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Micro-Architectural Attacks

• Software attacks on hardware
• Complex hardware à many attack vectors
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Micro-Architectural Attacks

• Micro-architectural hardware components
– E.g., cache, tlb, DRAM, OoO engine, …

• Can leak secret
– E.g., Meltdown, Spectre

• Can alter the content of the stored data
– E.g., RowHammer

• Can affect execution timing
– E.g., DoS attack on real-time tasks

• Logically correct software is also vulnerable
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Today’s Talk

• A new contention-based covert channel
– Jacob Fustos, Michael Garrett Bechtel, Heechul Yun. SpectreRewind: 

Leaking Secrets to Past Instructions. Workshop on Attacks and 
Solutions in Hardware Security (ASHES), 2020.

• A new denial-of-service (DoS) attack
– Michael Garrett Bechtel and Heechul Yun. Memory-Aware Denial-of-

Service Attacks on Shared Cache in Multicore Real-Time Systems. IEEE 
Transactions on Computers, 2021. 

• A hardware defense mechanism for DoS attacks
– Farzad Farshchi, Qijing Huang, and Heechul Yun. BRU: Bandwidth 

Regulation Unit for Real-Time Multicore Processors. IEEE Intl. 
Conference on Real-Time and Embedded Technology and Applications 
Symposium (RTAS), 2020.
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SpectreRewind: Leaking Secrets 
to Past Instructions

Jacob Fustos, Michael Bechtel, Heechul Yun
University of Kansas, USA

Workshop on Attacks and Solutions in Hardware 
Security (ASHES), 2020.



Speculative Execution Attacks

• Attacks exploiting microarchitectural 
side-effects left by speculative 
(transient) instructions 

• Many variants: Spectre, Meltdown, 
Foreshadow, MDS, LVI, …

• Secrets are transferred over 
microarchitectural covert channels

• Most known attacks use cache covert 
channels
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Cache Covert Channel

• By measuring access timing differences of a memory location, an 
attacker can determine whether the memory is cached or not. 

• Secret is recovered after transient executions are squashed
• Many proposals exist to mitigate cache-based channels
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Image source:  M. Lipp et al., “Meltdown: Reading kernel memory from user space.,” USENIX Security., 2018.



Contention Covert Channels 

• Exploit that contention on shared functional units/ports 
between Simultaneous multithreading (SMT) threads

• Secret is transmitted during the speculative execution
• Mitigation solutions including disabling SMT
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Image source: Bhattacharyya et al, “SmotherSpectre,” ACM CCS, 2019



SpectreRewind

• A novel contention-based covert channel
• Transmits secret from speculative instructions 

to (non-speculative) past instructions
• Through non-pipelined functional units on a 

single hardware thread (no SMT)
• Bypasses all existing defenses against cache or 

SMT based covert channels
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SpectreRewind
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SpectreRewind

• Receiver
– Non-speculative (bound-to-retire) instructions

• Sender
– Secret depend speculative instructions

• Covert Channel
– Shared non-pipelined functional units
– Other possibilities: prefetcher, MSHRs, etc…
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Modern Out-of-Order Architecture
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Pipelined Functional Unit

• Sender (young) cannot delay Receiver (old)
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sender receiver

(a) Fully pipelined functional unit



Non-pipelined Function Units

• Sender (young) delays Receiver (old)
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Floating Point Division Covert Channel

• Start a timer
• Perform multiple divisions
• Cause a mis-speculation
• Calculate a bit to transmit
• If bit is ‘1’ do more division
• Cause contention with receiver
• Time entire attack



Channel Properties

• Clearly distinguishable patterns on all tested Intel, AMD, 
ARM processors
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Performance Analysis

• High transfer rates and low error rates
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Google Chrome Sandbox

• Implemented a SpectreRewind PoC in JavaScript on 
Chrome

• Noisier but still distinguishable timing differences
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Discussion

• Benefits 
– Does not require SMT hardware (single thread) 
– Defeats all known hardware solutions for stateful 

(cache) covert channels
– Alternative to cache-based covert channels like 

Flush+Reload
• Limitations (*)
– Limited to same address space attacks
– Finding division-based gadgets may be difficult
– Attacker controls both receiver and sender
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(*) M. Behnia et al., “Speculative Interference Attacks: Breaking Invisible Speculation Schemes,” ASPLOS, 2021.



Summary

• A novel contention-based covert channel
– Transmits secret from speculative instructions to 

(non-speculative) past instructions
– Through non-pipelined functional units on a 

single hardware thread (no SMT)
– Bypasses all existing defenses against cache or 

SMT based covert channels
– Achieves high throughput and low error rates
– Works on all tested Intel, AMD, and ARM 

processors
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Memory-Aware Denial-of-Service 
Attacks on Shared Cache in 

Multicore Real-Time Systems
Michael Bechtel, Heechul Yun

University of Kansas, USA
IEEE Transactions on Computers, 2021.



Denial-of-Service Attacks

• Attacker’s goal: increase the 

victim’s task execution time

• The attacker is on different 

core/memory/cache partition 

• The attacker can only execute 

non-privileged code.

22
M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.”  In RTAS, 2019



Cache DoS Attacks

• Denial-of-Service (DoS) attacks targeting internal 
hardware structures of a shared cache.
– Block the cache à delay the victim’s execution time
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BwRead
(target MSHRs)

BwWrite
(target WBBuffer)

M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.”  In RTAS, 2019



Effects of Denial-of-Service Attacks

• Delay execution time of time sensitive code
– Observed up to 10X increase(**)

• Of a realistic DNN-based real-time control program

24
(**) Michael Garrett Bechtel, Elise McEllhiney, Minje Kim, Heechul Yun. “DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car.” 
In RTCSA, IEEE, 2018
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Hypothesis

• Effective cache DoS attacks require many 
concurrent in-flight memory requests to DRAM to 
induce cache blocking

• Cache blocking will last longer if the DRAM 
memory requests are processed slowly

• Sequential memory requests in prior cache-DoS 
attacks are processed efficiently, leveraging 
DRAM bank-level parallelism

• Intentionally inefficient memory requests can 
make more effective cache DoS attacks
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Memory-Aware Cache DoS Attack
• Attacker 

intentionally 
generate DRAM 
bank conflicts

• Induce longer 
cache blocking

• Victim’s execution 
time increases
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Memory-Aware Cache DoS Attack
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Evaluation Results (Synthetic)

• Memory-aware attacks (BkPLLRead/BkPLLWrite) are 
much more effective than baselines (BwRead/BwWrite) 
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Evaluation Results (SPEC2017)

• Memory-aware attacks outperforms baselines
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Summary

• DoS attacks are more effective when attacker’s 
memory requests are processed slowly

• We developed memory-aware DoS attacks 
that target a subset of DRAM banks

• Evaluation results show significantly improved 
attack efficiency (more victim slowdown) on 
the tested embedded computing platforms
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BRU: Bandwidth Regulation Unit for Real-
Time Multicore Processors

Farzad Farshchi§, Qijing Huang¶, Heechul Yun§

§University of Kansas, ¶University of California, Berkeley
IEEE Intl. Conference on Real-Time and Embedded Technology and Applications 

Symposium (RTAS), April 2020
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Motivation

• DoS attacks are possible due to unregulated 
access to the shared resources 

• Software regulation mechanisms exist, but 
suffer high overhead [Yun+,2013]

• We need simple, low overhead mechanism to 
regulate access to shared resources
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* Yun et al., “MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-core Pl
atforms.” In RTAS, 2013



Bandwidth Regulation Unit (BRU)

• Regulate per-core/group memory bandwidth
• Drop-in addition to existing processor design
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Bandwidth Regulation Unit (BRU)

• Access regulation
– Regulate cache misses 

• Writeback regulation
– Regulate cache write-

back

• Group regulation
– Multiple cores can be 

regulated as a group
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Dual-core BOOM with BRU

• BOOM: high-performance out-of-
order RISC-V core

• Cadence synthesis result at 7nm 
node

• Less than 2% impact on max. 
frequency

• Less than 0.2% space overhead
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Effects of BRU

• BRU = MemGuard in hardware + alpha
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Summary

• BRU
– A synthesizable hardware IP that regulates 

memory traffic at the source (cores)
– Demonstrates the feasibility of fast AND 

predictable processors 

• Future work
– Accelerator regulation support
– More software/hardware co-design
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Conclusion

• Micro-architectural attacks are serious threats 
on modern computing platforms
– Can leak secret (confidentiality)
– Can alter data (integrity)
– Can affect real-time performance (correctness)

• We have developed new attacks and effective 
defense mechanisms

• Fast and secure computing is possible with 
cross-layer collaborative approaches
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Thank You!
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Questions?


