# Managing the Security Risk of Open Source Dependencies: Current Tools & Challenges

#### Nasif Imtiaz, Laurie Williams

North Carolina State University

#### Key insights

- 1. Software Composition Analysis (SCA) tools can detect open source dependencies and report known vulnerabilities in them.
- 2. A key strength of an SCA tool is the accuracy, up-to-dateness, and completeness of its vulnerability database.
- 3. Not all dependency vulnerabilities may pose a security risk to the application.
- 4. Future research opportunity lies in i) Understanding how developers assess security risk and make fix decisions for dependency vulnerabilities.
  - ii) Automation techniques to ensure continuous monitoring of vulnerability data in the open source ecosystem.

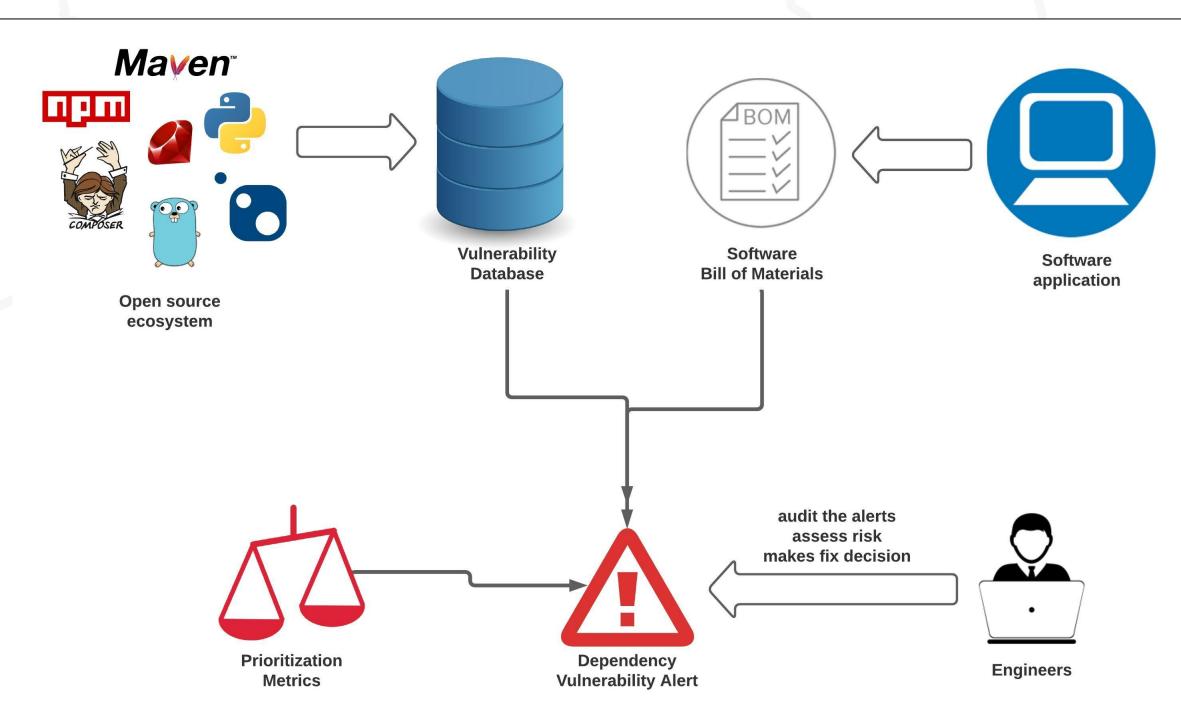



Figure: SCA workflow

### SCA comparison

- We run 9 SCA tools on a web application, OpenMRS, consisting of 43 Maven and 5 npm projects
- We find the tools vary widely in their reporting of unique vulnerabilities and the unique dependencies to contain these vulnerabilities
- We characterize five type of metrics provided by the studied tools to aid in risk assessment of dependency vulnerabilities, most notably reachability analysis.

Table 2: Vulnerable Dependencies for Maven (Java) projects

| Tool Alert                 |                | Unique<br>Dependency | Unique<br>Package | Unique<br>Vulnerability | CVE | Non-CVE | Scan Time<br>(Minutes) |  |  |  |  |
|----------------------------|----------------|----------------------|-------------------|-------------------------|-----|---------|------------------------|--|--|--|--|
| Total (Median per project) |                |                      |                   |                         |     |         |                        |  |  |  |  |
| OWASP DC                   | 12,466 (254.0) | 332 (38.0)           | 149 (36.0)        | 313 (117.0)             | 289 | 24      | 14.4                   |  |  |  |  |
| Snyk                       | 4,902 (66.0)   | 96 (6.0)             | 46 (6.0)          | 189 (23.0)              | 178 | 11      | 15.1                   |  |  |  |  |
| Dependabot                 | 136 (0.0)      | 20 (0.0)             | 11 (0.0)          | 61 (0.0)                | 61  | 0       | NA                     |  |  |  |  |
| MSV                        | 3,197 (58.0)   | 36 (12.0)            | 14 (12.0)         | 36 (22.0)               | 36  | 0       | 3.4                    |  |  |  |  |
| Steady                     | 2,489 (51.0)   | 91 (20.0)            | 39 (19.0)         | 97 (41.0)               | 89  | 8       | 385.0                  |  |  |  |  |
| WhiteSource                | 434 (0.0)      | 76 (0.0)             | 44 (0.0)          | 146 (0.0)               | 127 | 19      | NA                     |  |  |  |  |
| Commercial A               | 2,998 (70.0)   | 107 (24.0)           | 53 (24.0)         | 208 (70.0)              | 187 | 21      | NA                     |  |  |  |  |
| Commercial B               | 205            | 35                   | 35                | 127                     | 127 | 0       | NA                     |  |  |  |  |

Table 3: Vulnerable Dependencies for npm (JavaScript) projects

|   | Tool        | Alert         | Unique<br>Dependency<br>Path | Unique<br>Dependency | Unique<br>Package | Unique<br>Vulnerability | CVE | non-CVE | Scan Time<br>(Minutes) |
|---|-------------|---------------|------------------------------|----------------------|-------------------|-------------------------|-----|---------|------------------------|
| - |             |               |                              |                      |                   |                         |     |         |                        |
|   | OWASP DC    | 1,379 (208.0) | 498 (72.0)                   | 239 (71.0)           | 160 (57.0)        | 234 (71.0)              | 78  | 156     | 4.4                    |
|   | Snyk        | 2,210 (135.0) | 1,004 (44.0)                 | 90 (20.0)            | 54 (17.0)         | 121 (26.0)              | 79  | 42      | 1.0                    |
|   | Dependabot  | 97 (8.0)      | NA                           | 32 (1.0)             | 30 (1.0)          | 45 (4.0)                | 29  | 16      | NA                     |
|   | npm audit   | 1,266 (37.0)  | 852 (28.0)                   | 58 (12.0)            | 45 (12.0)         | 62 (16.0)               | 31  | 31      | 0.1                    |
|   | WhiteSource | 205 (32.0)    | 205 (32.0)                   | 89 (14.0)            | 55 (9.0)          | 96 (18.0)               | 58  | 38      | NA                     |









8<sup>TH</sup> ANNUAL
HOT TOPICS in the **SCIENCE OF SECURITY**APRIL 13-15, 2021 | VIRTUAL

## Key differences

- Accuracy and completeness of vulnerability database
- Tools can report unique non-CVEs not reported by other tools.
- Tools may have different mapping of vulnerability to affected versions of packages.
- How dependencies are detected
  - OWASP DC and WhiteSource detected JavaScript dependencies in Maven projects though source code analysis.
  - Commercial B only reported dependencies under use during runtime.