve

 p
ro

pe
rty

 (s
)

0

400

800

1200

1600

Benchmark (Apache, PostgreSQL, Windows OS)

timeout

naïve
adaptations

of
automata
theory

Temporal
Logic

property
C

program

Proofcounter-
example

Java, C#,
Scala, ML

Higher-order
programs

type
systems

Temporal
Logic

property
C

program
Java, C#,
Scala, ML

Higher-order
programs

Support from the Japan Society for the Promotion of Science

let rec halt _ =
 halt ()
and shrink f =
 if (f() = 0) then
 halt ()
 else
 shrink (λ_. f() - 1)
!
and main() =
 let t = *+ in
 shrink (λ_. t)

let rec halt _ =
 halt ()
and shrink f =
 if (f() = 0) then
 halt ()
 else
 shrink (λ_. f() - 1)
!
and main() =
 let t = *+ in
 shrink (λ_. t)

main X (shrink U halt)

ev[halt];

ev[shrink];

ev[main];Events

let rec halt _ =
 halt ()
and shrink f =
 if (f() = 0) then
 halt ()
 else
 shrink (λ_. f() - 1)
!
and main() =
 let t = *+ in
 shrink (λ_. t)

main shrink
λ_.2

shrink
λ_.1

shrink
λ_.0

halt halt . . .

main shrink
λ_.1

shrink
λ_.0

halt halt halt . . .

main shrink
λ_.0

halt halt halt halt . . .

main shrink
λ_.1

shrink
λ_.0

halt halt halt . . .

main X (shrink U halt)

let rec halt _ =
 halt ()
and shrink f =
 if (f() = 0) then
 halt ()
 else
 shrink (λ_. f() - 1)
!
and main() =
 let t = *+ in
 shrink (λ_. t)

Infinite
state space

Higher
Order

Non-
determinism

Reachability

main X (shrink U halt)

Termination

No previous technique can prove this property.

Previously:	

• Expressive logics, but finite data [K/O:LICS’09]	

• Infinite data, but just safety [Terauchi:POPL’10]	

• Expressive logics, but first-order programs [CK:PLDI’13]

Terminates
or diverges?

Terminates
or diverges?

Terminates
or diverges?e1 e2

shrink (λ_. t)

(shrink U halt)

Decompose in two ways

!

Temporal
behavior as

e1 is reduced

!

Temporal
behavior as

e2 is reduced

!

Latent behavior
during application

Φ1
Φ2

Φ3

1. Divide up program into expressions

�1 · �2 · �3

e1 e2

Γ ⊢
Characterize temporal behavior of exprs. via type-and-effect:

Decompose in two ways

Typing
environment

Dependent
Type

Temporal
Effect

: τ & Φe1 e2

1. Divide up program into expressions

e1 e2Γ ⊢
Characterize temporal behavior of exprs. via type-and-effect:

Decompose in two ways

Typing
environment

Dependent
Type

Temporal
Effect

: τ & Φ

1. Divide up program into expressions

Decompose in two ways

!

Temporal
behavior as

e1 is reduced

!

Temporal
behavior as

e2 is reduced

!

Latent behavior
during application

Φ1
Φ2

Φ3

2. Track behavior of finite traces separate from infinite traces

�1 · �2 · �3

e1 e2

1. Divide up program into expressions

!

Temporal
behavior as

e1 is reduced

!

Temporal
behavior as

e2 is reduced

!

Latent behavior
during application

Φ1,Φ1
Φ2,Φ2

Φ3,Φ3

fin inf
fin inf

fin inf

Decompose in two ways

(�fin
1 ,�inf

1) · (�fin
2 ,�inf

2) · (�fin
3 ,�inf

3)

e1 e2

2. Track behavior of finite traces separate from infinite traces

1. Divide up program into expressions

Γ ⊢ e : τ & (Φ , Φ)fin inf

Decompose in two ways

2. Track behavior of finite traces separate from infinite traces

1. Divide up program into expressions

let rec halt _ =
 halt ()
and shrink f =
 if (f() = 0) then
 halt ()
 else
 shrink (λ_. f() - 1)
!
and main() =
 let t = *+ in
 shrink (λ_. t)

main X (shrink U halt)

let rec halt _ =
 halt ()
and shrink f =
 if (f() = 0) then
 halt ()
 else
 shrink (λ_. f() - 1)
!
and main() =
 let t = *+ in
 shrink (λ_. t)

(shrink U halt)

shrinkWhalt

Safety: the latent behavior when shrink is applied

Latent Effect

let rec halt _ =
 halt ()
and shrink f =
 if (f() = 0) then
 halt ()
 else
 shrink (λ_. f() - 1)
!
and main() =
 let t = *+ in
 shrink (λ_. t)

(shrink U halt)

Liveness: the conditions under which shrink terminates

shrinkWhalt

Safety: the latent behavior when shrink is applied

refinement types

“all traces 
 exit shrink”

(⊤, F ¬shrink)

let rec halt _ =
 halt ()
and shrink f =
 if (f() = 0) then
 halt ()
 else
 shrink (λ_. f() - 1)
!
and main() =
 let t = *+ in
 shrink (λ_. t)

(shrink U halt)

Liveness

Safety ...

(shrink U halt)

App

Comb

Sub

...

...

Liveness

Safety ...
App

Comb

...

...

Liveness in a type system ???

Liveness

Safety ...
App

Comb

...

...

Where do these pieces come from?

Liveness

Safety ...
App

Comb

...

...

The type system itself	

(solution to fixpoint eqn)

Adapt work on H.O.
termination

Under what conditions	

does shrink terminate?

Liveness

Safety ...
App

Comb

...

...

Advanced	

type systems

LICS’14

Advanced	

type systems

Why is this important?

• First technique for  
temporal properties of higher-order,
infinite-data programs	

!

!

• Instantiation to wide variety of spec. logics,  
Instantiation to type environments,  
Instantiation to oracles

Advanced	

type systems

Why is this important?

• Compositional	

• Does not require input program  
be in continuation-passing style (CPS)	

• First-order interprocedural programs

Temporal
Logic

property
C

program

Proofcounter-
example

Java, C#,
Scala, ML

Interpolation,

abstraction refinement
termination  reasoning

Advanced	

type systems

Next Steps

• Type systems	

• Formal methods, temporal logic	

• Abstraction refinement 	

• Algorithms	

• Scalable program analysis	

• Systems, experiments	

• Temporal Logic of Knowledge

Innovations Needed!

Temporal
Logic

property
C

program

Proofcounter-
example

Java, C#,
Scala, ML

Interpolation,

abstraction refinement
termination  reasoning

Advanced	

type systems

Conclusion

• Safety properties	

• Liveness properties	

• Mixtures	

• Worked well for hardware	

• Need techniques for software

Temporal Logic

• Java, C#, Scala, ML	

!

!

!

2025 Languages

Thank you!

