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Making sure programs operate correctly
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Safety Don’t crash! (Nothing bad happens.)

SLAM, Blast, Astrée, etc.

so many other

iImportant properties
missing!
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Temporal Logic

Safety Don’t crash! (Nothing bad happens.)

Liveness Something good eventually happens.
Terminator, ARMC, etc.

“Every time a client connects to the web
server, eventually web server gives a response.”

Rich properties, but TL tools
only for hardware verification.
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PostgreSQL StreamServer

StreamServerPort —— open a "listening" PrOVIng th|5 Statlca”y IS Cha”englng
successfully opened sockets are atced Reason about termination. ‘

/RETURNS: STATUS_OK or STATUS_ERROR Reason abOUt I"eaChablht)'.

— e —— — e

X ¥ X X ¥ X %

int
StreamServerPort(int family, char xhostName, unsigned short portNumber,
char *xunixSocketName,
int ListenSocket[], int MaxListen)
void body()
{

/* Initialize hint structure x/

#ifdef HAVE_UNIX_SOCKETS
if (family == AF_UNIX)

{
/* Lock_AF_UNIX will also fill in sock_path. x/
/* if (Lock_AF_UNIX(portNumber, unixSocketName) != STATUS_OK) x/
VES return STATUS_ERROR; */
service = sock_path;

}

else

#endif  /x HAVE_UNIX_SOCKETS x/

{
snprintf(1, sizeof(1), "%d", portNumber);
service = 1;

}

ret = getaddrinfo_all(hostName, service, &hint, &addrs);

if (ret || 'addrs)

{

if (hostName) <
/* ereport(LOG, *x/

}els (G —Iror) = F (added>0 /\ F ret—OK)
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Temporal property verification
as a program analysis task

Reasoning about Nondeterminism in Programs
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Experiments : :
timeout

naive

adaptations

automata
theory

[ime to prove property (s)

of

Benchmark (Apache, PostgreSQL, Windows OS)
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[ halt ()

land shrink f
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if ( ()
halt (
else
shrink (A_. f() - 1)
land main() =
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‘let rec halt _
. halt () o
and shrink f =¢ev[1hﬁnk];;;
if ( f() = 0 ) then
halt ()
else
shrink (A_. f() - 1)

1;!
| A

=
A

= ev [halt];| |

|
and main() - cvimai

| let t = x* 1In
shrink (A_.
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‘let rec halt _
[ halt ()
and shrink f
if ( f() = 0
halt ()
else
shrink (A_.

) then

|

Hand main() =
| let t = %* 1in

f() - 1)

shrink (A_.

t)

e I
main
N J
e I
main
N J
e I
main
N J
( I




Infinite

state space

‘let rec halt _
[ halt ()
and shrink f
if ( f() = 0
halt ()
else

H

‘and main() =

shrin

e —

Termination

shrink (A_.

| let t = %* 1in
(A_.

) then

f() - 1)

Reachability

Higher
Order

Non-
determinism



No previous technique can prove this property.

Previously:

* Expressive logics, but finite data [K/O:LICS 09]
* Infinite data, but just safety [Terauchi:POPL | 0]
* Expressive logics, but first-order programs [CK:PLDI’ | 3]




shrink (A . t)

Terminates Terminates
or diverges! el ez or diverges!
\ J

Terminates

or diverges!



Decompose in two ways

|. Divide up program into expressions

Temporal
behavior as
e2 is reduced

Temporal
behavior as

el is reduced

Latent behavior
during application




Decompose in two ways

|. Divide up program into expressions

Characterize temporal behavior of exprs. via type-and-effect:

I e €. T& O

Dependent | Temporal

Typing

environment

Type Effect




Decompose in two ways

|. Divide up program into expressions

Characterize temporal behavior of exprs. via type-and-effect:

I e €. T& O

Dependent | Temporal

Typing

environment

Type Effect




Decompose in two ways

|. Divide up program into expressions
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Decompose in two ways

|. Divide up program into expressions

2.Track behavior of finite traces separate from infinite traces

Temporal
behavior as
e> Is reduced

Temporal
behavior as

el is reduced

Latent behavior
during application

((I)fm (I)Inf) ((I)fln (I)iznf) ((Dfln (I)ignf)




Decompose in two ways

|. Divide up program into expressions

2. Track behavior of finite traces separate from infinite traces

[He:7& (D", O




let rec halt _ =
| halt ()
and shrink f
if ( f() = @ ) then
halt ()
else
shrink (A_. f() - 1)

P.
Hand main() =

| let t = x* in
shrink (A_. t)

———— e —




‘let rec halt _ =
halt ()
and shrink f

if ( f() = 0 ) then
halt ()

else

shrink (A_. f() - 1) |

|

Hand main() =
| let t = x* in
shrink (A_. t) Latent Effect

— EEEEE——

Safety: the latent behavior when shrinkis applied

inkVV
[+ shrink : (unit — int) o M nit&(e, )




‘let rec halt _
halt ()
and shrink f
if ( f() = @ ) then
halt ()

else
shrink (A_.

|

Hand main() =
| let t = %t 1n

shrink (A .
refinement types =

Safety: the latent befhavior when shrink is applied

sheink VV

Liveness: the conditih>ns under which shrink terminiites

“all traces
exit shrink’

[,f:unit - {i|7>0} +shrink f:unit & (T, F —shrink)



‘let rec halt _
| halt ()
and shrink f
if ( f() = 0 ) then
halt ()
else
shrink (A_. f() - 1) |

iand main() =
| let t = %t 1n
shrink (A_.

——

App |

I't:{i|7>0}+shrink (A_. t) : unit & (shrink U halt)

Comb

Sub



Liveness in a type system ??7?

Comb

o
Liveness

|




Where do these pieces come from?

Liveness

Comb




The type system itself

(solution to fixpoint eqn) Under what conditions
does shrink terminate?

Adapt work on H.O.
termination

Comb

Ap‘”
Liveness
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type%s\tems
m—

. LICS’ 14
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Comb
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Why is this important!?

® First technique for
temporal properties of higher-order,
infinite-data programs

Ad”'\"lahfced
type tems
=3

® |nstantiation to wide variety of spec. logics,
Instantiation to type environments,
Instantiation to oracles



Why is this important!?

® Compositional

Ad”'\"lahfced
type tems
=3

[ .
”;
2

® Does not require input program
be in continuation-passing style (CPS)

® First-order interprocedural programs



Temporal

Next Steps  [Jidiss

Scala, ML

Innovations Needed!

® [ype systems
® Formal methods, temporal logic

Systems, experiments

® Abstraction refinement S y 2

® Algorithms b | Advanced

® Scalable program analysis L ‘_type%\tems .
® N P

o

Temporal Logic of Knowledge

counter-
example




Conclusion

Temporal Logic

® Safety properties

® |iveness properties

® Mixtures

® Worked well for hardware
°

Temporal

Java, C#,
Scala, ML

Ad@aﬁced

Need techniques for software { R type@tems 4
) O

2025 Languages
® Java, C#, Scala, ML

counter-
example




Thank you!



