
Micro-Architectural Attacks on
Cyber-Physical Systems

07/09/2019

Heechul Yun

Associate Professor*, EECS

University of Kansas

1
* Effective in Fall, 2019

Modern Cyber-Physical Systems

• Cyber Physical Systems (CPS)

– Cyber (Computer) + Physical (Plant)

• Real-time

– Control physical process in real-time

• Safety-critical

– Can harm people/things

• Intelligent

– Can function autonomously

2

Modern System-on-a-Chip (SoC)

3

Core1 Core2 GPU NPU…

Memory Controller (MC)

Shared Cache

• Integrate multiple cores, GPU, accelerators

• Good performance, size, weight, power

• Challenges: safety, security

DRAM

Micro-Architectural Attacks

• Software attacks on hardware are difficult to defend

• Complex hardware many attack vectors

4

https://meltdownattack.com/

Micro-Architectural Attacks

• Micro-architectural hardware components
– E.g., cache, tlb, DRAM, OoO engine, …

• Can leak secret
– E.g., Meltdown, Spectre

• Can alter the content of the stored data
– E.g., RowHammer

• Can affect execution timing
– E.g., DoS attack on real-time tasks

• Logically correct software is also vulnerable

5

Project Goal

• Develop micro-architectural attack resistant
computing infrastructure for secure cyber-
physical systems (CPS)

6

Results So Far…

1. Jacob Michael Fustos, Farzad Farshchi, and Heechul Yun.
SpectreGuard: An Efficient Data-centric Defense Mechanism against
Spectre Attacks. Design Automation Conference (DAC), 2019.

2. Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks
on Shared Cache in Multicore: Analysis and Prevention. IEEE Intl.
Conference on Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2019 Outstanding Paper Award

3. Waqar Ali and Heechul Yun. RT-Gang: Real-Time Gang Scheduling
Framework for Safety-Critical Systems. IEEE Intl. Conference on
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2019.

4. Farzad Farshchi, Qijing Huang, and Heechul Yun. Integrating NVIDIA
Deep Learning Accelerator (NVDLA) with RISC-V SoC on FireSim.
Workshop on Energy Efficient Machine Learning and Cognitive
Computing for Embedded Applications (EMC^2), 2019.

7

SpectreGuard: An Efficient Data-
centric Defense Mechanism against

Spectre Attacks
Jacob Fustos, Farzad Farshchi, and Heechul Yun
ACM/IEEE Design Automation Conference (DAC)

Las Vegas, Nevada, June, 2019.

8

Speculative Execution Attacks

• Attacks exploiting microarchitectural side-effects of
executing speculative (transient) instructions

• Many variants

9

No hardware support
planned in near future

Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Assume x is under the attacker’s control

• Attacker trains the branch predictor to
predict the branch is in-bound

10

Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Speculative execution of the first line
accesses the secret (val)

1. [ACCESS]

11

Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Speculative execution of the second, secret
dependent load transmits the secret to a
microarchitectural state (e.g., cache)

2. [TRANSMIT]

12

Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Attacker receives the secret by timing access
latency differences (cache hit vs. miss) among
the elements in the probe array

– Flush+reload, prime+probe, …

3. [RECEIVE]

13

Existing Software Mitigation

• Manually stop speculation
– By inserting ‘lfence’ instructions [Intel, 2018]
– Or by introducing additional data dependencies

[Carruth, 2018]
– Error prone, high programming complexity, performance

overhead

if(x < array1_length){

_mm_lfence();

val = array1[x];

tmp = array2[val*512];

}

14

Existing Hardware Mitigation

• Hide speculative execution
– By buffering speculative results into additional “shadow”

hardware structures

– High complexity, high overhead (performance, space)

InvisiSpec [Yan et al., MICRO’18] SafeSpec [Khasawneh et al., DAC’19]

15

SpectreGuard

• Data-centric software/hardware collaborative
approach
– Software tells hardware what data (not code) needs

protection

– Hardware selectively protects the identified data from
Spectre attacks

• Key observations
– Not all data is secret

– Not all speculative loads leak secret

16

Obs. 1: Not All Data Is Secret

• Non-sensitive data

– Most program code, data

– Optimize for performance

• Sensitive (secret) data

– Cryptographic keys,
passwords, …

– Optimize for security

Memory

Attacker’s controlled data

AES encryption table

Other public information

RSA private key

Bank account information

Other secret data

17

Obs. 2: Not All Speculative Loads
Leak Secret

• The first load does NOT leak secret

• The second, secret dependent load leaks the
secret

• Delay the secret dependent load until after the
branch is resolved

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

1. [ACCESS]
2. [TRANSMIT]

18

SpectreGuard Approach

• Step 1: Software tells
OS what data is secret

• Step 2: OS updates the
page table entries

• Step 3: Load of the
secret data is identified
by MMU

• Step 4: secret data
forwarding is delayed
until safe

Hardware

MMU

Memory
System

Optimized
Forwarding

Instructions

Load

Dependent

Operating System

Binary Loader Virtual
Memory
System

Dependent

Software
Interface

Binary File

System Call

Spectre Secure
Forwarding

19

Evaluation Setup
• Full system simulation using Gem5 (O3CPU model) and

Linux kernel (4.18)

• Comparison
– Native: unmodified baseline system
– InvisiSpec: a fully hardware solution [Yan et al., Micro’18]
– Fence: a fully software solution (insert lfence after all

branches)
– SG: SpectreGuard

20

Synthetic Workloads

• (S)pectre: contains Spectre gadget
– does not access the secret key

• En(C)ryption: background communication
– access the secret key

21

Secret data

Results of Synthetic Workloads

• Varies percent time spent in S and C
• SG(Key) achieves native performance

– Only secret key is marked as secret

• SG(All) achieves comparable performance with InvisiSpec
– All memory (code, data, heap, stack) is marked as secret

22

Results of SPEC2006 Benchmarks

• SG(All) achieves comparable performance with InvisiSpec
• SG(Heap) achieves better performance than InvisiSpec

– Only heap is marked as non-speculative (NS) pages

• SpectreGuard enables targeted security and performance
trade-offs

23

Summary

• Speculative execution attacks
– Affect all high-performance out-of-order processors
– Existing software mitigation suffers high programming

complexity/overhead
– Hardware only mitigation is costly

• SpectreGuard
– A data-centric software/hardware collaborative defense mechanism
– Low programming effort (identifying secret data, not vulnerable code)
– Low hardware cost (no additional "shadow" structure)
– Effective, targeted defense against Spectre attacks

https://github.com/CSL-KU/SpectreGuard

24

Denial-of-Service Attacks on Shared
Cache in Multicore: Analysis and

Prevention
Michael Garrett Bechtel and Heechul Yun

IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS)

Montreal, Canada, April, 2019

Outstanding Paper Award

25

Threat Model

• Attacker’s goal: increase the

victim’s task execution time

• The attacker is on different

core/memory/cache partition

• The attacker can only execute

non-privileged code.

26

Non-Blocking Cache

• We identified cache internal structures that
can be potential DoS attack vectors

27

Writeback Buffer.

● Holds evicted dirty

lines (writebacks).

● Prevents cache refills

from waiting.

Miss Status Holding

Registers1

● Track outstanding

cache misses.

1 Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. “Taming Non-blocking Caches to Improve Isolation in Multicore
Real-Time Systems.” In RTAS, 2016 (Best Paper Award)

Cache DoS Attacks

• Denial-of-Service (DoS) attacks targeting internal

hardware structures of a shared cache.

– Block the cache delay the victim’s execution time

28

Read Attacker
(target MSHRs)

Write Attacker
(target WBBuffer)

Effects of Cache DoS Attacks

LLC

Core1 Core2 Core3 Core4

victim attackers

• Observed worst-case: >300X (times) slowdown

– On popular in-order multicore processors

– Due to contention in cache write-back buffer

>300X

Effect of Cache Partitioning

• Partitioning doesn't protect against DoS attacks.

– because cache internal structures are not partitioned.

30

PALLOC1 partitions the cache among the cores

1 Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni. PALLOC: DRAM Bank-Aware Memory Allocator for Performan
ce Isolation on Multicore Platforms. In RTAS, 2014

Summary

• Cache internal hardware structures (MSHRs,
WriteBack buffer) are viable DoS attack
vectors in multicore platforms.

• Traditional cache partitioning is not effective
for cache DoS attacks

• We proposed an OS solution to defense
against cache DoS attacks.

31

RT-Gang: Real-Time Gang
Scheduling Framework for Safety-

Critical Systems
Waqar Ali and Heechul Yun.

IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS)
Montreal, Canada, April, 2019

32

Parallel Real-Time Tasks

• Many emerging workloads in AI, vision,
robotics are parallel real-time tasks

33

Effect of parallelization on DNN control taskDNN based real-time control+

+ M. Bojarski, "End to End Learning for Self-Driving Cars." arXiv:1604.07316, 2016

Observations

• Constructive sharing (Good)

– Between threads of a single parallel task

• Destructive sharing (Bad)

– Between threads of different tasks

• Goal: analyzable and efficient parallel real-
time task scheduling framework for multicore

• By avoiding destructive sharing

34

RT-Gang

• One (parallel) real-time task---a gang---at a time
– Eliminate inter-task interference by construction

• Schedule best-effort tasks during slacks w/ throttling
– Improve utilization with bounded impacts on the RT tasks

35

Safe Best-Effort Task Throttling

• Throttle the best-effort core(s) if it exceeds a
given bandwidth budget set by the RT task

36

1ms 2ms0

Budget

Core

activity

2
1

computation memory fetch

* Yun et al., “MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-core Pl
atforms.” In RTAS, 2013

Basic throttling mechanism *

Implementation

• Modified Linux’s RT scheduler

– Implemented as a “feature” of SCHED_FIFO
(sched/rt.c)

• Best-effort task throttling

– Based on BWLOCK++*

37
* W. Ali and H. Yun., “Protecting Real-Time GPU Kernels on Integrated CPU-GPU SoC Platforms.” In ECRTS, 2018

DeepPicar*

• A low cost, small scale replication of NVIDIA’s DAVE-2

• Uses the exact same DNN

• Runs on a Raspberry Pi 3 in real-time

38

* Bechtel et al. DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car. In RTCSA, 2018
https://github.com/mbechtel2/DeepPicar-v2

https://github.com/mbechtel2/DeepPicar-v2

DNN based Real-Time Control

• DNN Inferencing is the most compute intensive part.

• Parallelized by TensorFlow to utilize multiple cores.

39

Experiment Setup

• DNN control task of DeepPicar (real-world RT)

• IsolBench BwWrite benchmark (synthetic RT)

• Parboil benchmarks (real-world BE)

40

Task WCET
(C ms)

Period
(P ms)

Threads

34 100 2

220 340 2

∞ N/A 4

∞ N/A 4
DRAM

LLC

Core1 Core2 Core3 Core4

DNN BwWrite

Parboil cutcp & lbm

RT

BE

Execution Time Distribution

• RT-Gang achieves deterministic timing

41

What does this look like in the real world?

CoSched (w/o RT-Gang)

42
https://youtu.be/Jm6KSDqlqiU

https://youtu.be/Jm6KSDqlqiU

RT-Gang

43
https://youtu.be/pk0j063cUAs

https://youtu.be/pk0j063cUAs

Summary

• Parallel real-time task scheduling
– Hard to analyze on COTS multicore

– Due to interference in shared memory hierarchy

• RT-Gang
– Analyzable and efficient parallel real-time gang

scheduling framework, implemented in Linux

– Avoid interference by construction
• Can protect critical real-time tasks

44

https://github.com/CSL-KU/rt-gang

Integrating NVIDIA Deep Learning
Accelerator (NVDLA) with RISC-V

SoC on FireSim.
Farzad Farshchi, Qijing Huang, and Heechul Yun.

Workshop on Energy Efficient Machine Learning and
Cognitive Computing for Embedded Applications

(EMC^2) Washington DC, February, 2019.

45

RISC-V + NVDLA SoC Platform

• Full-featured quad-core SoC with hardware
DNN accelerator on Amazon FPGA cloud

– Run Linux, YOLO v3 object detection

46

RISC-V + NVDLA SoC Platform

407x

5.5x

Conclusion

• Micro-architectural attacks on high-performance
embedded SoCs are a serious threat for CPS

– Can leak secret (confidentiality)

– Can alter data (integrity)

– Can affect real-time performance (correctness)

• Our research develops fundamental computing
infrastructure technologies to enable safe,
secure, and intelligent CPS

48

Thank You!

Acknowledgement:

This research is supported by NSA Science of Security initiative
contract #H98230-18-D-0009 and NSF CNS 1718880, 1815959.

49

Recent Publications
1. [C] Jacob Michael Fustos, Farzad Farshchi, and Heechul Yun. SpectreGuard: An Efficient Data-centric Defense Mechanism against Spectre

Attacks. Design Automation Conference (DAC), 2019

2. [C] Waqar Ali and Heechul Yun. RT-Gang: Real-Time Gang Scheduling Framework for Safety-Critical Systems. IEEE Intl. Conference on Real-
Time and Embedded Technology and Applications Symposium (RTAS), 2019.

3. [C] Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention. IEEE Intl.
Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS), 2019 Outstanding Paper Award

4. [W] Farzad Farshchi, Qijing Huang, and Heechul Yun. Integrating NVIDIA Deep Learning Accelerator (NVDLA) with RISC-V SoC on FireSim.
Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC^2), 2019.

5. [C] Michael Garrett Bechtel, Elise McEllhiney, Minje Kim, Heechul Yun. DeepPicar: A Low-cost Deep Neural Network-based Autonomous
Car. IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2018

6. [C] Waqar Ali, Heechul Yun. Protecting Real-Time GPU Applications on Integrated CPU-GPU SoC Platforms. Euromicro Conference on Real-
Time Systems (ECRTS), 2018

7. [C] Farzad Farshchi, Prathap Kumar Valsan, Renato Mancuso, Heechul Yun. Deterministic Memory Abstraction and Supporting Multicore
System Architecture. Euromicro Conference on Real-Time Systems (ECRTS), 2018

8. [J] Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. Addressing Isolation Challenges of Non-blocking Caches for Multicore Real-Time
Systems. Real-time Systems, Vol: 53, Issue: 5, pp: 673–708, 2017

9. [J] Heechul Yun, Waqar Ali, Santosh Gondi, Siddhartha Biswas. BWLOCK: A Dynamic Memory Access Control Framework for Soft Real-Time
Applications on Multicore Platforms. IEEE Transactions on Computers, Vol: 66, Issue: 7, pp: 1247-1252, 2017

10. [C] Prasanth Vivekanandan, Gonzalo Garcia, Heechul Yun, Shawn Keshmiri. A Simplex Architecture for Intelligent and Safe Unmanned Aerial
Vehicles. IEEE Intl. Conf. on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2016. Best Student Paper Nomination

11. [C] Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi . Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time
Systems. In IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS), 2016. Best Paper Award

12. [C] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memory Bandwidth Management for Efficient Performance
Isolation in Multi-core Platforms, IEEE Transactions on Computers, Vol 65, Issue 2, 2016, pp. 562 – 576. Editor's Pick of the year 2016

50

Full List: http://www.ittc.ku.edu/~heechul/pub.html

http://www.ittc.ku.edu/~heechul/pub.html

EECS 753 DeepPicar Competition

51

DeepPicar Competition
EECS 753 Embedded Real-Time Systems Final Project

May 6, 2019

