
U.S. Department of Health

and Human Services

Center for Devices and

Radiological Health

MODEL BASED ENGINEERING: Software

Quality Metrics & Assurance Cases

Paul Jones

Senior Systems / Software Engineer

SCCWorkshop – Paul Jones – 05/09/2016

Division of Imaging, Diagnostics, and Software Reliability

Center for Devices and Radiological Health

Motivation Examples

SCCWorkshop – Paul Jones – 05/09/2016

Claim:

Implementation

transforms detailed

design into safe software.

Argument:

Software is created &

verified in controlled

process.

Evidence:

Software Verification Report

CAE: Example 1

Acceptability

Criteria not

defined!

Goal:

Implement safe software.

Strategy:

Transform detailed design into

safe software.

Evidence:

Software Verification Report.

GSN: Example 2

Entire life cycle

process & artifacts

buried here

Purpose

SCCWorkshop – Paul Jones – 05/09/2016

• To see what software quality metrics are possible in a Model

Based Design/Engineering process.

• To explore how software quality metrics and software

quality measurements can be used as arguments and

evidence in assurance cases.

Caveat

SCCWorkshop – Paul Jones – 05/09/2016

Recognize that there will likely be some delta between a

model and reality.

Assumptions

SCC Workshop – Paul Jones – 05/09/2016

 A quality system life cycle process is in place

 A software life cycle quality system process is in place

 A safety life cycle quality system process is in place

 A security life cycle quality system process is in place

Terminology

SCC Workshop – Paul Jones – 05/09/2016

 Acceptable: Able to be tolerated or allowed 1

 Criteria: A principle or standard by which something may be judged or decided1

 Acceptability criteria1 :

A principle or standard by which something (risk, design requirements, verification / validation results, etc.)

may be judged or decided.

 Consistent2 :

The requirement does not contradict any other requirement and is fully consistent with all authoritative

external documentation (including model).

 Complete2 : The requirement is fully stated in one place with no missing information.

 Unambiguous2 :

It expresses objective facts, not subjective opinions. It is subject to one and only one interpretation.

 Verfiable2

The implementation of the requirement can be determined through basic possible methods: inspection,

demonstration, test (instrumented) or analysis (to include validated modeling & simulation).

1. https://www.google.com/search?q=acceptable+definition&ie=utf-8&oe=utf-8

2. https://en.wikipedia.org/wiki/Requirement

https://www.google.com/search?q=acceptable+definition&ie=utf-8&oe=utf-8

Atomic Assurance Case Tuple (C,A,E)

SCC Workshop – Paul Jones – 05/09/2016

Arg – Argument

Ev - Evidence

Argument uses Evidence to Justify Claim

Assurance Case Argument Pair (Arg, Ac)

SCC Workshop – Paul Jones – 05/09/2016

Arg – Argument

Ev - Evidence

Ac - Acceptability Criteria

Arg -> means, manner, method or logic that uses Evidence to justify Claim 1

Ac -> “measure” that refers to Evidence to substantiate Argument

NOTE: Ac1 can be NULL if Ac1.1, Ac1.2, and Ac1.3 substantiate Claim 1

Measures / Metrics

SCCWorkshop – Paul Jones – 05/09/2016

Acceptability Criteria establishes a basis for measuring or

judging whether or not something has been acceptably

achieved.

Example from Software Domain

SCC Workshop – Paul Jones – 05/09/2016

Each requirement is

accounted for in

implementation, and

implementation

correctly represents

requirements

Implementation is

consistent with

requirements

Trace Checking Report +

Design-Implementation

Consistency Checking

Report
No inconsistency

between

implementation and

requirements

Model Based Design Process

SCC Workshop – Paul Jones – 05/09/2016

Image taken and enhanced from Mathworks with permission by Dave Hoadley

MBD Process Tool Chains

SCC Workshop – Paul Jones – 05/09/2016

Planning Requirements Source Code Object Code System Test Release

Planning
Requirements

Analysis

Architectual

Design

Detailed

Design

Implement

and Verify

Units

Integration

and

Integration

Testing

(Software)

System

Testing

Release

Model-Based Design Tools
Simulink and Stateflow

Simulink Verification and Validation

Simulink Report Generator

Model Advisor Checks

Signal Builder

Model Coverage

Simulink Design Verifier

System Test

Real-Time Workshop Embedded Coder

Code Generation Traceability Report

Embedded IDE Link

Polyspace

Documentation Artifacts / Metrics

Design

Verifier

Metrics

(Report)

Unit Test

Metrics

(Report)

Polyspace

Code

Metrics

(Report)

Legend IEC 62304 Software Development Process

Model

Modeling Process Metrics

System Test Regression

Metrics (Report)

Change

History

Metrics

Requirement / Model / Code Traceability Metrics (Report)

Design Document

Model Conformance Metrics (Model Advisor Report)

Model Coverage Metrics (Report)

Design

Verify

Image taken from Mathworks and modified with permission by Dave Hoadley (FDA does not endorse Mathworks products)

Requirements / Model / Code Traceability Report

SCCWorkshop – Paul Jones – 05/09/2016

 Identifies links between:

 Natural Language Requirements → Requirements

 Requirements → Model Architecture Constructs → Model

Blocks → Code Units

 Requirements → Test Cases

 Code Units → Test Cases

 Identifies dangling and unaccounted links, e.g.:

 Identifies Model Blocks for which there are no links to

Requirements

 Identifies Requirements for which there are no links to Model

Blocks (i.e. dangling Requirements)

Possible Software Quality Metrics-Based Assurance

Case

SCC Workshop – Paul Jones – 05/09/2016

DRAFT

Software Design/Implementation Trace assurance fragment

No unresolved

trace links

Acceptability Criterion 1:

no unresolved trace links

Acceptability Criterion 2:

…

Requirements Trace

Report

Requirements Trace

Report

Possible Software Quality Metrics-Based

Assurance Case

SCC Workshop – Paul Jones – 05/09/2016

DRAFT

Software Design / Implementation Trace assurance fragment

Code Coverage

Report

Acceptance criteria for

each coverage analysis

Code Coverage Reports

SCCWorkshop – Paul Jones – 05/09/2016

Run-time errors, concurrency issues, security vulnerabilities, and other defects in C
and C++ embedded software using static analysis.

 Cyclomatic complexity coverage

 Condition coverage

 Decision coverage

 Modified condition/decision (MCDC) coverage

 Saturate on integer overflow coverage

 Relational boundary coverage

 Signal range coverage

 Signal size coverage

 Data Flow Checks

 Numerical Checks

 Static Memory Checks

 Control Flow Checks

 Type Check

Current vs (Possible) Future Software

Assurance Case

SCCWorkshop – Paul Jones – 05/09/2016

Claim:

Implementation transforms

detailed design into safe

software.

Argument:

Software is created & verified

in controlled process.

Evidence:

Software Verification Report

(Possible) FutureCurrent

Research

SCCWorkshop – Paul Jones – 05/09/2016

1. What are the Quality Metrics for software?

2. For each quality metric, is it practical to establish consensus on

Acceptability Criteria among stakeholders?

3. What is the (Arg, Ac) pair stopping criteria?

i.e. when is an argument justifying the Acceptance Criteria unnecessary?

4. Do software Quality Metrics and corresponding Acceptability

Criteria contribute to confidence?

 If so, can this confidence be measured in some uniform, objective,

and/or quantitative manner?

SCCWorkshop – Paul Jones – 05/09/2016

Thank You!

