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Modern Cyber-Physical Systems

• Cyber Physical Systems (CPS)

– Cyber (Computer) + Physical (Plant) 

• Real-time

– Control physical process in real-time

• Safety-critical

– Can harm people/things

• Intelligent

– Can function autonomously
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Modern System-on-a-Chip (SoC)
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Core1 Core2 GPU NPU…

Memory Controller (MC)

Shared Cache

• Integrate multiple cores, GPU, accelerators

• Good performance, size, weight, power

• Challenges: safety, security

DRAM



Micro-Architectural Attacks

• Software attacks on hardware are difficult to defend

• Complex hardware many attack vectors
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https://meltdownattack.com/



Micro-Architectural Attacks

• Micro-architectural hardware components
– E.g., cache, tlb, DRAM, OoO engine, …

• Can leak secret
– E.g., Meltdown, Spectre

• Can alter the content of the stored data
– E.g., RowHammer

• Can affect execution timing
– E.g., DoS attack on real-time tasks

• Logically correct software is also vulnerable
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Project Goal

• Develop micro-architectural attack resistant 
computing infrastructure for secure cyber-
physical systems (CPS)
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Results So Far…

1. Jacob Michael Fustos, Farzad Farshchi, and Heechul Yun. 
SpectreGuard: An Efficient Data-centric Defense Mechanism against 
Spectre Attacks. Design Automation Conference (DAC), 2019.

2. Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks 
on Shared Cache in Multicore: Analysis and Prevention. IEEE Intl. 
Conference on Real-Time and Embedded Technology and 
Applications Symposium (RTAS), 2019 Outstanding Paper Award

3. Waqar Ali and Heechul Yun. RT-Gang: Real-Time Gang Scheduling 
Framework for Safety-Critical Systems. IEEE Intl. Conference on 
Real-Time and Embedded Technology and Applications Symposium 
(RTAS), 2019.

4. Farzad Farshchi, Qijing Huang, and Heechul Yun. Integrating NVIDIA 
Deep Learning Accelerator (NVDLA) with RISC-V SoC on FireSim. 
Workshop on Energy Efficient Machine Learning and Cognitive 
Computing for Embedded Applications (EMC^2), 2019.
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SpectreGuard: An Efficient Data-
centric Defense Mechanism against 

Spectre Attacks
Jacob Fustos, Farzad Farshchi, and Heechul Yun
ACM/IEEE Design Automation Conference (DAC)

Las Vegas, Nevada, June, 2019.
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Speculative Execution Attacks

• Attacks exploiting microarchitectural side-effects of 
executing speculative (transient) instructions 

• Many variants
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No hardware support
planned in near future



Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Assume x is under the attacker’s control

• Attacker trains the branch predictor to 
predict the branch is in-bound
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Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Speculative execution of the first line 
accesses the secret (val)

1. [ACCESS]
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Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Speculative execution of the second, secret 
dependent load transmits the secret to a 
microarchitectural state (e.g., cache)

2. [TRANSMIT]
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Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Attacker receives the secret by timing access 
latency differences (cache hit vs. miss) among 
the elements in the probe array 

– Flush+reload, prime+probe, …

3. [RECEIVE]
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Existing Software Mitigation

• Manually stop speculation
– By inserting ‘lfence’ instructions [Intel, 2018]
– Or by introducing additional data dependencies 

[Carruth, 2018] 
– Error prone, high programming complexity, performance 

overhead

if(x < array1_length){

_mm_lfence();

val = array1[x];

tmp = array2[val*512];

}
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Existing Hardware Mitigation

• Hide speculative execution
– By buffering speculative results into additional “shadow” 

hardware structures

– High complexity, high overhead (performance, space)

InvisiSpec [Yan et al., MICRO’18] SafeSpec [Khasawneh et al., DAC’19]
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SpectreGuard

• Data-centric software/hardware collaborative 
approach
– Software tells hardware what data (not code) needs 

protection

– Hardware selectively protects the identified data from 
Spectre attacks

• Key observations
– Not all data is secret

– Not all speculative loads leak secret

16



Obs. 1: Not All Data Is Secret

• Non-sensitive data

– Most program code, data

– Optimize for performance

• Sensitive (secret) data

– Cryptographic keys, 
passwords, …

– Optimize for security

Memory

Attacker’s controlled data

AES encryption table

Other public information

RSA private key

Bank account information

Other secret data
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Obs. 2: Not All Speculative Loads 
Leak Secret

• The first load does NOT leak secret

• The second, secret dependent load leaks the 
secret

• Delay the secret dependent load until after the 
branch is resolved 

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

1. [ACCESS]
2. [TRANSMIT]
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SpectreGuard Approach

• Step 1: Software tells 
OS what data is secret

• Step 2: OS updates the 
page table entries

• Step 3: Load of the 
secret data is identified 
by MMU

• Step 4: secret data 
forwarding is delayed
until safe

Hardware

MMU

Memory 
System

Optimized 
Forwarding

Instructions

Load

Dependent

Operating System

Binary Loader Virtual 
Memory
System

Dependent

Software
Interface

Binary File

System Call

Spectre Secure
Forwarding
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Evaluation Setup
• Full system simulation using Gem5 (O3CPU model) and 

Linux kernel (4.18)

• Comparison
– Native: unmodified baseline system
– InvisiSpec: a fully hardware solution [Yan et al., Micro’18]
– Fence: a fully software solution (insert lfence after all 

branches)
– SG: SpectreGuard
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Synthetic Workloads

• (S)pectre: contains Spectre gadget
– does not access the secret key

• En(C)ryption: background communication
– access the secret key
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Secret data



Results of Synthetic Workloads

• Varies percent time spent in S and C
• SG(Key) achieves native performance

– Only secret key is marked as secret

• SG(All) achieves comparable performance with InvisiSpec
– All memory (code, data, heap, stack) is marked as secret
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Results of SPEC2006 Benchmarks

• SG(All) achieves comparable performance with InvisiSpec
• SG(Heap) achieves better performance than InvisiSpec

– Only heap is marked as non-speculative (NS) pages

• SpectreGuard enables targeted security and performance 
trade-offs

23



Summary

• Speculative execution attacks
– Affect all high-performance out-of-order processors
– Existing software mitigation suffers high programming 

complexity/overhead
– Hardware only mitigation is costly

• SpectreGuard
– A data-centric software/hardware collaborative defense mechanism
– Low programming effort (identifying secret data, not vulnerable code)
– Low hardware cost (no additional "shadow" structure)
– Effective, targeted defense against Spectre attacks

https://github.com/CSL-KU/SpectreGuard
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Denial-of-Service Attacks on Shared 
Cache in Multicore: Analysis and 

Prevention
Michael Garrett Bechtel and Heechul Yun 

IEEE Real-Time and Embedded Technology and Applications 
Symposium (RTAS)

Montreal, Canada, April, 2019

Outstanding Paper Award
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Threat Model

• Attacker’s goal: increase the 

victim’s task execution time

• The attacker is on different 

core/memory/cache partition 

• The attacker can only execute 

non-privileged code.
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Non-Blocking Cache

• We identified cache internal structures that 
can be potential DoS attack vectors
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Writeback Buffer.

● Holds evicted dirty 

lines (writebacks).

● Prevents cache refills 

from waiting.

Miss Status Holding 

Registers1

● Track outstanding 

cache misses.

1 Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore 
Real-Time Systems.” In RTAS, 2016  (Best Paper Award)



Cache DoS Attacks

• Denial-of-Service (DoS) attacks targeting internal 

hardware structures of a shared cache.

– Block the cache  delay the victim’s execution time
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Read Attacker
(target MSHRs)

Write Attacker
(target WBBuffer)



Effects of Cache DoS Attacks

LLC

Core1 Core2 Core3 Core4

victim attackers

• Observed worst-case: >300X (times) slowdown

– On popular in-order multicore processors

– Due to contention in cache write-back buffer

>300X



Effect of Cache Partitioning

• Partitioning doesn't protect against DoS attacks.

– because cache internal structures are not partitioned.
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PALLOC1 partitions the cache among the cores 

1 Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni. PALLOC: DRAM Bank-Aware Memory Allocator for Performan
ce Isolation on Multicore Platforms. In RTAS, 2014



Summary

• Cache internal hardware structures (MSHRs, 
WriteBack buffer) are viable DoS attack 
vectors in multicore platforms.

• Traditional cache partitioning is not effective 
for cache DoS attacks

• We proposed an OS solution to defense 
against cache DoS attacks.
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RT-Gang: Real-Time Gang 
Scheduling Framework for Safety-

Critical Systems
Waqar Ali and Heechul Yun. 

IEEE Real-Time and Embedded Technology and 
Applications Symposium (RTAS)
Montreal, Canada, April, 2019
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Parallel Real-Time Tasks

• Many emerging workloads in AI, vision, 
robotics are parallel real-time tasks
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Effect of parallelization on DNN control taskDNN based real-time control+

+ M. Bojarski, "End to End Learning for Self-Driving Cars."  arXiv:1604.07316, 2016



Observations

• Constructive sharing (Good)

– Between threads of a single parallel task

• Destructive sharing (Bad)

– Between threads of different tasks

• Goal: analyzable and efficient parallel real-
time task scheduling framework for multicore

• By avoiding destructive sharing
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RT-Gang

• One (parallel) real-time task---a gang---at a time
– Eliminate inter-task interference by construction

• Schedule best-effort tasks during slacks w/ throttling
– Improve utilization with bounded impacts on the RT tasks
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Safe Best-Effort Task Throttling

• Throttle the best-effort core(s) if it exceeds a 
given bandwidth budget set by the RT task
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1ms 2ms0

Budget

Core

activity

2
1

computation memory fetch

* Yun et al., “MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-core Pl
atforms.” In RTAS, 2013

Basic throttling mechanism *



Implementation

• Modified Linux’s RT scheduler

– Implemented as a “feature” of SCHED_FIFO 
(sched/rt.c)

• Best-effort task throttling

– Based on BWLOCK++*

37
* W. Ali and H. Yun., “Protecting Real-Time GPU Kernels on Integrated CPU-GPU SoC Platforms.”  In ECRTS, 2018



DeepPicar*

• A low cost, small scale replication of NVIDIA’s DAVE-2

• Uses the exact same DNN

• Runs on a Raspberry Pi 3 in real-time
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* Bechtel et al. DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car. In RTCSA, 2018
https://github.com/mbechtel2/DeepPicar-v2

https://github.com/mbechtel2/DeepPicar-v2


DNN based Real-Time Control

• DNN Inferencing is the most compute intensive part.

• Parallelized by TensorFlow to utilize multiple cores.
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Experiment Setup

• DNN control task of DeepPicar (real-world RT)

• IsolBench BwWrite benchmark (synthetic RT)

• Parboil benchmarks (real-world BE)
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Task WCET 
(C ms)

Period 
(P ms)

# Threads

34 100 2

220 340 2

∞ N/A 4

∞ N/A 4
DRAM

LLC

Core1 Core2 Core3 Core4

DNN BwWrite

Parboil cutcp & lbm

RT

BE



Execution Time Distribution

• RT-Gang achieves deterministic timing
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What does this look like in the real world?



CoSched (w/o RT-Gang)
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https://youtu.be/Jm6KSDqlqiU

https://youtu.be/Jm6KSDqlqiU


RT-Gang
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https://youtu.be/pk0j063cUAs

https://youtu.be/pk0j063cUAs


Summary

• Parallel real-time task scheduling
– Hard to analyze on COTS multicore

– Due to interference in shared memory hierarchy

• RT-Gang
– Analyzable and efficient parallel real-time gang 

scheduling framework, implemented in Linux

– Avoid interference by construction
• Can protect critical real-time tasks
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https://github.com/CSL-KU/rt-gang



Integrating NVIDIA Deep Learning 
Accelerator (NVDLA) with RISC-V 

SoC on FireSim. 
Farzad Farshchi, Qijing Huang, and Heechul Yun. 

Workshop on Energy Efficient Machine Learning and 
Cognitive Computing for Embedded Applications 

(EMC^2) Washington DC, February, 2019.

45



RISC-V + NVDLA SoC Platform

• Full-featured quad-core SoC with hardware 
DNN accelerator on Amazon FPGA cloud

– Run Linux, YOLO v3 object detection
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RISC-V + NVDLA SoC Platform

407x

5.5x



Conclusion

• Micro-architectural attacks on high-performance 
embedded SoCs are a serious threat for CPS

– Can leak secret (confidentiality)

– Can alter data (integrity)

– Can affect real-time performance (correctness)

• Our research develops fundamental computing 
infrastructure technologies to enable safe, 
secure, and intelligent CPS
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Thank You!
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EECS 753 DeepPicar Competition
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DeepPicar Competition
EECS 753 Embedded Real-Time Systems Final Project

May 6, 2019


