Micro-Architectural Attacks and
Defenses

11/15/2021
Heechul Yun
Associate Professor, EECS
University of Kansas

THE UNIVERSITY OF
KANSAS



Micro-Architectural Attacks

A3

e Software attacks on hardware
 Complex hardware > many attack vectors

MMMMMMMMMMMMM



Micro-Architectural Attacks

* Micro-architectural hardware components
— E.g., cache, tlb, DRAM, 000 engine, ...

* Can leak secret
— E.g., Meltdown, Spectre

e Can alter the content of the stored data
— E.g., RowHammer

* Can affect execution timing
— E.g., DoS attack on real-time tasks

* Logically correct software is also vulnerable

— KU

THE UNIVERSITY OF



Today’s Talk

e A new contention-based covert channel

— Jacob Fustos, Michael Garrett Bechtel, Heechul Yun. SpectreRewind:
Leaking Secrets to Past Instructions. Workshop on Attacks and

Solutions in Hardware Security (ASHES), 2020.

* A new denial-of-service (DoS) attack

— Michael Garrett Bechtel and Heechul Yun. Memory-Aware Denial-of-
Service Attacks on Shared Cache in Multicore Real-Time Systems. IEEE

Transactions on Computers, 2021.

e A hardware defense mechanism for DoS attacks

KANSAS

— Farzad Farshchi, Qijing Huang, and Heechul Yun. BRU: Bandwidth
Regulation Unit for Real-Time Multicore Processors. IEEE Intl.
Conference on Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2020.




KANSAS

SpectreRewind: Leaking Secrets
to Past Instructions

Jacob Fustos, Michael Bechtel, Heechul Yun
University of Kansas, USA

Workshop on Attacks and Solutions in Hardware
Security (ASHES), 2020.




Speculative Execution Attacks

* Attacks exploiting microarchitectural
side-effects left by speculative
(transient) instructions

 Many variants: Spectre, Meltdown,
Foreshadow, MDS, LVI, ...

 Secrets are transferred over
microarchitectural covert channels

e Most known attacks use cache covert
channels

KANSAS



Cache Covert Channel

= _ 500
3 400
v 9
8 5 300
< 200
0 50 100 150 200 250
Page

* By measuring access timing differences of a memory location, an
attacker can determine whether the memory is cached or not.

* Secret is recovered after transient executions are squashed
* Many proposals exist to mitigate cache-based channels

KANSAS Image source: M. Lipp et al., “Meltdown: Reading kernel memory from user space.,” USENIX Security., 2018.



Contention Covert Channels

From the frontend

___________________________ ¢¢

Opcodep ry, ro

Instruction

window Opcodep r3, g
OpcodeEg r5, rg
R ERRCETTLLY TUETTTETEEPETRPEREREEEEEEEN ] .....

Scheduling  Port0 Port 1 Port 2 Port3

________________ ¢

Opa Opg Opc vOPA
Execution
O O O
AriitS PD ODE PE
PF

* Exploit that contention on shared functional units/ports
between Simultaneous multithreading (SMT) threads

e Secret is transmitted during the speculative execution
e Mitigation solutions including disabling SMT

— KU

KANSAS Image source: Bhattacharyya et al, “SmotherSpectre,” ACM CCS, 2019



SpectreRewind

* A novel contention-based covert channel

* Transmits secret from speculative instructions
to (non-speculative) past instructions

* Through non-pipelined functional units on a
single hardware thread (no SMT)

* Bypasses all existing defenses against cache or
SMT based covert channels

THE UNIVERSITY OF



THE UNIVERSITY OF
KANSAS

SpectreRewind

Non-speculative Speculative
instruction stream instruction stream

Sending ‘1’

Q

Sending ‘0’

No contention

time




SpectreRewind

* Receiver

— Non-speculative (bound-to-retire) instructions
* Sender

— Secret depend speculative instructions
* Covert Channel

— Shared non-pipelined functional units
— Other possibilities: prefetcher, MSHRs, etc...

KANSAS



Modern Out-of-Order Architecture

ReOrder Buffer

Hop

pop

Scheduler

Port O

Port 1

g4




e Sender (young) cannot delay Receiver (old)

— KU

THE UNIVERSITY OF
KANSAS

sender

receiver

Pipelined Functional Unit

/
i Scheduler f

Ready Waiting

Integer Multiplier

:

Port 1

i

Stage 1

Stage 2

Stage 3

Scheduler

)

Ready

Integer Multiplier

)

Port 1

]

Stage 1

Stage 2

Stage 3

Scheduler

Integer Multiplier

:

Port 1

|

Stage 1

Stage 2

Stage 3

(a) Fully pipelined functional unit




Non-pipelined Function Units

sender receiver

Floating Point Divider

Scheduler
Stage 1
o . . .
Ready Waiting
Floating Point Divider
Scheduler
. .; Stage 1
o . . .
Ready
Floating Point Divider
Scheduler
- -z Stage 1
o . . .
Ready

(b) Non-pipelined functional unit

e Sender (young) delays Receiver (old)

THE UNIVERSITY OF



Floating Point Division Covert Channel

L4 Start a timer 1 double recv, div;
2 double sendl, send2, send3, send4;
. e e . 3 int message; // secret
e Perform multiple divisions 4
S start = rdtscp(); // start timer
. . 6
* Cause a mls_speCL”atlon 7 // begin receiver (12 dependent FP divisions)
8 recv /= div;
H H 9 recv /= v ;
e Calculate a bit to transmit ol I
11 recv /= &
. . l , ] . . 7
e If bitis ‘1’ do more division L
. . . 14 culative execution
e Cause contention with receiver . T
. . 17 sender (independent FP divisions )
* Time entire attack s =0 s TG0 )
20 /= div;
21 send3 /= div;
22 send4 /= div;
23 }
24 // end of sender
25 1
26 }
27
28 Icnd = rdtscp(); // end limerl
| | |

THE UNIVERSITY OF
KANSAS



=}
N
a

=}
[N}
T

o
a
o

Probability
o
s
T

=}
©
1

=}
©
T

Probability
©cooo0000
BN WwBs o N
T T T T ) 1

250 300 350 400
Number of Clock Cycles

(a) Kabylake R (i5-8250U)

i i i

S ESUTRIEN, |

o
N
S i
S

250 300 350 400
Number of Clock Cycles

(e) Zen (Ryzen3 2200G)

450

Channel Properties

0.4 ~ 0.6 ~
35 F 0.5 -
0.3 -
2025 - 204 5
g 02k 203+
° i <4
2015 Eoo b
0.1 -
005 0.1 -
o0l i i i i oL i i 111 i i
200 250 300 350 400 450 200 250 300 350 400 450
Number of Clock Cycles Number of Clock Cycles
(b) Skylake (i5-6500) (c) Haswell (E5-2658v3)
1r 05 -
09 b 0.45 -
0.8 - 04 i
5 0% B 035 -
206 - B rin
= £ 03~
g 05 EO 25 &
goat 802~
03 - 0.15 -
0.2 = o 1
0.1 = l oo L
ol i i & i i : : ; :
3 3 0
200 250 300 350 400 450 40 60 80 100 120 140 160 180 200

Number of Clock Cycles

(f) Zen+ (Ryzen5 2600)

Number of Clock Cycles

(g) Cortex-A57 (Jetson Nano)*

0.9 ~

0.8 =

N o=
T

T

T

cooo oo

Probability
>0o
T

T | )
250 300 350 400

Number of Clock Cycles
(d) Ivybridge (i5-3340M)

w

0.2

e
T

i i i i i

450

o
S
S

55 60 65 70 75 80 85

Number of Clock Cycles

(h) Cortex-A72 (Raspberry Pi 4)*

* Clearly distinguishable patterns on all tested Intel, AMD,
ARM processors

THE UNIVERSITY OF



Performance Analysis

' Latency | Throughput | Transfer Rate | Error Rate
Sl SSToRrCl: (cycles})l (cycigesl; (KB/s) (%)
Intel Core 15-8250U | Kabylake R | 13-15 -t 53.1 0.02
Intel Core 15-6500 Skylake 13-15 4 105.3 <0.01
Intel Core 15-6200U Skylake 13-15 4 74.9 0.04
Intel Xeon E5-2658 v3 Haswell 10-20 8 64.1 <0.01
Intel Core 15-3340M Ivybridge 10-20 8 75.6 0.16
AMD Ryzen 3 2200G Zen 8-13 4 83.1 350
AMD Ryzen 5 2600 Zen+ 8-13 4 84.8 3.30
NVIDIA Jetson Nano | Cortex A57 N/A N/A 87.7 0.02

* High transfer rates and low error rates

— KU

THE UNIVERSITY OF
KANSAS




Google Chrome Sandbox

0.04 - : EHE f :
0 | d LRI | J

60 70 80 90 100 110

Number of Clock Cycles

* Implemented a SpectreRewind PoC in JavaScript on

Chrome
* Noisier but still distinguishable timing differences

18



Discussion

e Benefits

— Does not require SMT hardware (single thread)

— Defeats all known hardware solutions for stateful
(cache) covert channels

— Alternative to cache-based covert channels like
Flush+Reload

* Limitations (*)
— Limited to same address space attacks
— Finding division-based gadgets may be difficult
— Attacker controls both receiver and sender

— KU

KANSAS (*) M. Behnia et al., “Speculative Interference Attacks: Breaking Invisible Speculation Schemes,” ASPLOS, 2021.



Summary

* A novel contention-based covert channel

— Transmits secret from speculative instructions to
(non-speculative) past instructions

— Through non-pipelined functional units on a
single hardware thread (no SMT)

— Bypasses all existing defenses against cache or
SMT based covert channels

— Achieves high throughput and low error rates

— Works on all tested Intel, AMD, and ARM
processors

THE UNIVERSITY OF



Memory-Aware Denial-of-Service
Attacks on Shared Cache in
Multicore Real-Time Systems

IEEE Transactions on Computers, 2021.

KANSAS



Denial-of-Service Attacks

Trusted Untrusted Attacker” " o
Partition i Partition ttacker’s goal: increase the
i y \ victim’s task execution time
- |
Victim Attacker
OS/hypervisor * The attacker is on different
"""""""""""""" core/memory/cache partition
Core Core / v/ P
I | D i I | D « The attacker can only execute
Shared Cache non-privileged code.
— KU

KANSAS M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In RTAS, 2019
22



Cache DoS Attacks

for (1 = 0; 1 < mem_size; 1 += LINE_SIZE) for (i = 0; 1 < mem_size; 1 += LINE_SIZE)
{ {
sum += ptr[i]; ptr[i1] = Oxff;
} }
BwRead BwWrite
(target MSHRs) (target WBBuffer)

* Denial-of-Service (DoS) attacks targeting internal
hardware structures of a shared cache.

— Block the cache = delay the victim’s execution time
— KU

KANSAS M. G. Bechtel and H. Yun. “Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention.” In RTAS, 2019



Effects of Denial-of-Service Attacks

12

Solo ]
Corun IS
() 10 B
£
=
= 8
.8
A
- Q 6
8a)
5t
X 4T
Core3 | Cored Té
LLC 5 2 [
Z L _______
DRAM
\. ' y, 0
interference DNN (Core 0,1) BwWrite (Core 2,3)

* Delay execution time of time sensitive code

— Observed up to 10X increase!™
* Of a realistic DNN-based real-time control program

— KU

KANSAS  (**) Michael Garrett Bechtel, Elise McEllhiney, Minje Kim, Heechul Yun. “DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car.”
In RTCSA, IEEE, 2018 o4




Hypothesis

» Effective cache DoS attacks require many

concurrent in-flight memory requests to DRAM to
induce cache blocking

* Cache blocking will last longer if the DRAM
memory requests are processed slowly

e Sequential memory requests in prior cache-DoS
attacks are processed efficiently, leveraging
DRAM bank-level parallelism

* |Intentionally inefficient memory requests can
make more effective cache DoS attacks

— KU

THE UNIVERSITY OF



Memory-Aware Cache DoS Attack

victim

Bank
p)

attackers

Core

DRAM DIMM

Attacker
intentionally
generate DRAM
bank conflicts

Induce longer
cache blocking

Victim’s execution
time increases

26



Memory-Aware Cache DoS Attack

THE UNIVERSITY OF
KANSAS

= N =

O Q0 N Oy

11
12
13
14
15
16
17

static int+ listft MAX_MLP];
static int next{fMAX_MLP];

for (inte4_ti=0;1 < iter; i
++) {
switch (mlp) {
case MAX_MLP:

case 2:
next[1] =
list[1][next[1]];
/* fall-through +/
case 1:
next[0] =
list[O][next[0]];

PLLRead

= 0N =

16

static int+ listft MAX_MLP];
static int nextfMAX_MLP];

for (inte4_ti=0;i < iter; i
) {
switch (mlp) {
case MAX_MLP:

case 2:
list[1][next[1]+1] =
Oxff;
next[1] =
list[1][next[1]];
/* fall-through +/
case 1:
list[O][next[0]+1] =
Oxftf;
next[0] =
list[O][next[0]];

PLLWrite

27



Evaluation Results (Synthetic)

30

solo C—
+1 attack EXX3
+2 attack =228
+3 attack

25 -

(]
o
I

Slowdown
.—L
wn
[

& &

victim attackers

é %

LuycC

l—l.
o u o
I |
|
e
B e e e M D e M R M M

 Memory-aware attacks (BkPLLRead/BkPLLWrite) are
much more effective than baselines (BwRead/BwWrite)

mﬁ%\?\%
28



Evaluation Results (SPEC2017)

BwWrite 1]
PLLWrite Iha

BKPLLWrite I ~

44.2

32.6

d=—— geometric mean
= tracking
= texture_synth
= m
= dtitch
= sift
== multi_ncut
= mser
S localization
————1 disparity
= 0MS
== fotonik3d
= nab
= imagick
= cam4
== blender
—= wif
— lbm
—— pOVray
l—— parest
=== namd
cactuBSSN
== bwaves
= X
S exchange2
= leela
== deepsjeng
= X264
=== xalancbmk
= Omnetpp
== mcf
= (C

== perlbench
| | | 1

UMOPMOIS

* Memory-aware attacks outperforms baselines

KANSAS

29




Summary

 DoS attacks are more effective when attacker’s
memory requests are processed slowly

* We developed memory-aware DoS attacks
that target a subset of DRAM banks

* Evaluation results show significantly improved
attack efficiency (more victim slowdown) on

the tested embedded computing platforms

THE UNIVERSITY OF



BRU: Bandwidth Regulation Unit for Real-
Time Multicore Processors

Farzad Farshchi®, Qijing Huang", Heechul Yun?®
SUniversity of Kansas, TUniversity of California, Berkeley

IEEE Intl. Conference on Real-Time and Embedded Technology and Applications
Symposium (RTAS), April 2020

THE UNIVERSITY OF

£
KANSAS /D
B2 i

o o

---------
o'

& -CALIE
& ot O T8
(2 5

R4

)

s

A
Ll er e e 31
D& 4

K
'."'----0

UNIVERSITY OF CALIFORNIA

THE UNIVERSITY OF
KANSAS



Motivation

* DoS attacks are possible due to unregulated
access to the shared resources

e Software regulation mechanisms exist, but
suffer high overhead [Yun+2013]

* We need simple, low overhead mechanism to
regulate access to shared resources

KANSAS " Yun et al., “MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-core Pl
atforms.” In RTAS, 2013



Bandwidth Regulation Unit (BRU)

TG — Core O Core 1

TL-UH == D$ I$ D$ I$

TL-UL ==
Arbiter Arbiter
To other <«

peripherals <« —
System
Periphery i i .

Bus <_T ‘ S

Coherence Manager
3

DRAM Controller k—{ LLC [«—s[foau]
I

DDR3 DRAM

* Regulate per-core/group memory bandwidth
* Drop-in addition to existing processor design

— KU

KANSAS



Bandwidth Regulation Unit (BRU)

* Access regulation

— Regulate cache misses

* Writeback regulation

— Regulate cache write-
back

* Group regulation

KANSAS

— Multiple cores can be
regulated as a group

PCAR

p

Core 0

B

[BR Enable] =1
[Domain ID] =0

Core 1

[BR Enable] = 1
[Domain ID] =0

Core 2

[BR Enable] = 0
[Domain ID] =0

Core 3

[BR Enable] = 1
[Domain ID] = 1

L

[Period Length]
Period Counter

S

_4

S

RDR

/ Domain 0

\

Access Counter

[Maximum Access]

Domain 1

Access Counter

[Maximum Access]

L

4

Bandwidth Regulation Unit (BRU)




Dual-core BOOM with BRU

* BOOM: high-performance out-of-
order RISC-V core

* (Cadence synthesis result at 7nm
node _—

* Less than 2% impact on max.
frequency

e Less than 0.2% space overhead

DUAL-CORE BOOM CHIP AREA BREAKDOWN

Modules Area (um?) | Ratio

BRU 4,669 0.19%

Boom Core x 2 2,309,681 92.41%

Others (System Bus, Manager, etc.) 184,950 7.40%

Total 2,499,300 100%
KANSAS

35



Effects of BRU

. 35 3.5
T30 = 3.0
g Q g
Z 25 = = 254
£ S £
T k=] T
= 2.0 = = 2.0
3 3 3
= 2 =
B 1.5 ] 8154
= = =
310 pi} 3 1.0
o o o
] ) ] i
4 0.5 4 4 0.5

0.0 0.0

0 1000 2000 3000 4000 0 200 400 600 800 1000 0 200 400 600 800 1000
Time (ms} Time (ms} Time (ms}
(a) disparity (b) localization (c) svin

3.5 3.5 35
2 3.0 R T30
2as 2 <

. 2.5 =25
s 2.0 H S
S £ 20 Z 20
= = c
& 1.51 215 E1s
E b= 5=
3 1.0 810 310
o o o
3 0.5+ Y os Hos

0.0 1 T T T T 0.0 . — ool T T T T r._r.l T T

0 1000 2000 3000 4000 0 200 400 600 800 1000 1200 0 200 400 £00 800 1000 1200 1400
Time (ms) Time (ms} Time (ms}

w/ BRU regulation (@320MB/s budget, 100ns period)

* BRU = MemGuard in hardware + alpha

THE UNIVERSITY OF

36



Summary

* BRU

— A synthesizable hardware IP that regulates
memory traffic at the source (cores)

— Demonstrates the feasibility of fast AND
predictable processors

* Future work
— Accelerator regulation support

— More software/hardware co-design

KANSAS



Conclusion

e Micro-architectural attacks are serious threats
on modern computing platforms

— Can leak secret (confidentiality)
— Can alter data (integrity)
— Can affect real-time performance (correctness)

 We have developed new attacks and effective
defense mechanisms

* Fast and secure computing is possible with
cross-layer collaborative approaches

— KU

THE UNIVERSITY OF



Thank You!

Questions?

39



