
Margrave:
Query-Based Policy Analysis

Daniel J. Dougherty
Worcester Polytechnic Institute

joint work with:

Kathi Fisler (WPI)
Tim Nelson (WPI)
Shriram Krishnamurthi (Brown)

HCSS Annapolis May 11, 2012

the role of policy

Not about protecting against illegitimate or unauthorized uses of
a system;

Rather, about making sure that legitimate uses achieve security
goals.

Hence, complementary to studies of vulnerabilities and
intrusion-detection.

Attacker model is: authorized use of the system!

2 / 28

a range of analyses

1. “Is it possible for someone in Department A to read (certain) files
of Department B?”

a boolean query

2. “What files are administrative assistants forbidden to delete?”
a typical database query

3. Suppose P1 is a policy, and P2 is an update. “Are P1 and P2
equivalent?”

policy comparison...logically complex!

4. “Which rule in my firewall is responsible for that packet being
dropped?”

reflection: rule-blaming

3 / 28

the policy/program split

Reflects reality of development: different authors; different
concerns

Different specification formalisms: policy tends to be declarative

Allows for differences in analysis (this talk)

4 / 28

two analysis approaches

Entailment Scenario-Finding
given protocol or policy P and a
verification property a, ask

given protocol or policy P and
certain assumptions, or ask

P |= a? does P entail
a?

what scenarios are
consistent with
these?

that is, is a true in all [protocol]
runs of P?

that is, what are the models of
P + these observations?

Margrave *

5 / 28

two analysis approaches

Entailment Scenario-Finding
given protocol or policy P and a
verification property a, ask

given protocol or policy P and
certain assumptions, or ask

P |= a? does P entail
a?

what scenarios are
consistent with
these?

that is, is a true in all [protocol]
runs of P?

that is, what are the models of
P + these observations?

Margrave *

5 / 28

Margrave principles

Don’t analyze policies in isolation:
policies exist as companions to systems

Scenario-finding:
prefer examples to proofs

Based on first-order logic:
value expressiveness over speed

Supports rigorous property-free analysis:
you shouldn’t have to be a logician to use formal methods

6 / 28

an extended example:

change-impact analysis

7 / 28

access-control policy differencing
a conference manager policy

Original policy P1 Updated policy P2

. . .

– During the review phase,
reviewer r may submit a
review for paper p if r is not
conflicted with p

– During the meeting phase,
reviewer r can read the
scores for paper p if r has
submitted a review for p and r

is not conflicted with p

. . .

. . .

– During the review phase,
reviewer r may submit a
review for paper p if r is
assigned to review p

– During the meeting phase,
reviewer r can read the
scores for paper p if r has
submitted a review for p

. . .

8 / 28

access-control policy differencing
a conference manager policy

Original policy P1 Updated policy P2

. . .

– During the review phase,
reviewer r may submit a
review for paper p if r is not
conflicted with p

– During the meeting phase,
reviewer r can read the
scores for paper p if r has
submitted a review for p and r

is not conflicted with p

. . .

. . .

– During the review phase,
reviewer r may submit a
review for paper p if r is
assigned to review p

– During the meeting phase,
reviewer r can read the
scores for paper p if r has
submitted a review for p

. . .

8 / 28

Change impact analysis
Can compute difference in pure policy semantics:

For user r to submit a review for paper p:
1. permitted in P1 but not permitted in P2:

reviewPhase and not conflicted(r, p) and not assigned(r, p)

2. permitted in P2 but not permitted in P1:

reviewPhase and conflicted(r, p) and assigned(r, p)

For user r to read scores for paper p:
1. permitted in P1 but not permitted in P2:

never

2. permitted in P2 but not permitted in P1:

meetingPhase and submitted(r, p) and conflicted(r, p)

9 / 28

Change impact analysis
Can compute difference in pure policy semantics:

For user r to submit a review for paper p:
1. permitted in P1 but not permitted in P2:

reviewPhase and not conflicted(r, p) and not assigned(r, p)

2. permitted in P2 but not permitted in P1:

reviewPhase and conflicted(r, p) and assigned(r, p)

For user r to read scores for paper p:
1. permitted in P1 but not permitted in P2:

never

2. permitted in P2 but not permitted in P1:

meetingPhase and submitted(r, p) and conflicted(r, p)

9 / 28

notes about the analysis

1. Analysis was about policy and program in cooperation:
system state plays a key role :

ReviewPhase � MeetingPhase �

2. Interplay between rules for assigning reviewers and which
user-processes can read and submit reviews. Latter is standard
access-control; the former is a human process!

3. Permissions vary over time, but policy doesn’t. Policy is a function

P : (ProgramState ⇥ Requests)! Decisions

One policy, various program states

4. No deduction in user interface: the tool generated scenarios of
interest, which a user can comprehend.

10 / 28

notes about the analysis cont’d

5. A semantically rich question was asked: “how do policies
compare?” Not a simple “is a bad state reachable?” question.

6. For such (datalog-based) policies, change-impact differences are
computable..

7. Analysis “workflow” is subtle and interesting: pure policy analysis
generated information suitable for pure program analysis.

8. ** Reduced a complex, non- “safety” problem to a
reachability-analysis one. Uses mature tools from
program-analysis community.

11 / 28

12 / 28

12 / 28

12 / 28

Margrave implementation

Passage to propositional logic

– Current version uses SAT solving (Kodkod)

Experimental version using first-order geometric logic

Crucial user aspects:
1. Try to spare user from giving domain bounds:

compute sufficient domain sizes when possible.

2. Provide rich metaphor for exploring scenarios to gain insight into
policies

13 / 28

further aspects
not this talk

– Traditional property-based verification is available:
a is valid if and only if there are no scenarios for ¬a.

– First-order foundations are essential for many analyses:
go beyond firewalls, RBAC, XACML . . .
[FOSER 2010]

– Typical mode of use for Margrave: “what-if?” exploration user
explores the space of scenarios for a given query
[LISA 2010]

– Support for policy composition
[Giannakopulous MS thesis 2012]

– For many queries, analysis is complete: sufficient bounds on
scenario-sizes can be automatically computed
[ABZ 2012]

14 / 28

which scenarios?

15 / 28

too many models!

Suppose P has some realizing scenarios. Which ones to report?

Informal intuitions

No unnecessary entities!

No gratuitous facts!

16 / 28

homomorphisms

Let M and N be models. A homomorphism from M to N is a function

h : |M|! |N|

such that for all predicates R,

whenever R(a1, . . . ,an

) holds in M
we have: R(h(a1), . . . ,h(an

)) holds in N

Intuition: “h transforms elements, preserving facts”

17 / 28

observable properties

Geometric formulas:
built from atomic formulas using
finitary ^, infinitary

W
, and 9

A geometric sequent looks like

q1 ! q2

where q1,q2 are geometric formulas

18 / 28

key features

If a geometric formula q[a1, . . . ,an

] holds in a model M then

there is a finite piece of the model witnessing this, and

extensions to the model (new facts or new elements) will not
disturb the truth of q[a]

Geometric formulas are precisely those
preserved by homomorphisms.

19 / 28

why geometric logic?

expressive: naturally captures protocol executions and security goals

admits forward-chaining inference mechanism: the Chase

very convenient for model-building: the Chase builds models minimal
in the homomorphism partial order

20 / 28

a finite model theorem

21 / 28

Effectively Propositional Logic
the Bernays+Schoenfinkel+Ramsey class

Sentences of the form

9x1 . . .xn

8y1 . . .yk

. j j quantifier-free

Theorem [Bernays+Schoenfinkel 1928, Ramsey 1930] If a
sentence in the above class is satisfiable then it has a model of size
bounded by n.

Corollary This class is decidable

Our goal Generalize this class

22 / 28

example

8x 9y 8z . j an undecidable prefix class for satisfiability

8x

A 9 y

B 8z

A . j sorted version is better-behaved :

Assume A  B

Suppose have 2 constants at each sort
Then if there are any models at all then there is a model M with
|M(A)| 2 and |M(B)| 4

But if B  A instead: no such bounds

23 / 28

example

8x 9y 8z . j an undecidable prefix class for satisfiability

8x

A 9 y

B 8z

A . j sorted version is better-behaved :

Assume A  B

Suppose have 2 constants at each sort
Then if there are any models at all then there is a model M with
|M(A)| 2 and |M(B)| 4

But if B  A instead: no such bounds

23 / 28

example

8x 9y 8z . j an undecidable prefix class for satisfiability

8x

A 9 y

B 8z

A . j sorted version is better-behaved :

Assume A  B

Suppose have 2 constants at each sort
Then if there are any models at all then there is a model M with
|M(A)| 2 and |M(B)| 4

But if B  A instead: no such bounds

23 / 28

order-sorted signatures

Language

– as usual, but admit relation symbols

– semantics allows empty sorts

These are essentially tree automata.

Notation: write TL for the term model over signature L.

24 / 28

main theorems

Given s we can Skolemize to get a universal s8.

Theorem. Let s be a sentence whose Skolemization s8 has
signature L. Then s is satisfiable if and only if s has a model M such
that for each sort A, |M(A)| |TL(A)|.

That is, it suffices to count the size of the language of the tree
automaton.

Theorem. We can decide whether TL(A) is finite, uniformly for
each sort A, in time linear in L.

Theorem. We can compute |TL(A)|, uniformly for each sort A, in
time cubic in L.

25 / 28

main theorems

Given s we can Skolemize to get a universal s8.

Theorem. Let s be a sentence whose Skolemization s8 has
signature L. Then s is satisfiable if and only if s has a model M such
that for each sort A, |M(A)| |TL(A)|.

That is, it suffices to count the size of the language of the tree
automaton.

Theorem. We can decide whether TL(A) is finite, uniformly for
each sort A, in time linear in L.

Theorem. We can compute |TL(A)|, uniformly for each sort A, in
time cubic in L.

25 / 28

technicalities

Classical (unsorted) treatment . . . challenges for order-sorting:

1. By Skolemization, build a universal sentence s8 equi-satisfiable
with s;

When empty sorts are allowed, the Skolem form of s is not
equisatisfiable with s

2. Any model for s8 has a Skolem hull: close the interpretation of
the constants by the interpretation of the functions.

When sorts are not disjoint the Skolem hull of M can be infinite
even when term model is finite.

3. The truth of universal sentences is preserved under submodel.

When sort names can be used as predicates—as in many
tools—preservation of universal sentences under submodel fails

So when TL is finite (i.e., the B+S+R class) conclude the finite model
theorem.

26 / 28

technicalities

Classical (unsorted) treatment . . . challenges for order-sorting:

1. By Skolemization, build a universal sentence s8 equi-satisfiable
with s;

When empty sorts are allowed, the Skolem form of s is not
equisatisfiable with s

2. Any model for s8 has a Skolem hull: close the interpretation of
the constants by the interpretation of the functions.

When sorts are not disjoint the Skolem hull of M can be infinite
even when term model is finite.

3. The truth of universal sentences is preserved under submodel.

When sort names can be used as predicates—as in many
tools—preservation of universal sentences under submodel fails

So when TL is finite (i.e., the B+S+R class) conclude the finite model
theorem.

26 / 28

technicalities

Classical (unsorted) treatment . . . challenges for order-sorting:

1. By Skolemization, build a universal sentence s8 equi-satisfiable
with s;

When empty sorts are allowed, the Skolem form of s is not
equisatisfiable with s

2. Any model for s8 has a Skolem hull: close the interpretation of
the constants by the interpretation of the functions.

When sorts are not disjoint the Skolem hull of M can be infinite
even when term model is finite.

3. The truth of universal sentences is preserved under submodel.

When sort names can be used as predicates—as in many
tools—preservation of universal sentences under submodel fails

So when TL is finite (i.e., the B+S+R class) conclude the finite model
theorem.

26 / 28

technicalities

Classical (unsorted) treatment . . . challenges for order-sorting:

1. By Skolemization, build a universal sentence s8 equi-satisfiable
with s;

When empty sorts are allowed, the Skolem form of s is not
equisatisfiable with s

2. Any model for s8 has a Skolem hull: close the interpretation of
the constants by the interpretation of the functions.

When sorts are not disjoint the Skolem hull of M can be infinite
even when term model is finite.

3. The truth of universal sentences is preserved under submodel.

When sort names can be used as predicates—as in many
tools—preservation of universal sentences under submodel fails

So when TL is finite (i.e., the B+S+R class) conclude the finite model
theorem.

26 / 28

technicalities

Classical (unsorted) treatment . . . challenges for order-sorting:

1. By Skolemization, build a universal sentence s8 equi-satisfiable
with s;

When empty sorts are allowed, the Skolem form of s is not
equisatisfiable with s

2. Any model for s8 has a Skolem hull: close the interpretation of
the constants by the interpretation of the functions.

When sorts are not disjoint the Skolem hull of M can be infinite
even when term model is finite.

3. The truth of universal sentences is preserved under submodel.

When sort names can be used as predicates—as in many
tools—preservation of universal sentences under submodel fails

So when TL is finite (i.e., the B+S+R class) conclude the finite model
theorem.

26 / 28

OS-EPL

Definition Order-Sorted Effectively Propositional Logic (OS-EPL) is
the class of sentences s such that each |TL(A)| is finite

(where L is the language of the Skolemization of s).

Empirical fact: a wide class of policy queries lies in OS-EPL

Theorem: Membership in OS-EPL is decidable in linear time

Theorem: Model-size bounds can be computed in cubic time

Corollary: OS-EPL is decidable.

Application: Bounds-checking is incorporated into Margrave

27 / 28

Margrave principles

Don’t analyze policies in isolation:
policies exist as companions to systems

Scenario-finding:
prefer examples to proofs

Based on first-order logic:
value expressiveness over speed

Supports rigorous property-free analysis:
you shouldn’t have to be a logician to use formal methods

28 / 28

	Intro
	Example
	geometric logic

