Model-Based Assurance Challenges for Self-Driving Cars Krzysztof Czarnecki Electrical and Computer Engineering Department | eDriver System Model | |----------------------| | Vehicle Level | | Analysis Level | | Design Level | | Implementation Level | # **Safety Analysis** **Sensors** V2X Radars Cameras **LIDARs** Sonars **IMU** **GPS** Wheel odometry Static env perception Dynamic env perception Ego perception Mission Planning 24 | 5 | e | n | S | 0 | r | S | |---|---|---|---|---|---|---| | | | | | | | | V2X Radars Cameras **LIDARs** Sonars **IMU** **GPS** | | Static env perception | Dynamic env perception | Ego
perception | Mission
Planning | | |-----------------|-----------------------|------------------------|-------------------|---------------------|--| | Global
Level | | | | | | | Lane
Level | | | | | | | Motion
Level | | | | 25 | | | Se | ens | ors | |----|------|-------------| | 36 | :113 | OI 3 | V2X Radars Cameras **LIDARs** **Sonars** **IMU** **GPS** | | Static env perception | Dynamic env perception | Ego
perception | Mission
Planning | L | |-----------------|------------------------|-------------------------|--------------------------|----------------------|---| | Global
Level | | | | | | | Lane
Level | | | | | | | Motion
Level | Static obj
location | Dynamic obj
Tracking | Vehicle state estimation | Motion
Controller | | | Sensors | |---------| |---------| V2X Radars Cameras **LIDARs** **Sonars** **IMU** **GPS** | | Static env perception | Dynamic env
perception | , | Ego
perception | Mission
Planning | |-----------------|---------------------------|----------------------------|---|-----------------------------|----------------------| | Global
Level | | | | | | | Lane
Level | Static obj
recognition | Dynamic obj
recognition | | Localization
within lane | Corridor
planning | | Motion
Level | Static obj
location | Dynamic obj
Tracking | | Vehicle state estimation | Motion
Controller | Sensors V2X Radars Cameras **LIDARs** Sonars **IMU** **GPS** | | Static env perception | Dynamic env perception | Ego
perception | Mission
Planning | |-----------------|---|--|--|--| | Global
Level | | | | | | Lane
Level | Place
recognition
Static obj
recognition | Situation
recognition
Dynamic obj
recognition | Relevant ctx
recognition
Localization
within lane | Policies & decisions Corridor planning | | Motion
Level | Static obj
location | Dynamic obj
Tracking | Vehicle state estimation | Motion
Controller | Sensors V2X Radars Cameras **LIDARs** Sonars **IMU** **GPS** | | Static env perception | Dynamic env perception | | go
erception | Mission
Planning | |-----------------|---|--|----------|--|--| | Global
Level | Road
network
updates | Traffic and driving conditions summary | w | ocalization
vithin road
etwork | Route
planning | | Lane
Level | Place
recognition
Static obj
recognition | Situation
recognition
Dynamic obj
recognition | re
Lo | elevant ctx
ecognition
ocalization
ithin lane | Policies & decisions Corridor planning | | Motion
Level | Static obj
location | Dynamic obj
Tracking | | ehicle state
stimation | Motion
Controller | # **Highway Driving** Sensors V2X Radars Cameras **LIDARs** Sonars IMU GPS | | Static env perception | Dynamic env perception | | Ego
perception | | Mission
Planning | |-----------------|--|--|----|--|--------|---| | Global
Level | Road network updates
Report discrepancies,
e.g., blocked exits,
blocked emergency bay
etc. | Traffic and driving conditions summary Report traffic density, weather and road surface conditions | | Localization within road network | | Route planning | | Lane
Level | Place recognition (to support loo closure & localization) Static obj recognition Lanes, signs, traffic lights (lesser depth), other obstacles | Situation recognition Construction zones, tunnels, bridges, accidents, traffic jams Dynamic obj recognitior Cars, pedestrians, (motor)cyclists, animals, police, emergency vhcls | k. | Relevant ctx recognition (being stopped by police location in a tunnel, etc. Localization within lane | ,
) | Policies & decisions Traffic rules, driving tactics for highway (&maneuvers) Corridor planning Virtual fences | | Motion
Level | Static obj location | Dynamic obj tracking | | Vehicle state estimation | | Motion Controller Path generation Motion control | # **Highway Driving** Sensors V2X Radars Cameras LIDARs Sonars IMU_B GPS B | | Static env perception | Dynamic env perception | Ego
perception | | Mission
Planning | |-----------------|--|--|--|--------|---| | Global
Level | Road network updates Report discrepancies, e.g., blocked exits, blocked errengency bay, etc. | Traffic and driving conditions summary Report traffic density, weather and surface conditions | Localization within road network QM | | Route planning QM/B | | | | | | | | | Lane
Level | Place recognition (to supporting closure & localization) Static obj recognition Lanes, signs, traffic lights Hesser depth), other obstacles | Situation recognition Construction zones, tunnels, bridges, accidents, traffic jams Dynamic obj recognition Cars, pedestrians, (moto Cyclists, animals, police, emergency vhcls | Relevant ctx recognition (being stopped by police location in a tunnel, etc. Localization within lane | ,
) | Policies & decisions Traffic rules, driving tactics for D/B highway (&marleuvers) Corridor planning Virtual fences D | | | | | | | | | Motion
Level | Static obj location D | Dynamic obj tracking D | Vehicle state estimation | | Motion Controller Path generation Motion control D | | | | | | | 31 | ### **Highway Driving** ### **Highway Driving** ### **Testing** - Testing as a multi-objective optimization - Likelihood - Severity - Generation of test data in a synthetic environment - Recording in the field - Fuzzing - Design of new situations ### **Test Design Levels** Base road configuration • Situation-specific static adaptation Situation-specific dynamic adaptation Weather and road conditions ### **Testing Planners** ### **Testing Perception** #### Reference for Slide 36 [SSL+13] Schuldt, F.; Saust, F.; Lichte, B.; Maurer, M.; Scholz, S.: Effiziente systematische Testgenerierung für Fahrerassistenzsysteme in virtuellen Umgebungen. In: AAET2013