Local temporal reasoning

Eric Koskinen

Visiting Assistant Professor
New York University

6 May 2014

Joint work with Tachio Terauchi

.

’
’
.

. , SR ‘
I o iz, | |
| . uouom?. RS Gz oy

|

»

Making sure programs operate correctly

Making sure programs operate correctly

Safety Don’t crash! (Nothing bad happens.)

SLAM, Blast, Astrée, etc.

so many other

iImportant properties
missing!

Making sure programs operate correctly

Safety Don’t crash S EEQTRUERGER S ens)
program ﬁnlshes. . Blast, Astrée, etc.

Liveness Something good eventually happ
Terminator, ARMC, etc.

“Every time a client connects to the web
server, eventually web server gives a response.”

Safety Don’t crash! (Nothing bad happens.)

Liveness Something good eventually happeris.
Terminator, ARMC, etc.

“Every time a client connects to the web
server, eventually web server gives a response.”

G(rEeesSt = F(response))

Temporal Logic

Safety Don’t crash! (Nothing bad happens.)

Liveness Something good eventually happens.
Terminator, ARMC, etc.

“Every time a client connects to the web
server, eventually web server gives a response.”

Rich properties, but TL tools
only for hardware verification.

Temporal
C Logic
program property

counter-
example

Proof

PostgreSQL StreamServer

StreamServerPort —— open a "listening" PrOVIng th|5 Statlca”y IS Cha”englng
successfully opened sockets are atced Reason about termination. ‘

/RETURNS: STATUS_OK or STATUS_ERROR Reason abOUt I"eaChablht)'.

— e —— — e

X ¥ X X ¥ X %

int
StreamServerPort(int family, char xhostName, unsigned short portNumber,
char *xunixSocketName,
int ListenSocket[], int MaxListen)
void body()
{

/* Initialize hint structure x/

#ifdef HAVE_UNIX_SOCKETS
if (family == AF_UNIX)

{
/* Lock_AF_UNIX will also fill in sock_path. x/
/* if (Lock_AF_UNIX(portNumber, unixSocketName) != STATUS_OK) x/
VES return STATUS_ERROR; */
service = sock_path;

}

else

#endif /x HAVE_UNIX_SOCKETS x/

{
snprintf(1, sizeof(1), "%d", portNumber);
service = 1;

}

ret = getaddrinfo_all(hostName, service, &hint, &addrs);

if (ret || 'addrs)

{

if (hostName) <
/* ereport(LOG, *x/

}els (G —Iror) = F (added>0 /\ F ret—OK)

10 DNOT T r"aNccirQOQr@ corywya \ " TN 2NN roaccc s 4

Temporal
C Logic
program property

CLCPLELELE P LN

counter-
example

program

Temporal
Logic

Temporal property verification
as a program analysis task

Reasoning about Nondeterminism in Programs

Byroa Cook Enc Koskinen *

Microso® Rescarch Camideadpe
& University College Loadon

New Yook Universiy

Abstract

Braschisg timse serspoenl Jogs (ep CTL, CTL', moddd
caicules) albow us 0 sk sophisticaned Questons adout the soade
wrmeniam hat appean i3 yywerma. Apphcatons of thea type of res
soreng inclade plarmng, pames, socury asalyws, dnproving, pr|
condition synthewa, coviroarsent synthesn, oic. Unfortanately, ¢
Bing saomass Mraachiag-time venfication tools have lim]
e have tndinonally reatnicwd Ser applicablity (¢ g panh-don
sywioern only, uaiversal path geantfers only, o)

In thas poper we introduce an astormation stradegy St L
marry of these peevious restrictions. Our method works reliabdy
for propeerties with 80n- trivial mistares of wniversal and exisentind

Heoe we are uaing two tamporal operaton

*Ala WA swpecifos Bt ¢ 3ad b v temponally seguenced s all
caccstions through the syatom crder & miaht hapeen fooever.

PLDI"I 3

svahess. and mam

‘arterg TOf v,

Syron Cook®, Erie Koskinen®, and Moshe Vardi®

eromolt Hesesech and Queen Macy Usivensity of Losden

Ualversity of Camibeidge

Hice

Untversaty

We descrite a rodaction (rom tesmsporal peoperty veriicalion

ram analysis probiemn We produce an encodisg which, with

don off-tso-abel! poog

recunion and noodetermainsen, «

obs Lo aateeally 5

xin the reasoning sooosary for provisg

tualey checking, tree coum

progerties (29 backtracking, ov

how for Deanch propevtion, aletraction refaement, otc
PostgreSQL dat

ol Windows OFS hersel, we demoostrate the peactionl vie

oo sorver, Apachs

W wOors

tion

wibod of provieg tempog

s, We olwerve that

A TYRSCOINE a8 D o

jessary for reasosisg a

FRing, ov sty chex
bens saturally perfor

Sety analywis tools (eg

3.6, 17

B Arguinenls (e g], We » lmpletent tem

rophecies

k

ch &
of London

t com

Wmporal propeTties ex
Owr approach takes ad
B ofen be pex
ed wich the branching
e LTL alpocithens, The
leterrnisian i the oy
jscthods 10 report coun
%% 0 the orgeal LT1
knibe an algonthm thae,
ads, fnds and then e
= malpis o0 the po
craalx soondctcrrarasen
s, and rernoved wiing &
e whxh

moee

ltcome of Dse cholom
from B¢ PosgreSOL
Windows O5 kerme
OCTIANCS IERprOVETTETEs
s W0 MACENACATY prowe
prove them before
R4 [Soffwarr Eqgpincer
el checking. Corres
Systems | Reliadidry
Swx
Logwer

of Program |

Yo, FA2

Mrograssning Lasguages

abeliy

verficanon, wrTnination,

with Decision Predicates

Eric Koskinen
Unversiey of Cambeudpe
G I0cam a2 uk

o oxprossed | CTL withose fale
Arociad manneT unisg Lae

cousmm |},

13, &)
aous can be proved

yuLan

based reasosing locheiques, wherems LTL regures decper reann
g aboul whole sets of traces and the suble relatonsbips betwom
fanrdies of em

In Dhis paper we aies 10 mualie an LTL prover foe inf
peograms with performance closer 10 what one woold expect from
3 CTL peover We use the observation it YOT1 withoot Baemen
can be » syl abstraction of LTL. The pooblem with thes WKy
i that Dhe pieces doa't always I wpether: there are Cases when,
Sue 2 sore mstances of noadelernn
YOTL alone is non powerful enough 1 prove an LTL propeny

In these cases our LTL prover works acound the prodien ssing
rg we call dectuion predicotex, which are saed %o charach
tre and treat such sntances of noadctermumnes. A decivion poods
cale o repooseniod aa & par of ¢
where Be formula o defines D¢ Gocishon prodicant’s presuppos)
200 (Le when e Socision is made), aad § chanoeraes the bunary
ke made when thes presuppossion hobdds Amy trasstion from
S50 200 5300 & I e systom that meoets the constraist ol s AN s)
b Gatngaiihod by the docisaon prodicate (o, b) fomafs)n-&(2')

Ve e doectuon prodicaics as B¢ buan of 2 partal yymbolic
determerrration procedure: Sor each prodicaie we introduce & now
prophecy variabie [3] o peadict D fnure ouscome of the decusion
Afer parsally Ssermnuing with respect 10 these prophecy var
Bles, weo find that CT1
% prowve LT properies with CTL proof sochasgues in cases whare

POPL’I'|

server, and the Windows OS kerned

zie-vale

S8 18 e raeshon sysien,

prool methods sxcood, Des allowing o

Apache, Temporal

PostgreSQL, C LOgiC
Windows OS code
program property

counter-
example

Proof

Experiments : :
timeout

naive

adaptations

automata
theory

[ime to prove property (s)

of

Benchmark (Apache, PostgreSQL, Windows OS)

Higher-order Temporal
S Java, C#, L ogic

programs Scala, ML

property

counter-
example

Proof

Higher-order Temporal
5 Java, C#, Logic

programs Scala, ML

property

Support from the Japan Society for the Promotion of Science

,lef rec halt _

[halt ()

land shrink f
)

if (()
halt (
else
shrink (A_. f() - 1)
land main() =
let t = *x* in |
shrink (A_. |

e

‘let rec halt _
. halt () o
and shrink f =¢ev[1hﬁnk];;;
if (f() = 0) then
halt ()
else
shrink (A_. f() - 1)

1;!
| A

=
A

= ev [halt];| |

|
and main() - cvimai

| let t = x* 1In
shrink (A_.

= e

‘let rec halt _
[halt ()
and shrink f
if (f() = 0
halt ()
else
shrink (A_.

) then

|

Hand main() =
| let t = %* 1in

f() - 1)

shrink (A_.

t)

e I
main
N J
e I
main
N J
e I
main
N J
(I

Infinite

state space

‘let rec halt _
[halt ()
and shrink f
if (f() = 0
halt ()
else

H

‘and main() =

shrin

e —

Termination

shrink (A_.

| let t = %* 1in
(A_.

) then

f() - 1)

Reachability

Higher
Order

Non-
determinism

No previous technique can prove this property.

Previously:

* Expressive logics, but finite data [K/O:LICS 09]
* Infinite data, but just safety [Terauchi:POPL | 0]
* Expressive logics, but first-order programs [CK:PLDI’ | 3]

shrink (A . t)

Terminates Terminates
or diverges! el ez or diverges!
\ J

Terminates

or diverges!

Decompose in two ways

|. Divide up program into expressions

Temporal
behavior as
e2 is reduced

Temporal
behavior as

el is reduced

Latent behavior
during application

Decompose in two ways

|. Divide up program into expressions

Characterize temporal behavior of exprs. via type-and-effect:

I e €. T& O

Dependent | Temporal

Typing

environment

Type Effect

Decompose in two ways

|. Divide up program into expressions

Characterize temporal behavior of exprs. via type-and-effect:

I e €. T& O

Dependent | Temporal

Typing

environment

Type Effect

Decompose in two ways

|. Divide up program into expressions

dCK DClaviOornr O1 [iriy alCo SCpal dlT 1T OL i A,

Temporal
behavior as
e2 is reduced

Temporal
behavior as

el is reduced

Latent behavior
during application

DOy - Oy - Py

Decompose in two ways

|. Divide up program into expressions

2.Track behavior of finite traces separate from infinite traces

Temporal
behavior as
e> Is reduced

Temporal
behavior as

el is reduced

Latent behavior
during application

((I)fm (I)Inf) ((I)fln (I)iznf) ((Dfln (I)ignf)

Decompose in two ways

|. Divide up program into expressions

2. Track behavior of finite traces separate from infinite traces

[He:7& (D", O

let rec halt _ =
| halt ()
and shrink f
if (f() = @) then
halt ()
else
shrink (A_. f() - 1)

P.
Hand main() =

| let t = x* in
shrink (A_. t)

———— e —

‘let rec halt _ =
halt ()
and shrink f

if (f() = 0) then
halt ()

else

shrink (A_. f() - 1) |

|

Hand main() =
| let t = x* in
shrink (A_. t) Latent Effect

— EEEEE——

Safety: the latent behavior when shrinkis applied

inkVV
[+ shrink : (unit — int) o M nit&(e,)

‘let rec halt _
halt ()
and shrink f
if (f() = @) then
halt ()

else
shrink (A_.

|

Hand main() =
| let t = %t 1n

shrink (A .
refinement types =

Safety: the latent befhavior when shrink is applied

sheink VV

Liveness: the conditih>ns under which shrink terminiites

“all traces
exit shrink’

[,f:unit - {i|7>0} +shrink f:unit & (T, F —shrink)

‘let rec halt _
| halt ()
and shrink f
if (f() = 0) then
halt ()
else
shrink (A_. f() - 1) |

iand main() =
| let t = %t 1n
shrink (A_.

——

App |

I't:{i|7>0}+shrink (A_. t) : unit & (shrink U halt)

Comb

Sub

Liveness in a type system ??7?

Comb

o
Liveness

|

Where do these pieces come from?

Liveness

Comb

The type system itself

(solution to fixpoint eqn) Under what conditions
does shrink terminate?

Adapt work on H.O.
termination

Comb

Ap‘”
Liveness

Ad@aﬁced

type%s\tems
m—

. LICS’ 14
Liveness

Comb

|

Why is this important!?

® First technique for
temporal properties of higher-order,
infinite-data programs

Ad”'\"lahfced
type tems
=3

® |nstantiation to wide variety of spec. logics,
Instantiation to type environments,
Instantiation to oracles

Why is this important!?

® Compositional

Ad”'\"lahfced
type tems
=3

[.
”;
2

® Does not require input program
be in continuation-passing style (CPS)

® First-order interprocedural programs

Temporal

Next Steps [Jidiss

Scala, ML

Innovations Needed!

® [ype systems
® Formal methods, temporal logic

Systems, experiments

® Abstraction refinement S y 2

® Algorithms b | Advanced

® Scalable program analysis L ‘_type%\tems .
® N P

o

Temporal Logic of Knowledge

counter-
example

Conclusion

Temporal Logic

® Safety properties

® |iveness properties

® Mixtures

® Worked well for hardware
°

Temporal

Java, C#,
Scala, ML

Ad@aﬁced

Need techniques for software { R type@tems 4
) O

2025 Languages
® Java, C#, Scala, ML

counter-
example

Thank you!

