
Micro-Architectural Attacks and
Defenses

11/15/2021
Heechul Yun

Associate Professor, EECS
University of Kansas

1

Micro-Architectural Attacks

• Software attacks on hardware
• Complex hardware à many attack vectors

2

Micro-Architectural Attacks

• Micro-architectural hardware components
– E.g., cache, tlb, DRAM, OoO engine, …

• Can leak secret
– E.g., Meltdown, Spectre

• Can alter the content of the stored data
– E.g., RowHammer

• Can affect execution timing
– E.g., DoS attack on real-time tasks

• Logically correct software is also vulnerable

3

Today’s Talk

• A new contention-based covert channel
– Jacob Fustos, Michael Garrett Bechtel, Heechul Yun. SpectreRewind:

Leaking Secrets to Past Instructions. Workshop on Attacks and
Solutions in Hardware Security (ASHES), 2020.

• A new denial-of-service (DoS) attack
– Michael Garrett Bechtel and Heechul Yun. Memory-Aware Denial-of-

Service Attacks on Shared Cache in Multicore Real-Time Systems. IEEE
Transactions on Computers, 2021.

• A hardware defense mechanism for DoS attacks
– Farzad Farshchi, Qijing Huang, and Heechul Yun. BRU: Bandwidth

Regulation Unit for Real-Time Multicore Processors. IEEE Intl.
Conference on Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2020.

4

SpectreRewind: Leaking Secrets
to Past Instructions

Jacob Fustos, Michael Bechtel, Heechul Yun
University of Kansas, USA

Workshop on Attacks and Solutions in Hardware
Security (ASHES), 2020.

Speculative Execution Attacks

• Attacks exploiting microarchitectural
side-effects left by speculative
(transient) instructions

• Many variants: Spectre, Meltdown,
Foreshadow, MDS, LVI, …

• Secrets are transferred over
microarchitectural covert channels

• Most known attacks use cache covert
channels

6

Cache Covert Channel

• By measuring access timing differences of a memory location, an
attacker can determine whether the memory is cached or not.

• Secret is recovered after transient executions are squashed
• Many proposals exist to mitigate cache-based channels

7
Image source: M. Lipp et al., “Meltdown: Reading kernel memory from user space.,” USENIX Security., 2018.

Contention Covert Channels

• Exploit that contention on shared functional units/ports
between Simultaneous multithreading (SMT) threads

• Secret is transmitted during the speculative execution
• Mitigation solutions including disabling SMT

8
Image source: Bhattacharyya et al, “SmotherSpectre,” ACM CCS, 2019

SpectreRewind

• A novel contention-based covert channel
• Transmits secret from speculative instructions

to (non-speculative) past instructions
• Through non-pipelined functional units on a

single hardware thread (no SMT)
• Bypasses all existing defenses against cache or

SMT based covert channels

9

SpectreRewind

10

SpectreRewind

• Receiver
– Non-speculative (bound-to-retire) instructions

• Sender
– Secret depend speculative instructions

• Covert Channel
– Shared non-pipelined functional units
– Other possibilities: prefetcher, MSHRs, etc…

11

Modern Out-of-Order Architecture

12

Scheduler

µop

µop

Floating Point Divider

Integer Divider

Integer ALU

Integer Multiplier

Integer ALU
Port 0

Port 1

ReOrder Buffer

µop0

µop1

µop2

µop3

µop4

µop5

µop6

µop0
µop1

µop2

µop3

µop4

Pipelined Functional Unit

• Sender (young) cannot delay Receiver (old)

13

sender receiver

(a) Fully pipelined functional unit

Non-pipelined Function Units

• Sender (young) delays Receiver (old)

14

(b) Non-pipelined functional unit

sender receiver

Floating Point Division Covert Channel

• Start a timer
• Perform multiple divisions
• Cause a mis-speculation
• Calculate a bit to transmit
• If bit is ‘1’ do more division
• Cause contention with receiver
• Time entire attack

Channel Properties

• Clearly distinguishable patterns on all tested Intel, AMD,
ARM processors

16

Performance Analysis

• High transfer rates and low error rates

17

Google Chrome Sandbox

• Implemented a SpectreRewind PoC in JavaScript on
Chrome

• Noisier but still distinguishable timing differences

18

Discussion

• Benefits
– Does not require SMT hardware (single thread)
– Defeats all known hardware solutions for stateful

(cache) covert channels
– Alternative to cache-based covert channels like

Flush+Reload
• Limitations (*)
– Limited to same address space attacks
– Finding division-based gadgets may be difficult
– Attacker controls both receiver and sender

19
(*) M. Behnia et al., “Speculative Interference Attacks: Breaking Invisible Speculation Schemes,” ASPLOS, 2021.

Summary

• A novel contention-based covert channel
– Transmits secret from speculative instructions to

(non-speculative) past instructions
– Through non-pipelined functional units on a

single hardware thread (no SMT)
– Bypasses all existing defenses against cache or

SMT based covert channels
– Achieves high throughput and low error rates
– Works on all tested Intel, AMD, and ARM

processors

20

Memory-Aware Denial-of-Service
Attacks on Shared Cache in

Multicore Real-Time Systems
Michael Bechtel, Heechul Yun

University of Kansas, USA
IEEE Transactions on Computers, 2021.

Denial-of-Service Attacks

• Attacker’s goal: increase the

victim’s task execution time

• The attacker is on different

core/memory/cache partition

• The attacker can only execute

non-privileged code.

22
M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In RTAS, 2019

Cache DoS Attacks

• Denial-of-Service (DoS) attacks targeting internal
hardware structures of a shared cache.
– Block the cache à delay the victim’s execution time

23

BwRead
(target MSHRs)

BwWrite
(target WBBuffer)

M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In RTAS, 2019

Effects of Denial-of-Service Attacks

• Delay execution time of time sensitive code
– Observed up to 10X increase(**)

• Of a realistic DNN-based real-time control program

24
(**) Michael Garrett Bechtel, Elise McEllhiney, Minje Kim, Heechul Yun. “DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car.”
In RTCSA, IEEE, 2018

 0

 2

 4

 6

 8

 10

 12

DNN (Core 0,1) BwWrite (Core 2,3)

N
or

m
al

iz
ed

 E
xe

uc
tio

n
T

im
e

Solo
Corun

DRAM

LLC

Core1 Core2 Core3 Core4

DNN BwWrite

5%

10X

interference

Hypothesis

• Effective cache DoS attacks require many
concurrent in-flight memory requests to DRAM to
induce cache blocking

• Cache blocking will last longer if the DRAM
memory requests are processed slowly

• Sequential memory requests in prior cache-DoS
attacks are processed efficiently, leveraging
DRAM bank-level parallelism

• Intentionally inefficient memory requests can
make more effective cache DoS attacks

25

Memory-Aware Cache DoS Attack
• Attacker

intentionally
generate DRAM
bank conflicts

• Induce longer
cache blocking

• Victim’s execution
time increases

26

victim attackers

Last Level Cache (LLC)

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core
1

Core
2

Core
3

Core
4

Memory-Aware Cache DoS Attack

27

PLLRead PLLWrite

Evaluation Results (Synthetic)

• Memory-aware attacks (BkPLLRead/BkPLLWrite) are
much more effective than baselines (BwRead/BwWrite)

28

LLC

Core1 Core2 Core3 Core4

victim attackers

Evaluation Results (SPEC2017)

• Memory-aware attacks outperforms baselines

29

Summary

• DoS attacks are more effective when attacker’s
memory requests are processed slowly

• We developed memory-aware DoS attacks
that target a subset of DRAM banks

• Evaluation results show significantly improved
attack efficiency (more victim slowdown) on
the tested embedded computing platforms

30

BRU: Bandwidth Regulation Unit for Real-
Time Multicore Processors

Farzad Farshchi§, Qijing Huang¶, Heechul Yun§

§University of Kansas, ¶University of California, Berkeley
IEEE Intl. Conference on Real-Time and Embedded Technology and Applications

Symposium (RTAS), April 2020

31

Motivation

• DoS attacks are possible due to unregulated
access to the shared resources

• Software regulation mechanisms exist, but
suffer high overhead [Yun+,2013]

• We need simple, low overhead mechanism to
regulate access to shared resources

32

* Yun et al., “MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-core Pl
atforms.” In RTAS, 2013

Bandwidth Regulation Unit (BRU)

• Regulate per-core/group memory bandwidth
• Drop-in addition to existing processor design

33

Bandwidth Regulation Unit (BRU)

• Access regulation
– Regulate cache misses

• Writeback regulation
– Regulate cache write-

back

• Group regulation
– Multiple cores can be

regulated as a group

34

Dual-core BOOM with BRU

• BOOM: high-performance out-of-
order RISC-V core

• Cadence synthesis result at 7nm
node

• Less than 2% impact on max.
frequency

• Less than 0.2% space overhead

35

BRU

Effects of BRU

• BRU = MemGuard in hardware + alpha

36

w/ BRU regulation (@320MB/s budget, 100ns period)

w/o BRU

Summary

• BRU
– A synthesizable hardware IP that regulates

memory traffic at the source (cores)
– Demonstrates the feasibility of fast AND

predictable processors

• Future work
– Accelerator regulation support
– More software/hardware co-design

37

Conclusion

• Micro-architectural attacks are serious threats
on modern computing platforms
– Can leak secret (confidentiality)
– Can alter data (integrity)
– Can affect real-time performance (correctness)

• We have developed new attacks and effective
defense mechanisms

• Fast and secure computing is possible with
cross-layer collaborative approaches

38

Thank You!

39

Questions?

