
Model-based Reasoning Tool for Software Ecosystems

Tool: releasetrain.io

Authors: Solomon Berhe, Rishabh Mankatala

Research Question: How to improve reasoning of software ecosystem updates?

1. Ignore, automate, or impact evaluate an update?
2. Who is responsible, accountable, consulted, informed for an software update?
3. What ecosystem components are affected by an update?
4. What ecosystem teams are required to address an update?

Objective: Leverage software release data to quantify the maintenance cost of software ecosystem updates

1. Model a software ecosystem graph and calculate its maintenance cost using the data
2. Prototype and evaluate the model in three Industry 4.0 use cases

Methodology:

3. Collection of software release metadata
4. Modeling of software ecosystem graph
5. Calculation of maintenance cost using graph analysis algorithms

Use Case 1: Health Care and Java Ecosystem
A health care software ecosystem is implemented with Java as the main programming language. It
includes both, internal and external components. For the ecosystem team, careful and early impact
evaluation as well as fast patching of CVEs are a main priority to ensure there is no risk with
regard to patient data. This month several CVE updates were released. Due to an upcoming holiday
season most teams are on vacation next week. As a result, the ecosystem team shall request
updating the higher risk CVE by addressing the question:

Q1: What ecosystem components are potentially most affected by a CVE update?

Use Case 2: Retail and Python Ecosystem
An retail startup leverages the Python ecosystem to develop an Industry 4.0 product. Due to limited
testing capacity, they would like to optimize where to invest the main testing team effort. They
assume patch and minor updates require more component testing, whereas major and CVE updates
require more integration and system testing. Towards this objective, they need to address the
question:

Q2: What ecosystem testing teams are required to address an update?

Use Case 3: Automotive and Software Stack Ecosystem
Many Industry 4.0 domains are based on traditionally companies manufacturing hardware such as
vehicles, bicycles, or scooters with much slower hardware release cycles. As a result, software
updates are often impeded by hardware related constrained, leading to infrequent software updates.
In this use case, an automotive domain ecosystem team is constrained to perform yearly software
updates. To address this impediment, when planning the software stack their overall objective is to
pick an ecosystem with the least maintenance cost and address the question:

Q3: What is the maintenance cost of a software stack ecosystem?

Discussion:

● Maintaining a software ecosystem can be costly with
frequent updates

● Component and graph based overview simplifies
documenting of updates

● Weighted maintenance cost function adapts to different
Industry 4.0 use cases

● Use cases show how software release notes metadata can
be used to answer questions

● Picking the MEAN stack means a smaller and less connected
ecosystem, implying less update efforts

● Open source components may allow fast reuse, but frequent
updates may add significant maintenance cost

● Reviewing maintenance cost of open source software may
reduce overall ecosystem cost

● Limitations include partial leverage of release notes data,
semantic versioning required, relative cost values, and
generic edges instead of only dependency edges

Conclusion:

Impact evaluating the maintenance cost of software updates is
an important and challenging task for many Industry 4.0
domains that are often embedded in software ecosystems. The
hypothesis of this research is that software release notes
metadata can be leveraged to support with reasoning this task.
Towards this objective, the research proposed:

- Model a software ecosystem graph and calculate its maintenance
cost using the data

- Prototype and evaluate the model in three Industry 4.0 use
cases

Future work includes validating the model, prototype, and use
cases in a real Industry 4.0 setting.

References:

[1] Berhe, S., Maynard, M., Khomh, F. (2020). Software Release Patterns - When is a good time to update a software
 component? In Proceedings of the 3rd International Conference on Emerging Data and Industry 4.0
[2] Berhe, S., Maynard, M., Khomh, F. (2023). Maintenance Cost of Software Ecosystem Updates.
 In Proceedings of the 6th International Conference on Emerging Data and Industry 4.0

Over the past decades, software domains have witnessed a trend towards faster software release cycles, an increase of software
components, and their connectivity. Examples include products in Industry 4.0 domains such as health care, retail, or mobility, in
which, technically, software components are connected to a software ecosystem. Faster release cycles and high connectivity make
many software ecosystem updates an expensive, arduous, and risky maintenance task. This poster leverages software release
metadata to reason about the maintenance cost of software ecosystem updates. In particular, the data is applied to model a
software ecosystem graph and subsequent calculate its maintenance cost. To illustrate, the model is prototyped and evaluated in
three Industry 4.0 use cases.

Q1:What ecosystem components are potentially most affected by a CVE update?
A1: Geotools or SAP (“Software vendor SAP has released security updates for 19
vulnerabilities, five rated as critical, meaning that administrators should apply
them as soon as possible to mitigate the associated risks.”)

Q2: What ecosystem testing teams are required
to address an update?
A2: Component Testing

Q3: What is the maintenance cost of a software stack ecosystem?
A3: MEAN Stack

