Measuring Protocol Strength with Security Goals

HCSS May 11, 2016

Paul D. Rowe, Joshua D. Guttman, Moses D. Liskov The MITRE Corporation {prowe, guttman, mliskov}@mitre.org

Kerberos PKINIT Initialization Round

$$TGT = \{ | AK, C, ts_A | \}_{k_T}$$

PKG = { | AK, n_1, ts_A, T | }_k

where:

$$TGT = \{ | AK, I, ts_A | \}_{k_T}$$

PKG = { | AK, n_1, ts_A, T | }_k

Intruder can eavesdrop on all subsequent communications.

How Do We Compare Proposed Fixes?

Framework for systematically measuring relative security of (related) protocols

- Based on characterizing and comparing goals achieved by each
- Always assuming all-or-nothing crypto and randomness (Dolev-Yao)

Subclass of goals relevant for enrich-by-need protocol analysis

- Syntactic subclass within a particular logical goal language
- Distinguishing feature of tools like CPSA and Scyther

Potential interface to other tools and methods

- Common (tool-independent) language for expressing security goals

Idea of Measurement

Measurement and Numerical Representation

- Is today twice as hot as yesterday?
 - Temperature is only unique up to scale and 0
- Choice of measurement representation should reflect relations of empirical realm
 - Totally ordered representations are often inappropriate

Security is About Attacks and Goals

- $\Pi \downarrow 1$ is at least as secure as $\Pi \downarrow 2$, if and only if any goal guaranteed by $\Pi \downarrow 2$ is also guaranteed by $\Pi \downarrow 1$ (with a given set of adversary capabilities).
- We write $\Pi \downarrow 2 \triangleleft \Pi \downarrow 1$ for the empirical ordering
- Protocols must be sufficiently similar to make sense of these concepts.
 - E.g. Key secrecy should about "corresponding" keys
 - We do not strive to compare any arbitrary pair of protocols

Measurements: Sets of Logical Goal Formulas

- Logical formulation of security goals is a natural representation choice
 - Measurement M yields sets of goals achieved by Π
 - Sets ordered by inclusion reflect empirical ordering
- $M(S\downarrow 1) \leq M(S\downarrow 2) \quad iff \quad S\downarrow 1 \leq S\downarrow 2$
- We focus on authentication and secrecy goals
 - Trace properties: Counterexamples are single executions

Logical Structure of Security Goals

Authentication and secrecy goals have a particular logical structure

$$\forall \overline{x} . (\Phi \implies \bigvee_{1 \le j \le i} \exists \overline{y}_j . \Psi_j)$$

- Logical structure is independent of analysis tool or formalism
- A single goal can be meaningful for many related protocols
 - Common language separates goals from mechanisms to achieve them
 - "Related" is defined with respect to Guttman's definition of protocol transformations

Example: PKINIT Security Goal

Security Goal r:

Whenever a client C processes a server's reply apparently from A containing server-generated credentials, then the server A previously produced those credentials for C.

Formula Satisfaction

12

MITRE

Goal Satisfaction as a Security Measure

- A protocol Π achieves a goal Γ iff every execution of Π satisfies Γ.
- Each set of goals G induces a lattice ordered by inclusion that serves as a scale to measure security.
- Let *G* be some set of goals, and let $M \uparrow G(\Pi \downarrow i) = \{\Gamma \in G | \Pi \downarrow i \text{ achieves } \Gamma\}$. Then

 $\Pi \downarrow 1 \blacktriangleleft G \Pi \downarrow 2 \quad iff \quad M \uparrow G (\Pi \downarrow 1) \subset M \uparrow G (\Pi \downarrow 2)$

Measurement in the Two-Point Lattice

Theorem 1:

There exists a semi-decision procedure to determine if π does not achieve r.

Measurement Granularity

Singleton sets yield a coarse scale for measurement

Larger sets of goals should provide more granularity

Theorem 2:Let
$$G \subset G$$
 be sets of security goals.If $\Pi I I \triangleright \P G \Pi I 2$, then $\Pi I I \triangleright \P G \Pi I 2$

Finite Sets of Goals

Security Hierarchies in the Goal Language

- Lowe's Hierarchy of Authentication:
 - Weak Aliveness
 - Weak Agreement
 - Agreement (d_1, \ldots, d_n)
 - Injective Agreement

Weak aliveness. $\begin{pmatrix} IDone(n) \land Peer(n, r) \land \\ GoodKeys(n, \overline{k}) \end{pmatrix} \Rightarrow \begin{pmatrix} (\exists m. RStart(m) \land Self(m, r)) \lor \\ (\exists m. IStart(m) \land Self(m, r)) \end{pmatrix}$ Weak agreement.

$$\varPhi_1 \wedge \texttt{Self}(n,i) \quad \Rightarrow \quad (\varPsi_1^1 \wedge \texttt{Peer}(m,i)) \vee (\varPsi_1^2 \wedge \texttt{Peer}(m,i))$$

Weak agreement: Variant.

$$\begin{split} \varPhi_1 \quad \Rightarrow \quad \left(\begin{array}{c} (\exists i \, . \, \Psi_1^1 \wedge \texttt{Self}(n,i) \wedge \texttt{Peer}(m,i)) \lor \\ (\exists i \, . \, \Psi_1^2 \wedge \texttt{Self}(n,i) \wedge \texttt{Peer}(m,i)) \end{array} \right) \end{split}$$

Non-injective agreement.

$$\Phi_2 \wedge \bigwedge_{p \in V} \operatorname{Param}_p(n, v_p) \quad \Rightarrow \quad \Psi_2^1 \wedge \bigwedge_{p \in V} \operatorname{Param}_p(m, v_p)$$

Injective session.

IDone
$$(n_1) \land \bigwedge_{p \in P(i_p, i_p)} \operatorname{Param}_p(n_1, v_p) \land$$

- Cremers and Mauw's Additions:
 - Weak Aliveness in Role
 - Synchronization
 - Injective synchronization

• Consider the infinite set of goals: $H(\phi) = \{\Gamma | hyp(\Gamma) = \phi\}$

- $M \uparrow H(\phi)(\Pi)$ always has a single maximum
 - Relative to the implication order, up to bi-implication

Theorem 4:

Enrich-by-need analysis computes max [M1H(φ) (Π)]

Corollary:

π¹ • *îH*(ϕ) **π**¹² if and only if **π**¹² achieves max [*MîH*(ϕ) (**π**¹¹)]

Summary

Logical framework to formalize what it means to measure protocol security

- Framework has natural but clear scope of applicability

The framework unifies several approaches to defining security

- Repairs to a known flaw
- Position in an authentication hierarchy
- Richer, infinite sets: $H(\phi)$. Any others?

Our work suggests ways to compare/combine results of tools as well

- Could enable more rigorous independent verification
- This would enhance the transparency of the standardization process

Measuring Protocol Strength with Security Goals

Thank You! Questions?

Paul Rowe The MITRE Corporation prowe@mitre.org

