
Model Checking Programs �

Willem Visser��� and Klaus Havelund��� and Guillaume Brat��� and SeungJoon
Park��� and Flavio Lerda���

� RECOM Technologies
� Research Institute for Advanced Computer Science (RIACS)

� Automated Software Engineering Group
NASA Ames Research Center

fwvisser,havelund,brat,spark,flerdag@ptolemy.arc.nasa.gov

Abstract. The majority of work carried out in the formal methods community
throughout the last three decades has (for good reasons) been devoted to spe-
cial languages designed to make it easier to experiment with mechanized formal
methods such as theorem provers and model checkers. In this paper we will at-
tempt to give convincing arguments for why we believe it is time for the for-
mal methods community to shift some of its attention towards the analysis of
programs written in modern programming languages. In keeping with this phi-
losophy we have developed a verification and testing environment for Java, Java
PathFinder (JPF), which integrates model checking, program analysis and test-
ing. Part of this work has consisted of building a new Java Virtual Machine that
interprets Java bytecode. JPF uses state compression to handle big states, and
partial order and symmetry reduction, slicing, abstraction, and runtime analysis
techniques to reduce the state space. JPF has been applied to a real-time avion-
ics operating system developed at Honeywell, illustrating an intricate error, and
to a model of a spacecraft controller, illustrating the combination of abstraction,
runtime analysis, and slicing with model checking.

1 Introduction

The majority of work carried out in the formal methods community throughout the
last three decades, since Hoare’s axiomatic method for proving programs correct [41],
has been devoted to special languages that differ from main stream programming lan-
guages. Typical examples are formal specification languages [68, 7, 66], purely logic
based languages used in theorem provers [27, 57, 16], and guarded command languages
used in model checkers [54, 53, 51]. In a few cases, modeling languages have been de-
signed to resemble programming languages [43], although the focus has been on pro-
tocol designs. Some of these linguistic choices have made, and still make it feasible
to more conveniently experiment with new algorithms and frameworks for analyzing
system models. For example, a logic based language is well suited for rewriting, and a
rule based guarded command notation is convenient for a model checker. We believe

� This paper has been invited for publication in the Kluwer journal of Automated Software En-
gineering. This is an extended version of the paper that appeared in the proceedings of ASE00.



that continued research in special languages is important since this research investi-
gates semantically clean language concepts and will impact future language designs
and analysis algorithms.

We, however, want to argue that a next important step for the formal methods sub-
group of the software engineering community could be to focus some of its attention
on real programs written in modern programming languages. We believe that studying
programming languages somehow will result in some new challenges that will drive the
research in new directions as described in the first part of the paper. Our main interest
is in multi-threaded, interactive programs, where unpredictable interleavings can cause
errors, but the argument extends to sequential programs.

In the second part of the paper, we describe our own effort to follow this vision by
presenting the development of a verification, analysis and testing environment for Java,
called Java PathFinder (JPF). This environment combines model checking techniques
with techniques for dealing with large or infinite state spaces. These techniques include
static analysis for supporting partial order reduction of the set of transitions to be ex-
plored by the model checker, predicate abstraction for abstracting the state space, and
runtime analysis such as race condition detection and lock order analysis to pinpoint
potentially problematic code fragments. Part of this work has consisted of building a
new Java Virtual Machine (JVMJPF ) that interprets Java bytecode. JVMJPF is called
from the model checking engine to interpret bytecode generated by a Java compiler.

We believe it is an attractive idea to develop a verification environment for Java for
three reasons. First, Java is a modern language featuring important concepts such as
object-orientation and multi-threading within one language. Languages such as C and
C++, for example, do not support multi-threading as part of their core. Second, Java
is simple, for example compared to C++. Third, Java is compiled into bytecode, and
hence, the analysis can be done at the bytecode level. This implies that such a tool can
be applied to any language that can be translated into bytecode1. Bytecode furthermore
seems to be a convenient breakdown of Java into easily manageable bytecode instruc-
tions; and this seems to have eased the construction of our analysis tool. JPF is the
second generation of a Java model checker developed at NASA Ames. The first gener-
ation of JPF (JPF1) [32, 36] was a translator from Java to the Promela language of the
Spin model checker.

The paper is organized as follows. Section 2 outlines our arguments for applying
formal methods to programs. Section 3 describes JPF and Section 4 its integration
within the BANDERA toolset. Section 5 describes related work on model checking
C programs. Section 6 presents two applications of JPF: a real-time avionics operating
system developed at Honeywell, illustrating an intricate error; and a model of a space
craft controller, illustrating the combination of abstraction, runtime analysis, and slicing
with model checking to locate a deadlock. Both errors were errors in the real code of
these systems. Finally, Section 7 contains conclusions and a description of future work.

1 For example, there already exist translators from Eiffel, Ada, OCAML, Scheme and Prolog to
bytecode.



2 Why Analyze Code?

It is often argued that verification technologies should be applied to designs rather than
to programs since catching errors early at the design level will reduce maintenance costs
later on. We do agree that catching errors early is crucial. State of the art formal methods
also most naturally lend themselves to designs, simply due to the fact that designs have
less complexity, which make formal analysis more feasible and practical. Hence, design
verification is a very important research topic, with the most recent popular subject
being analysis of statecharts [29], such as for example found in UML [8]. However, we
want to argue that the formal methods community should put some of its attention on
programs for a number of reasons that we will describe below.

First of all, programs often contain fatal errors in spite of the existence of careful
designs. Many deadlocks and critical section violations for example are introduced at a
level of detail which designs typically do not deal with, if formal designs are made at all.
This was for example demonstrated in the analysis of NASA’s Remote Agent spacecraft
control system written in the LISP programming language, and analyzed using the Spin
model checker [35]. Here several classical multi-threading errors were found that were
not really design errors, but rather programming mistakes such as forgetting to enclose
code in critical sections. One of the missing critical section errors found using Spin
was later introduced in a sibling module, and caused a real deadlock during flight in
space, 60,000 miles from earth [34]; see Section 6.1. Another way of describing the
relationship between design and code is to distinguish between two kinds of errors.
On the one hand there are errors caused by flaws in underlying complex algorithms.
Examples of complex algorithms for parallel systems are communication protocols [37,
40] and garbage collection algorithms [33, 61]. The other kind of errors are more simple
minded concurrency programming errors, such as forgetting to put code in a critical
section or causing deadlocks. This kind of errors will typically not be caught in a design,
and they are a real hazard, in particular in safety critical systems. Complex algorithms
should probably be analyzed at the design level, although there is no reason such designs
cannot be expressed in a modern programming language. However, as will be shown
on a real example in Section 6.2, deep design errors can also appear in the code.

Second, one can argue that since modern programming languages are the result of
decades of research, they are the result of good language design principles. Hence, they
may be good design/modeling languages. This is to some extent already an applied idea
within UML where statechart transitions (between control states) can be annotated with
code fragments in your favorite programming language. In fact, the distinction between
design and program gets blurred since final code may get generated from the UML de-
signs. An additional observation is that some program development methods suggest a
prototyping approach where the system is incrementally constructed using a real pro-
gramming language, rather than being derived from a pre-constructed design. This was
for example the case with the Remote Agent [56] mentioned above. Furthermore, any
research result on programming languages can benefit design verification since designs
typically are less complex.

A third, and very different kind of argument for studying verification of real pro-
grams is that such research will force the community to deal with very hard problems,
and this may drive the research into new areas. We believe for example that it could



be advantageous for formal methods to be combined with other research fields that tra-
ditionally have been more focused on programs, such as program analysis and testing.
Such techniques are typically less complete, but they often scale better. We believe that
the objective of formal methods is not only to prove programs correct, but also to debug
programs and locate errors. With such a more limited ambition, one may be able to ap-
ply techniques which are less complete and based on heuristics, such as certain testing
techniques.

Fourth, studying formal methods for programming languages may furthermore have
some derived advantages for the formal methods community due to the fact that there is
a tendency to standardize programming languages. This may make it feasible to com-
pare and integrate different tools working on the same language - or on “clean subsets”
of these languages. As mentioned above, it would be very useful to study the rela-
tionship between formal methods and other areas such as program analysis and testing
techniques. Working at the level of programs will make it possible to better interact with
these communities. We have already had one such experience in our informal collabo-
ration with Kansas State University, where our tool generated a slicing criterion based
on runtime analysis, and their tool could slice the Java program based on this criterion,
where after we could apply our model checker to the resulting program. A final derived
advantage will be the many orders of magnitude increased access to real examples and
users who may want to experiment with the techniques produced. This may have a very
important impact on driving the research towards scalable solutions.

In general, it is our hope that formal methods will play a role for everyday software
developers. By focusing on real programming languages we hope that our community
will be able to interact more intensively on solving common problems. Furthermore, the
technology transfer problem so often mentioned may vanish, and instead be replaced
by a technology demand.

3 Model Checking Java Programs

It is well known that concurrent programs are non-trivial to construct, and with Java
essentially giving the capability to anyone for writing concurrent programs, we believe,
a model checker for Java might have a bright future. In fact, one area where we believe
it can have an immediate impact is in environments where Java is taught. In the rest of
this section we will address some of the most important issues in the model checking of
programming languages. Specifically, we will highlight the major reasons why model
checking programs is considered hard, and then illustrate how we tackle these problems
within JPF.

3.1 Complexity of Language Constructs

Input languages for model checkers are often kept relatively simple to allow efficient
processing during model checking. Of course there are exceptions to this, for example
Promela, the input notation of Spin [43], more resembles a programming language than
a modeling language. General programming languages, however, contain many new
features almost never seen in model checking input languages, for example, classes,



dynamic memory allocation, exceptions, floating point numbers, method calls, etc. How
will these be treated? Three solutions are currently being pursued by different groups
trying to model check Java: one can translate the new features to existing ones, one can
create a model checker that can handle these new features, or, one can use a combination
of translation and a new/extended model checker.

Translation The first version of JPF [36], as well as the JCAT system [20], were based
on a translation from Java to Promela. Although both these systems were successful in
model checking some interesting Java programs [38, 20], such source-to-source trans-
lations suffer from two serious drawbacks:

Language Coverage — Each language feature of the source language must have a
“counterpart” in the destination language. This is not true of Java and Promela,
since Promela for example, does not support floating point numbers.

Source Required — In order to translate one source to another, the original source is
required, which is often not the case for Java, since only the bytecodes are available
— for example in the case of the libraries and code loaded over the WWW.

For Java, the requirement that the source exists can be overcome by rather doing
a translation from bytecodes. This is the approach used by the BANDERA tool [15],
where bytecodes, after some manipulation, are translated to either Promela or the SMV
model checker’s input notation. The Stanford Java model checker also uses this ap-
proach, by translating bytecodes to the SAL intermediate language for model checking
[58]. Their SAL model checker is however specifically developed for the purpose of
checking programs with dynamic data-structures and hence could be argued to fall into
the custom-made model checker category below.

Custom-made Model Checker In order to overcome the language coverage problem it
is obvious that either the current model checkers need to be extended, or a new custom-
made model checker must be developed. Some work is being done on extending the
Spin model checker to handle dynamic memory allocation [21, 71], but again in terms
of Java this only covers a part of the language and much more is required before full
Java language coverage will be achieved this way. With JPF we took the other route,
we developed our own custom-made model checker that can execute all the bytecode
instructions, and hence allow the whole of Java to be model checked. The model checker
consists of our own Java Virtual Machine (JVMJPF ) that executes the bytecodes and a
search component that guides the execution. Note that the model checker is therefore an
explicit state model checker, similar to Spin, rather than a symbolic one based on Binary
Decision Diagrams such as SMV [53]. Also, we decided that a depth-first traversal
with backtracking would be most appropriate for checking temporal liveness properties
(breadth-first liveness checking is inefficient due to the problems in detecting cycles). A
nice side-effect of developing our own model checker was the ease with which we are
able to extend the model checker with interesting new search algorithms—this would, in
general, not have been easy to achieve with existing model checkers (especially not with
Spin). A major design decision for JPF was to make it as modular and understandable



to others as possible, but we sacrificed speed in the process — Spin is at least an order
of magnitude faster than JPF. We believe this is a price worth paying in the long run.

JPF is written in Java and uses the JavaClass package2 to manipulate classfiles.
Although we again sacrifice speed to some extend by not using C/C++, there is no doubt
in our minds that doing JPF in Java has saved us months on development time. The
initial system, that could only handle integer based bytecodes (i.e. the same language
subset as the Java model checkers translating to Spin), was developed in 3 man-months.
The system as described in this paper, required approximately 15 man-months. The
current model checker can check for deadlocks, invariants and user-defined assertions
in the code, as well as properties described by Buchi automata; a translation from Linear
Time Temporal Logic (LTL) will be added in the near future

3.2 Complex States

In order to ensure termination during explicit state model checking one must know
when a state is revisited. It is common for a hashtable to be used to store states, which
means an efficient hash function is required as well as fast state comparison.

The Verisoft system [25] was developed to model check software, but the design
premise was that the state of a software system is too complex to be encoded efficiently,
hence Verisoft does not store any of the states it visits (Verisoft limits the depth of the
search to get around the termination problem mentioned above). Since the Verisoft sys-
tem executes the actual code (C/C++), and has little control over the execution, except
for some user-defined “hooks” into communication statements, it is almost impossible
to encode the system state efficiently. This insight also convinced us that we cannot tie
our model checking algorithm in with an existing JVM, that is in general highly opti-
mized for speed, but will not allow the memory to be encoded easily. In [67] a state-less
model checking algorithm similar to that of Verisoft is described for Java. This system
instruments the bytecodes for a program with “hooks” to allow model checking.

Our design philosophy was to keep the states of the JVM in a complex data-structure,
but one that would allow us to encode the states in an efficient fashion in order to deter-
mine if we have visited states before. Specifically, each state consists of three compo-
nents: information for each thread in the Java program, the static variables (in classes)
and the dynamic variables (in objects) in the system. The information for each thread
consists of a stack of frames, one for each method called, whereas the static and dy-
namic information consists of information about the locks for the classes/objects and
the fields in the classes/objects. Each of the components mentioned above is a Java
data-structure. In early stages of JPF development we did store these structures directly
in a hashtable, but with terrible results in terms of memory and speed: 512Mb would
be exhausted after only storing ������ states, and ��� states could be evaluated each
second (on a SPARC ULTRA60).

The solution we adopted to make the storing of states more efficient, was a gener-
alization of the Collapse method from Spin [42]: each component of the JVM state is
stored separately in a table, and the index at which the component is stored is then used
to represent the component. More specifically, each component (for example the fields

2 http://www.inf.fu-berlin.de/˜dahm/JavaClass/



in a class/object) is inserted in a table for that component; if the specific component is
already in the table its index is returned, and if it is unique it is stored at the next open
slot and that index is returned. This has the effect of encoding a large structure into no
more than an integer3 (see Figure 1). Collapsing states in this fashion allows fast state
comparisons, since only the indexes need to be compared and not the structures them-
selves. The philosophy behind the collapsing scheme is that although many states can
be visited by a program the underlying components of many of these states will be the
same. A somewhat trivial example of this is when a statement updates a local variable
within a method: the only part of the system that changes is the frame representing the
method, all the other parts of the system state are unaffected and will collapse to the
same indexes. This actually alludes to the other simple optimization we added: only
update the part of the system that changes, i.e., keep the indexes calculated for the pre-
vious state the same, only calculate the one that changed (to date we have only done
this optimization in some parts of the system). After making these changes the system
could store millions of states in 512Mb and could evaluate between 500 and 1500 states
per second depending on the size of the state (on a SPARC ULTRA60).

Static Area

Monitor

Fields

Dynamic Area

Monitor

Fields

Thread List

ThreadInfo

Frame

Fields 
Pool

Monitor 
Pool

Frame 
Pool

Java Virtual Machine State

Integer Vector

CC
oo
ll
ll
aa
pp
ss
ee

UU
nn
cc
oo
ll
ll
aa
pp
ss
ee

Fig. 1. Collapsing and Recreating the JVM state

It was however clear from profiling the system execution that there was still one big
source of inefficiency - the collapsing of states was only used for the states stored in
the hashtable, but in order to allow backtracking the un-collapsed states are stored in a
stack. More specifically, whenever a new state is generated a copy of this state is made
and put on the stack, during backtracking this state is removed again and execution
continues. The Java “clone” operation is used to make copies of states, but this operation

3 All the tables are implemented as hashtables, and in some cases the “index” used will be a
reference to an object rather than an integer value.



is notoriously slow since our states are represented by such a complex data-structure.
Memory consumption was also high due to the complexity of each state, and we could
seldom analyze a system with more than 10000 states in a depth-first path. A very
simple, and above all novel solution, however presented itself: use the reverse of the
collapse operation to recreate a state from its collapsed description (see Figure 1). We
could now use the collapsed state description in both the hashtable and the stack, and
during backtracking the collapsed state is uncompressed by reversing the lookup in the
tables (i.e. use the index to retrieve the original object from the table). This saves time
since recreating the state from its compressed form is faster than copying the state, and
also saves memory since we now only create one collapsed copy of the state which is
stored in the hashtable and we keep a reference to this state in a stack entry. Lastly,
as before, since only part of the state changes during each transition we can also just
uncompress the parts that changed during backtracking. These last changes improved
memory usage 4 fold and the model checker can now evaluate between 6000 and 10000
states per second depending on the size of the state (on a SPARC ULTRA60).

JPF in its current state already illustrates that software systems with complex states
can be efficiently analyzed (see section 6), but with some further extensions and better
hardware platforms to run it on, we believe, systems of up to 10k lines of code could be
analyzed.

3.3 Curbing the State-explosion

Maybe the most challenging part of model checking is reducing the size of the state-
space to something that your tool can handle. Since designs often contain less detail than
implementations, model checking is often thought of as a technique that is best applied
to designs, rather than implementations. We believe that applying model checking by
itself to programs will not scale to programs of much more than 10k lines. The avenue
we are pursuing is to augment model checking with information gathered from other
techniques in order to handle large programs. Specifically, we are investigating the use
of symmetry reductions, abstract interpretation, static analysis and runtime analysis to
allow more efficient model checking of Java programs.

Symmetry Reductions The main idea behind symmetry reductions [11, 24, 49, 10]
is that symmetries induce an equivalence relation on states of the system, and while
performing analysis of the state space (for example during model checking) one can
discard a state if an equivalent state has already been explored. Typically a canonical-
ization function is used to map each state into a unique representative of the equivalence
class. Various schemes have been proposed for efficiently implementing such functions
[49] and the complexity of this problem is discussed in [10]. Software programs can in
general induce a great many symmetries, but here we will focus on a number of sym-
metry related problems found when analyzing Java programs: class loading and two
forms of symmetry in the heap (dynamic area). The problem we are trying to avoid is
the analysis of states that are equivalent to previously analyzed states.

Java programs have dynamic behavior and one cannot predict which classes will be
loaded, objects will be instantiated, or even in which order these will occur. Hence an



appropriate representation for the static area (where static variables for each class are
stored) and the dynamic area (where objects are allocated) should be sets. Comparing
sets is however too time consuming, but an obvious ordering can be used, namely, the
order in which classes are loaded or objects created. This however means that states
will be considered to be different, if their only difference is the order of class loading
(similarly if the same objects are placed in different locations in the dynamic area). Of
course, since we analyze Java programs depth-first, different interleavings of transitions
will cause the above-mentioned problem. What is required is to ensure that the static
area and dynamic area have a canonical representation regardless of which interleaving
of transitions is being executed.

A canonicalization function for the static area is simple to define, since we can order
the locations where the static variables of a class will be in the static area by ordering
the class names. For each class loader in Java the class names must be unique, and since
we do not consider the case of more than one class loader being used a simple mapping
of class names to positions in the static area is enough. For example, if class A is loaded
before class B in one interleaving then the static variables for class A will be stored at
position � in the static area, and this mapping A � � will be remembered, when class
B is loaded the mapping B � � will be remembered. After backtracking let us assume
class B is now loaded before A, then the mapping for B will be recalled and B’s static
variables will be loaded at position � even though position � is available (class A’s static
variables will be loaded there).

A similar approach with object allocation in the dynamic area is not sufficient since
there can be many objects instantiated from the same class. One can however identify
each object allocation in a Java program by uniquely identifying each “NEW” byte-
code4. This is however not enough to define a mapping, since the same “NEW” can be
executed more than once, for example when an allocation is in a loop. An occurrence
number, that is incremented each time the new is executed and decremented whenever
the instruction is backtracked over, can then be used to identify each allocation. Al-
though the combination of the new-identifier and an occurrence number will distinguish
many cases where there is symmetry, it cannot resolve all cases. For example if the same
allocation code can be executed from two different threads the symmetry reduction will
be missed and equivalent states will be considered different. A thread reference can be
added to distinguish this case. Clearly there is a trade-off between the precision of the
canonicalization function and the time taken to calculate it — we choose to rely only
on the new-identifier and the occurrence number in our current system.

Readers familiar with partial order reduction rules [45, 26] might notice that the
symmetry reductions described above are closely related. As will be seen from the
following example partial order reductions, where unnecessary interleavings of inde-
pendent transitions in different threads are not executed, subsume some, but not all, of
the reductions achieved by the canonical view of the heap (similarly for class loading).

class S1 { int x; } class S2 { int y; }
class FirstTask class SecondTask

extends Thread { extends Thread {
public void run(){ public void run(){

4 “NEW” refers to any bytecode instruction that allocates a new object, hence including alloca-
tion of arrays and string constants



int x; int x;
S1 s1; S2 s2;
x = 1; x = 1;
s1 = new S1(); s2 = new S2();
x = 3; x = 3;

} } } }

class Main{
public static void main(String[] args){
FirstTask task1 = new FirstTask();
SecondTask task2 = new SecondTask();
task1.start(); task2.start();

} }

The program above has two independent threads that both allocate object entries in
the heap, and since “s1” and “s2” can be swapped around in the heap depending on
the interleaving chosen, symmetry reductions are applicable. When doing a deadlock
analysis on this example without any symmetry reductions or partial-order reductions,
JPF reports evaluating 258 states, with just symmetry reduction it reports 105 states,
with just partial-order reduction (see section 3.3 for more details) it generates 68 states
and with both symmetry and partial-order reductions it generates only 38 states.

Lastly, there is one more form of symmetry reduction in the dynamic area that is
required for Java programs, namely garbage collection. Garbage refers to objects that
have been allocated, but can now no longer be reached from any data-structure in the
program. The problem with garbage is that unless it is removed, or collected, the size
of the state will grow indefinitely, and hence all states will be considered different. For
example, without garbage collection the following program is essentially infinite-state,
since each time round the loop, the string to be printed is allocated a new buffer to allow
the printing method to print it.

class Main {
public static void main (String args[]) {
while(true) {
System.out.println("0");

} } }

We use a form of mark-and-sweep to do garbage collection. Although not often
thought of as such, garbage collection is clearly a canonicalization function that would
allow symmetry reduction - states with and without garbage can be equivalent. Analyz-
ing the above program with JPF with garbage collection results in the “0” being printed
only twice before all states are generated. A good overview of garbage collection for
model checking can be found in [48].

Abstraction Recently, the use of abstraction algorithms based on the theory of abstract
interpretation [17], has received much attention in the model checking community [28,
19, 62, 64, 14]. The basic idea underlying all of these is that the user specifies an ab-
straction function for certain parts of the data-domain of a system. The model checking
system then, by using decision procedures, either automatically generates, on-the-fly
during model checking, a state-graph over the abstract data [28, 62, 19] or automati-
cally generates an abstract system, that manipulates the abstract data, which can then
be model checked [64, 14]. The trade-off between the two techniques is that the gen-
eration of the state-graph can be more precise, but at the price of calling the decision



procedures throughout the model checking process, whereas the generation of the ab-
stract system requires the decision procedures to be called proportionally to the size of
the program. It has been our experience that abstractions are often defined over small
parts of the program, within one class or over a small group of classes, hence we favor
the generation of abstract programs, rather than the on-the-fly generation of abstract
state-graphs. Also, it is unclear whether the abstract state-graph approach will scale to
systems with more than a few thousand states, due to the time overhead incurred by
calling the decision procedures.

Specifically we have developed an abstraction tool for Java that takes as input a
Java program annotated with user-defined predicates and, by using the Stanford Validity
Checker (SVC) [5], generates another Java program that operates on the abstract predi-
cates. For example, if a program contains the statement x++ and we are interested in ab-
stracting over the predicate x==0, written as Abstract.addBoolean("B",x ==
0), then the increment statement will be abstracted to the code: “if (B) then B
= false else B = Verify.randomBool()” where nondeterministic choice
is indicated by the randomBool() method that gets trapped by the model checker.
The BANDERA tool uses similar techniques to abstract the data-domains of say an in-
teger variable in Java to work over the positive, negative and zero (the so-called sign
abstraction), by using the PVS model checker. The novelty of our approach lies in the
fact that we can abstract predicates over more than one class: for example, we can spec-
ify a predicate Abstract.addBoolean("xGTy", A.x > B.y) if class A has
a field x and class B has a field y. The abstracted code allows for many instantiations
of objects of class A and B to be handled correctly — the interested reader is referred
to [72] for more details on the techniques used. Although our Java abstraction tool is
still under development we have had very encouraging results. For example we can, in
a matter of seconds, abstract the omnipresent infinite-state Bakery algorithm written in
Java to one that is finite-state and can be checked exhaustively. In section 6.1 we also
show how the abstraction tool is used on a real example.

Abstractions for model checking often over-approximates the behavior of the sys-
tem, in other words, the abstracted system has as a subset the behaviors of the original
system. Since the properties that are typically checked are universally quantified over
all paths, over-approximations preserve correctness — if a property holds in the ab-
stracted system it is also true of the original system. Unfortunately, when it comes to
model checking programs, or any other type of system for that matter, it is often the
case that we are interested in finding errors, not showing correctness. And here lies
a problem: over-approximations do not preserve errors, i.e. errors in the abstract sys-
tem might be due to new behaviors that were added and are not present in the original
system. Eliminating these spurious errors is an active research area [62, 63, 4, 13]. We
adopted a pragmatic approach to this problem that seems to work very well in practice
[23, 59]. This work was inspired and implemented in JPF by Corina Pasareanu from the
BANDERA group at Kansas State University and a full account of the approach can be
found in [59].

The basic idea is the following: from a theorem in [63] it follows that any path
in the abstracted program that is free of nondeterministic choices is also a path of the
original program, hence if an error occurs on such a “choose-free” path then it is not



spurious. JPF has a special mode in which it searches for errors only on paths that are
choose-free — since nondeterminism in JPF is trapped by recognizing special method
calls, it is easy to truncate a search whenever such a call occurs. Of course, if no error is
found in this special mode, then the result is inconclusive since an error might exist, but
the abstraction is not adequate to find the error in the choose-free mode. The next step
is now to look for errors that may contain nondeterministic choices, if such an error
exists, we can run this path in a simulation mode on the original program (there is a
1-to-1 mapping of code from the abstract to the original code) and if it diverges, i.e.
the abstract path says statement s� should be executed but the concrete program says
s� should be executed, then we can use the last decision point taken before divergence
to refine the abstraction with. If the path does not diverge we can also be sure that the
error is not spurious. Note that we do not need to symbolically execute the abstract path
on the concrete program, since the Java programs we check are by definition closed
systems, i.e. they take no unknown input, and also each program has a single initial
state.

Static Analysis Static analysis of programs consists of analyzing programs without ex-
ecuting them. In general, the analysis is performed without making assumptions about
the inputs of the program. The analysis results are therefore valid for any set of inputs.
A wide variety of techniques fall under the static analysis umbrella; e.g., data flow anal-
ysis, set and constraint resolution, abstract interpretation, and theorem proving can all
be applied to static analysis problems (with various degrees of success). They all de-
rive some properties about a program. These properties are then used in slicing, code
optimization, code parallelization, abstract debugging, code verification, code under-
standing, or code re-engineering for examples.

Our interest in static analysis lies in its potential for reducing the size of the state
space generated by a program. Therefore, we have focused our efforts on three static
analysis problems that can result in state space reduction: static slicing, partial evalua-
tion, and partial order computation. Static slicing takes a program and a slicing criterion
and generates a smaller program that is functionally equivalent to the original program
with regard to the criterion. Partial evaluation (at least our version) propagates constant
values and simplifies expressions in the process. Partial order computation focuses on
identifying statements that can be safely interleaved with any statement on a different
thread. The combined use of these analyses results in smaller state spaces, and there-
fore, helps reduce the state explosion problem. However, they do it in different manners.
On one hand, static slicing and partial evaluation generate a (functionally equivalent)
smaller program that results in a smaller state space as shown in Figure 2. Black states
indicate states that directly affect the slicing criterion (e.g., because they modify a vari-
able involved in a property we want to check). After slicing, only the states affecting the
slicing criterion remain in the state space. On the other hand, partial order computation
does not change the size of the program, but its results can be used to further reduce
the state space by eliminating unnecessary interleavings. In the rest of this section we
discuss static slicing and its application in model checking. We then briefly describe our
partial order computation approach and conclude with our future directions involving
static analysis.



State Space State Space

Static Slicing

Partial EvaluationOriginal Pg Sliced Pg

Fig. 2. Reduction of programs using static slicing.

One approach to reducing the size of programs, and therefore the size of the state
space to be model checked, is to eliminate statements that are not relevant to the prop-
erty one wants to verify. In static analysis, this process is known as program slicing
[73]. It has been studied quite extensively and the interested reader can find a detailed
survey on slicing in [69]. In general, a program slice is defined by the parts of a pro-
gram that may affect (or be affected by) a slicing criterion. Typically a slicing criterion
consists of a set of program points of interest. The sliced program is smaller than the
original program and is functionally equivalent with respect to the slicing criterion. In
this paper, we focus on works that use slicing as a program reduction tool for model
checking as shown in [12, 31, 55].

When slicing for model checking, criteria are often related to the properties that one
wants to check; e.g., for a given property P , the slicing criterion is the set of program
points affecting the values of the variables present in P . Therefore, every statement
affecting the slicing criterion should be present in the slice (or sliced program); oth-
erwise, the resulting program is not functionally equivalent to the original program. If
such a statement was missing from the slice, it could result in a situation were the model
checker states that a property holds on the sliced program even though it does not hold
on the original program. This type of slicing is called closure slicing.

Definition 1 A closure slice of a program P with respect to program point p and vari-
able x consists of all statements that may affect the value of x at p.

Closure slicing is not quite sufficient in our case. In order to generate a state space, JPF
executes the program. Therefore, we need the sliced program to be executable. This
type of slicing is called executable slicing:

Definition 2 An executable slice of P with respect to p and x is a reduced program
whose behavior with respect to x cannot be distinguished from the behavior of P with
respect to x at point p.



Closure slices are usually obtained by computing the closure of a dependence graph
obtained by some type of interprocedural data and control dependence analysis. Fortu-
nately, it has been shown that a closure slice can be extended to an executable slice [6].
Therefore, the main problem is reduced to the computation of closure slices.

A similar approach has been applied to the slicing, and model checking, of VHDL
programs [12]. Since VHDL programs consist of concurrent processes the authors had
to adapt traditional slicing techniques to handle concurrency. Roughly speaking, their
approach consists of mapping VHDL constructs to traditional sequential program con-
structs in such a way that valid VHDL traces are also valid traces of the sequential
program. Once this transformation is performed, they apply traditional, yet quite pre-
cise, interprocedural slicing techniques defined for sequential languages such as C or
Ada. Other works have taken a more direct route without any transformation. Thus, in
[55], a slicing technique is described for Promela programs which can be used with
the Spin model checker. Their technique is directly inspired by the work of Cheng on
slicing concurrent programs [9] with extensions to handle dynamic process creation. In
essence, their approach consists of performing dependence analysis on system depen-
dence graphs (SDG) which represents not only sequential dependences but also concur-
rent dependences. Therefore, an SDG is similar to the SDG for a sequential program
except that it has additional edges to represent dependences due to concurrency. For
example, it has “non-deterministic” edges between the guard of a guarded command
and its guarded statements and data dependence edges between statements using shared
variables. This extended SDG is a conservative approximation of data and control de-
pendences in the presence of interleaving. When all possible interleavings are consid-
ered the size of the SDG may be quite large. However it can be pruned when atomic
statements are used in the Promela programs. This is an example were partial order
computation is used before static slicing. Still, the analysis is quite imprecise (even
though Promela is not affected by aliasing problems) because of many approximations.
Yet the authors claim that it yields significant reductions in practice.

JPF uses the slicing tool of the BANDERA toolset which implements the work of
Hatcliff et al. [31] on static slicing of concurrent Java programs. Their technique con-
sists of computing a set of program dependences affecting the slicing criteria. These
dependences include the traditional dependences (data, control and divergence) for se-
quential programs as well as their counterparts (interference, synchronization and ready
dependences) for concurrent programs. Informally, interference dependences represent
cases where the definition of shared variables can reach across threads. Synchroniza-
tion dependence focuses on the use of synchronize statements; it basically states that if
a variable is defined at a node inside some critical region, then the locking associated
with that region must be preserved (i.e., the inner-most enclosing synchronize statement
must be present in the slice). Ready dependence states that a statement n is dependent
on a statement m if m’s failure to complete (e.g., because a wait or notify never occurs)
can block the thread containing n. In BANDERA, slicing is not performed on the Java
source code, but on its (3-address code) representation called Jimple (Jimple is an in-
termediate representation for Java used in the Soot compiler done at McGill University
[70]). In BANDERA, Jimple code is then translated into Promela or SMV code and
then model checked. In order to use slicing and abstraction iteratively, and, since ab-



straction works on the source code level, we have to convert the sliced Jimple program
back to Java source code using annotations that describe the original Java program.
This approach has benefited JPF in several ways. First, using BANDERA, we can ex-
tract slicing criteria (i.e., program points) automatically from the properties verified by
JPF. Second, BANDERA also provides support for partial symbolic evaluation, which
yields smaller state spaces. Third, we can re-use the dependence analysis performed by
BANDERA to compute partial order information.

Within JPF, static analysis is also used to determine which Java statements in a
thread are independent of statements in other threads that can execute concurrently. This
information is then used to guide the partial-order reductions [45] built into JPF. Partial-
order reduction techniques ensure that only one interleaving of independent statements
is executed within the model checker. It is well established from experience with the
Spin model checker that partial-order reductions achieve an enormous state-space re-
duction in almost all cases. We have had similar experience with JPF, where switch-
ing on partial-order reductions caused model checking runs that ran for hours to finish
within minutes. We believe model checking of (Java) programs will not be tractable in
general if partial-order reductions are not supported by the model checker and in or-
der to calculate the independence relations required to implement the reductions, static
analysis is required.

Even though static analysis has already given us great benefits in terms of state space
reduction, we plan on investigating how we can improve the precision of its results (and
therefore, achieve greater reductions). We are especially interested in researching how
model checking and static analysis can feed off each other’s results to achieve greater
precision. Some, like Cousot [18], have already stated their beliefs that both techniques
can be used in parallel; intermediate results can be used by processes to increase their
precision. Cousot’s study focused on a particular static analysis technique called ab-
stract interpretation and symbolic model checking; it may be possible to extend it to
explicit-state model checking. Yet, we are not convinced that a parallel approach is
practical given the difference of speed between the two techniques. Our initial premise
is that an iterative approach (where static analysis and model checking are used succes-
sively) may be more practical.

Runtime Analysis Runtime analysis is conceptually based on the idea of executing a
program once, and observing the generated execution trace to extract various kinds of
information. This information can then be used to predict whether other different execu-
tion traces may violate some properties of interest (in addition of course to demonstrat-
ing whether the generated trace violates such properties). The important observation
here is that the generated execution trace itself does not have to violate these properties
in order for their potential violation in other traces to be detected. Runtime analysis
algorithms typically will not guarantee that errors are found since they after all work
on a single arbitrary trace. They also may yield false positives in the sense that analysis
results indicate warnings rather than hard error messages. What is attractive about such
algorithms is, however, that they scale very well, and that they often catch the prob-
lems they are designed to catch. That is, the randomness in the choice of run does not
seem to imply a similar randomness in the analysis results. In practice runtime analysis



algorithms will not store the entire execution trace, but will maintain some selected in-
formation about the past, and either do analysis of this information on-the-fly, or after
program termination.

An example is the data race detection algorithm Eraser [65] developed at Compaq,
and implemented for C++ in the Visual Threads tool [30]. Another example is a locking
order analysis called LockTree which we have developed. Both these algorithms have
been implemented in JPF to work on Java programs. Below we describe these two algo-
rithms, and how they can be run stand-alone in JPF to identify data race and deadlock
potentials in Java programs. Then we describe how these algorithms are used to focus
the model checker on part of the state space that contains these potential data race and
deadlock problems. Note that runtime analysis is different from monitoring that certain
user specified properties hold on execution traces, as for example supported in systems
such as Temporal Rover [22] and MaC [52]. We are, however, currently also exploring
the integration of this kind of technology with runtime analysis.

Data Race Detection The Eraser algorithm [65] detects data race potentials. A con-
crete data race occurs when two concurrent threads simultaneously access a shared
variable and when at least one access is a write; hence the threads use no explicit mech-
anism to prevent the accesses from being simultaneous. The program is guaranteed
data race free if for every variable there is a nonempty set of locks that all threads own
when they access the variable. The Eraser algorithm can detect that a data race on a
variable is possible (potential) even though no concrete data races have occurred, by
observing and remembering which locks are active whenever it is accessed. The al-
gorithm works by maintaining for each variable x a set set�x� of those locks active
when threads access the variable. Furthermore, for each thread t a set set�t� is main-
tained of those locks taken by the thread at any time. Whenever a thread t accesses
the variable x, the set set�x� is refined to the intersection between set�x� and set�t�
(set�x� �� set�x� � set�t�), although the first access just assigns set�t� to set�x�. Our
algorithm differs from [65] since there the initial value of set�x� is the set of all locks in
the program. In a Java program objects (and thereby locks) are generated dynamically,
hence the set of all locks cannot be pre-calculated. A race condition may be potential if
set�x� ever becomes empty.

The simple algorithm described above yields too many warnings as explained in
[65]. First of all, shared variables are often initialized without the initializing thread
holding any locks. The above algorithm will yield a warning in this case, although this
situation is safe. Another situation where the above algorithm yields unnecessary warn-
ings is if a thread creates an object, where after several other threads read the object’s
variables (but no-one is writing after the initialization). To avoid warnings in these two
cases, [65] suggests to extend the algorithm by associating a state machine to each vari-
able in addition to the lock set. Figure 3 illustrates this state machine. The variable
starts in the VIRGIN state. Upon the first write access to the variable, the EXCLUSIVE
state is entered. The lock set of the variable is not refined at this point. This allows for
initialization without locks. Upon a read access by another thread, the SHARED state
is entered, now with the lock refinement switched on, but without yielding warnings in
case the lock set goes empty. This allows for multiple readers (and not writers) after



the initialization phase. Finally, if a new thread writes to the variable, the SHARED-
MODIFIED state is entered, and now lock refinements are followed by warnings if the
lock set becomes empty.

VIRGIN

EXCLUSIVE

SHARED

SHARED-MODIFIED

Write
by new thread

Write

Read

Read
by new thread

Write

Read/Write
Read/Write

by first thread

✒

✓

✓
✓

✑

✑

✒

✒

✑ =

✓ =

✒ =

set(x) := set(t)

set(x) := intersect(set(x),set(t))

if isEmpty(set(x)) then warning

Fig. 3. The Eraser algorithm associates a state machine with each variable x. The state machine
describes the Eraser analysis performed upon access by any thread t. The pen heads signify that
lock set refinement is turned on. The “ok” sign signifies that warnings are issued if the lock set
becomes empty.

The generic Eraser algorithm has been implemented to work on Java by modifying
the home grown Java Virtual machine to perform this analysis when the eraser option
is switched on. Each thread is associated with a lock set (a Java object representing a
set), and each variable (field) in each object is associated with an automata of the type
shown in Figure 3 (a Java object representing the automata and lock set).

The JPF Virtual Machine accesses the bytecodes via the JavaClass package [50],
which for each bytecode delivers a Java object of a class specific for that bytecode. The
JPF Virtual Machine extends this class with an execute method, which is called by
the verification engine, and which represents the semantics of the bytecode. The runtime
analysis is obtained by instrumenting the execute methods of selected bytecodes,
such as the GETFIELD and PUTFIELD bytecodes that read and write object fields, the
static field access bytecodes GETSTATIC and PUTSTATIC, and all array accessing byte-
codes such as for example IALOAD and IASTORE. The bytecodes MONITORENTER
and MONITOREXIT, generated from explicit synchronized statements, are instru-
mented with updates of the lock sets of the accessing threads to record which locks
are owned by the threads at any time; just as are the bytecodes INVOKEVIRTUAL and
INVOKESTATIC for calling synchronized methods. The INVOKEVIRTUAL bytecode is
also instrumented to deal with the built-in wait method, which causes the calling
thread to release the lock on the object the method is called on. Instrumentations are



furthermore made of bytecodes like RETURN for returning from synchronized methods,
and ATRHOW that may cause exceptions to be thrown within synchronized contexts.

Deadlock Detection A classical deadlock situation can occur where two threads share
two locks, and they take the locks in different order. An algorithm that detects such
lock cycles must in addition take into account that a third lock may protect against a
deadlock like the one above, if this lock is taken as the first thing by both threads, before
any of the other two locks are taken. In this situation no warnings should be emitted.
Such a protecting third lock is called a gate lock.

The algorithm for detecting this situation is based on the idea of recording the lock-
ing pattern for each thread during runtime as a lock tree, and then when the program is
terminated to compare the trees for each pair of threads. The lock tree that is recorded
for a thread represents the nested pattern in which locks are taken by the thread. As an
artificial example, consider the code fragments of two threads in Figure 4. Each thread
takes four locks L1, L2, L3 and L4 in a certain pattern. For example, the first thread
takes L1; then L3; then L2; then it releases L2; then takes L4; then releases L4; then
releases L3; then releases L1; then takes L4; etc.

Thread 1: Thread 2:
synchronized(L1){ synchronized(Ll){
synchronized(L3){ synchronizd(L2){
synchronized(L2){}; synchronized(L3){}
synchronized(L4){} }

} };
};
synchronized(L4){ synchronized(L4){
synchronized(L2){ synchronized(L3){
synchronized(L3){} synchronized(L2){}

} }
} }

Fig. 4. Synchronization behavior of two threads.

This pattern can be observed, and recorded in a finite tree of locks for each thread,
as shown in Figure 5, by just running the program. As can be seen from the trees, a
deadlock is potential because thread 1 in its left branch locks L3 (node identified with
2) and then L4 (4), while thread 2 in its right branch takes these locks in the opposite
order (11, 12). There are furthermore two additional ordering problems between L2 and
L3, one in the two left branches (2, 3 and 9, 10), and one in the two right branches (6, 7
and 12, 13). However, neither of these pose a deadlock problem since they are protected
by the gate locks L1 (1, 8) respectively L4 (5, 11). Hence, one warning should be issued.

When being built, each tree has at any time a current node, where the path from
the root (identifying the thread) to that node represents the lock nesting at this point in
the execution. The lock operation creates a new child of the current node if the new
lock has not previously been taken (is not in the path above). The unlock operation just
backs up the tree if the lock really is released, and not owned by the thread in some
other way. When the program terminates, the analysis of the lock trees is initiated. Each



L3

L1

L3

L2 L4

L4

L2

L1

L2

L3

L4

L3

L2

Thread 1 Thread 2

1

2

3 4

5

6

7

8

9

10

11

12

13

Fig. 5. Lock trees corresponding to threads in Figure 4.

pair of trees �t�� t�� are compared, and for every node n in t� it is checked that no node
below n is above any occurrence of n in t�. In order to avoid issuing warnings when a
gate lock prevents a deadlock, occurrences of n in t� are marked after being examined,
and nodes below marked nodes are not considered until the marks are removed when
the analysis backtracks from the corresponding node in t�. The following bytecodes
will activate calls of the lock and unlock operations in these tree objects for the rele-
vant threads: MONITORENTER and MONITOREXIT for entering and exiting monitors,
INVOKEVIRTUAL and INVOKESTATIC for calling synchronized methods or the built-in
wait method of the Java threading library, bytecodes like RETURN for returning from
synchronized methods, and ATRHOW that may cause exceptions to be thrown within
synchronized contexts.

Using Runtime Analysis to Guide Model Checking The runtime analysis algorithms
described in the previous two sections can provide useful information to a programmer
as stand alone tools. In this section we will describe how runtime analysis furthermore
can be used to guide a model checker. The basic idea is to first run the program in
simulation mode, using the JPF Virtual Machine simulator, with all the runtime analysis
options turned on, thereby obtaining a set of warnings about data races and lock order
conflicts. The threads causing the warnings are stored in a race window. When the
simulation is terminated, forced or according to the program logic, the resulting race
window (in fact an extension of it, see below) will then be fed into the model checker,
which will now search the state space, but now only focusing its attention on the threads
in the window. That is, the model checker only schedules threads that are in the window.

However, before the model checker is applied, the race window is extended to in-
clude threads that create or otherwise influence the threads in the original window.
The purpose is to obtain a small self-contained sub-system containing the race win-
dow, which can be meaningfully model checked. The extended window can be thought
of as a dynamic slice of the program. The extension is calculated on the basis of a
dependency graph, created by a dependency analysis also performed during the pre-
simulation. More specifically, the dependency graph is a mapping from threads t to
triples ��� �� ��, where � is the ancestor thread that spawned t, � is the set of objects
that t reads from, and � is the set of objects that t writes to. The window extension
operation performs a fix-point calculation by creating the set of all threads reachable
from the original window by repeatedly including threads that have spawned threads in
the window, and by including threads that write to objects that are read by threads in
the window. The following bytecodes are instrumented to operate on the dependency



graph: INVOKEVIRTUAL for invoking the start method on a thread; and PUTFIELD,
GETFIELD, PUTSTATIC, GETSTATIC for accessing variables.

4 Integration with BANDERA

In this paper we argue the virtues of analyzing source code, but in order for such analysis
to be useful to the software development community, one also requires the tools to be
user-friendly. Unlike in the formal methods community where a textual interface will
suffice due to the expert knowledge of the users, here we are interested in our tools to
be used by real programmers and therefore ease of use is paramount. In this sense JPF
was initially lacking, since when an error was discovered it would result in a textual
output of each source line that was to be executed to get to the error.

We therefore decided to integrate JPF with the BANDERA tool [15], since we could
use their error-displaying capabilities, which allows the user to step through the code
line by line, forwards and backwards, while also having the capability to observe any
object in memory. The integration was straight-forward due to the modular design prin-
ciples adhered to by both projects and the fact that both systems were written in Java
- the whole integration required two weeks by two developers, one from each project,
working together. The integration also had the added bonus for us that it allowed the
use of the BANDERA front-end tools, namely a slicer (see section 3.3) and abstractor
and allowed us to express user-defined assertions, as well as pre- and postconditions to
methods as Javadoc comments. BANDERA on the other hand gained a powerful Java
model checker to augment Spin and SMV that both have restrictions as to which Java
programs can be checked.

5 Related Work

Although we have mentioned some works that are related to ours in the Java context
there are also two significant projects where the target language for model checking
is C: the SLAM project at Microsoft and the Feaver model checker at Lucent. These
model checkers have in common that they both rely heavily on abstraction techniques
to create a finite-state model from C code that can then be analyzed.

5.1 SLAM

The aim of this work is to do reachability analysis for large sequential C programs, with
specific application to device drivers [4, 2]. The project, in a similar fashion to ours, fo-
cuses on the combination of many different techniques to accomplish this goal: static
analysis, abstraction, symbolic execution and model checking. Specifically a model
checker for boolean programs is used [3], i.e. all the variables in the program are of
the boolean type. The basic idea is to abstract the original C program by extracting the
control-flow graph, then to check reachability of a program statement. Assuming the
control-flow graph is not disconnected, the statement is reachable. Next the path of in-
structions to the statement is symbolically executed on the original program, and when



a divergence is encountered a boolean variable is created to capture this choice point,
i.e. create a new boolean program that makes this path infeasible. Of course, if no di-
vergence is encountered then reachability has been shown. Next, the process is repeated
with the new boolean program where the infeasible path is removed. The problem is of
course that showing that a path is (in)feasible can be undecidable, and if this happens
the checker returns a “don’t know” result to the reachability question.

The most striking difference with our approach is that this work is only for sequen-
tial programs, but recently they have started to also consider multi-threaded C programs
[1]. Furthermore, they use a similar predicate abstraction to ours, but they start by ab-
stracting the program to its most over-approximated state, and then replace information
to build the program up to one where reachability can either be shown or not. Whereas
we start with the complete program and only use abstraction selectively to remove in-
formation in parts of the program.

5.2 Feaver

Feaver is a software model checking system based on the Spin model checker and was
used to verify properties of Lucent’s PathStar access server. The system mechanically
extracts [44] a verification model from unedited C code, and verifies it against a library
of logic properties [46, 47]. The abstraction process here is semi-automated in the sense
that a user-defined lookup table is used to automatically translate C code to Promela
code, i.e. each C source line is mapped via the table to a line of Promela code. Abstrac-
tion occurs since very complex lines of C code can be replaced by simple abstract code
in Promela, for example, a function call can be replaced by a “skip” command if the
call bears no significance to the verification problem. This idea might seem straight-
forward, but it worked very well for the PathStar model checking since the code was
relatively stable, and hence although the manual creation of the table took some effort,
it was then very stable and could be reused with small modifications whenever the code
changed.

The significance of this work is two-fold: firstly, it is to the best of our knowledge,
the first case where a large software application has been analyzed in a commercial
setting, and secondly, the model checking found an order of magnitude more errors in
the code than the traditional testing team (75 versus 5) [47]. The Spin model checker is
currently being extended to analyze C code in a more direct fashion rather than using
the lookup table.

6 Applications of JPF Tools

In this section we describe the application of JPF and its related tools to two real-
world examples. The first is a model of a spacecraft controller (section 6.1) in which
we illustrate how JPF can find errors that were introduced in the coding phase (i.e.
after design). This example also illustrates how the different techniques used in JPF can
be combined. The second example is a real-time operating system (section 6.2) with a
subtle error in the time-partitioning of threads, that is in fact an example of an error that
was introduced during design, but was not discovered during the design due to a lack of
detail.



6.1 The Remote Agent Spacecraft Controller

The Remote Agent (RA) is an AI-based spacecraft controller that has been developed at
NASA Ames Research Center. It consists of three components: a Planner that generates
plans from mission goals; an Executive that executes the plans; and finally a Recovery
system that monitors the RA’s status, and suggests recovery actions in case of failures.
The Executive contains features of a multi-threaded operating system, and the Plan-
ner and Executive exchange messages in an interactive manner. Hence, this system is
highly vulnerable to multi-threading errors. In fact, during real flight in May 1999, the
RA deadlocked in space, causing the ground crew to put the spacecraft on standby. The
ground crew located the error using data from the spacecraft, but asked as a challenge
our group if we could locate the error using model checking. This resulted in an effort
described in [34], and which we shall shortly describe in the following. Basically we
identified the error using a combination of code review, abstraction, and model checking
using JPF1, the first generation of Java PathFinder. During code review we got a sus-
picion about the error since it resembled one discovered using the Spin model checker
before flight [35]. The modeling therefore focused on the code under suspicion for con-
taining the error. What we will describe in the following is the abstraction process using
the abstraction tool, which also works for the new generation of JPF.

The major two components to be modeled were events and tasks, as illustrated in
Figure 6. The figure shows a Java class Event from which event objects can be instan-
tiated. The class has a local counter variable and two synchronized methods, one for
waiting on the event and one for signaling the event, releasing all threads having called
wait for event. In order to catch events that occur while tasks are executing, each
event has an associated event counter that is increased whenever the event is signaled. A
task then only calls wait for event in case this counter has not changed, hence, there
have been no new events since it was last restarted from a call of wait for event. The
figure shows the definition of one of the tasks. The task’s activity is defined in the run
method of the class Planner, which itself extends the Thread class, a built-in Java
class that supports thread primitives. The body of the run method contains an infinite
loop, where in each iteration a conditional call of wait for event is executed. The
condition is that no new events have arrived, hence the event counter is unchanged.

The program shown has theoretically infinitely many reachable states due to the
repeated increment of the count variable in the events. We use abstraction to remove
these variables by specifying Abstract.remove(count) in the classes of Event and
Planner. In place of these variables, we declare abstraction predicates corresponding
to those predicates in the program that involve count variables. For instance, in the defi-
nition of the Planner class we put Abstract.addBoolean("EQ",count==event1.count).
After having annotated the program with these abstraction declarations, the abstraction
tool is applied and a new abstracted program is generated. JPF thereafter reveals the
deadlock in this abstracted program. The error trace shows that the Planner first evalu-
ates the test “(count == event1.count)”, which evaluates to true; then, before the
call of event1.wait for event() the Executive signals the event, thereby increas-
ing the event counter and notifying all waiting threads, of which there are none. The
Planner now unconditionally waits and misses the signal. The solution to this problem
is to enclose the conditional wait in a critical section such that no events can occur in



class Event {
int count = 0;
public synchronized void wait_for_event() {
try{wait();}catch(InterruptedException e){};

}
public synchronized void signal_event(){
count = count + 1;
notifyAll();

} }

class Planner extends Thread{
Event event1,event2;
int count = 0;
public void run(){
count = event1.count;
while(true){
if (count == event1.count)
event1.wait_for_event();

count = event1.count;
/* Generate plan */
event2.signal_event();

} } }

Fig. 6. The RAX Error in Java

between the test and the wait. In fact, the same pattern occurred in several places and in
all other places there was such a critical section around. This was simply an omission.

The abstract Java model of what happened on board the spacecraft was created
based on a suspicion about the source of the error obtained during code review. This
suspicion was created by the fact that this same pattern had been found to cause er-
rors in a different part of the RA during the pre-flight effort using the Spin model
checker two years before [35]. The source of the error, a missing critical section, could,
however, have been found automatically using the Eraser data detection algorithm.
The variable count in class Event is accessed unsynchronized by the Planner’s run
method in the line: “if (count == event1.count)”, specifically the expression:
event1.count. Hence even though the signal event called by the Executive will
increase the variable synchronized, the above condition in the Planner can be executed
even during such a signal. This may cause a data race where the count variable is ac-
cessed simultaneously by the Planner and the Executive. When running JPF in Eraser
mode, it detects this race condition immediately. This could be enough to locate the
error, but only if one can see the consequences. The JPF model checker, on the other
hand, can be used to analyze the consequences.

To illustrate JPF’s integration of runtime analysis and model checking, the example
was made slightly more realistic by adding extra threads that made the Java program
resemble the real system. The new program had more than ���� states. Then we applied
JPF in its special runtime analysis/model checking mode. It immediately identified the
race condition using the Eraser algorithm, and then launched the model checker on a
thread window consisting of those threads involved in the race condition: the Planner
and the Executive, locating the deadlock - all within 25 seconds. As an additional ex-
periment in collaboration with the designers of the BANDERA tool, we fed part of
the result of the race detection, namely the variable that is accessed unprotected, into
BANDERA’s slicing tool, which in turn created a program slice where all code irrele-



vant to the value of the counter had been removed. JPF then found the deadlock on this
sliced program. This illustrates our philosophy of integrating techniques from different
disciplines: abstraction was used to turn an infinite program into a finite one, runtime
analysis was used to pinpoint problematic code, slicing was used to reduce the program,
and finally the model checker was launched to analyze the result.

6.2 The DEOS Avionics Operating System

The DEOS real-time operating system, developed by Honeywell for use within business
aircraft, is written in C++. During a manual analysis of the code the developers noticed
a subtle error in the system, that testing had not picked up. Without relating what the
error was, a slice of the original code, that contained the error, was handed over to
NASA Ames with the goal being to see whether a model checker can find the error. The
error was subsequently found after a translation of the code to Promela. A full account
of this verification exercise can be found in [60]. Since the slice of DEOS is fairly
large, ����� lines of C++, and the error very subtle, it seemed like a good candidate
on which to validate our philosophy of model checking code directly. As a first step the
C++ code was translated to Java; this was straight-forward, since the original C++ code
contained very little pointer arithmetic etc. This resulted in 14 Java classes containing
approximately 1000 lines of code. The DEOS system must be put in parallel with a
nondeterministic environment in order to do model checking. Luckily the environment
created for the Promela model could be re-used (by translation into Java) to a large
extent. This added another 6 classes to the system, for a combined total of 1443 lines of
Java code, making it by far the largest example (in terms of lines of code) ever attempted
by JPF. One change that was required in the Java version of the model checking was
that we had to create an assertion that would show when the error occurred, since the
Promela version used an LTL formula, which our current system does not support. This
assertion is fairly complex, 92 lines of Java, and was created by one of the developers
of the DEOS system.

As with the Spin version we started off by limiting the search-depth of the model
checker, since the original system had infinitely many states. Initial runs were discour-
aging, since the error was not found after running the system for hours. However when
partial-order reductions were switched on the error was found almost instantly. In fact,
much faster than Spin found the error, but the Promela and Java versions are not identi-
cal and hence one should read nothing into this result (for example, the order of nonde-
terministic choices are different). As in the Promela version, large parts of the system
are executed in atomic steps. In the Promela version we applied a predicate abstraction
by hand to reduce the system to finitely many states, the next step will be to do the same
with our Java abstraction tool automatically — the current version of the tool cannot
handle the abstraction of predicates over arrays, which is a requirement in this case.

Recently the BANDERA goup also looked at the analysis of the Java version of
DEOS with a combination of BANDERA and JPF and had some very encouraging
results [59, 23]. They used dependency analysis driven by the location of the time-
partitioning assertion and the data values that it referenced to identify a single field (out
of the 92 in the program) as influencing the property. The signs abstraction was then
used to abstract this field and then type inference to determine that two other fields also



required abstracting to signs. JPF, with the special choose-free mode (see section 3.3),
was then invoked to find the error in just 312 steps (down from 471 in the normal mode).
Note that running JPF in the choose-free mode was essential since the signs abstraction
was clearly going to generate many spurious errors. This again shows the power of
static analysis and abstraction when model checking programs.

7 Conclusions and Future Work

In the first part of this paper we argued why the formal methods subgroup of the soft-
ware engineering community should devote some of their efforts to the analysis of
systems described in real programming languages, rather than just to their own special
purpose notations. The second part of the paper described how we applied this philos-
ophy to the analysis of Java programs. Specifically, we showed that model checking
could be applied to Java programs, without being hampered by the perceived problems
often cited as reasons for why model checking source code will not work. In the pro-
cess we showed that augmenting model checking with symmetry reductions, abstract
interpretation, static analysis and runtime analysis can lead to the efficient analysis of
complex (Java) software. Although the combination of some of these techniques are
not new, to the best of our knowledge, our use of symmetry reductions for class loading
and heap allocation, the automatic predicate abstraction across different classes, the use
of static analysis to support partial-order reductions and the use of runtime analysis to
support model checking are all novel contributions.

Since we are drawing on different techniques and the synergy between these tech-
niques it should be clear that many areas for future research exist. Besides the obvious
extensions and improvements of the different algorithms, there are two areas which we
feel are crucial to the success of applying model checking to (Java) source code. Firstly,
one need to develop methods to assist in the construction of “environments” suitable for
model checking. Currently the users of a model checker will construct an environment
for their models by hand, but we believe some automation will be required if non-
experts are to use the (Java) model checker. Secondly, it is naive to believe that model
checking will be capable of analyzing programs of 100k lines or more, hence in these
cases one would like to have a “measure” of how much of the system was checked. In
software testing this measure is given as a coverage measure and hence we are currently
investigating means to calculate typical coverage measures (for example, branch cover-
age, method coverage, condition/decision coverage, etc.) during model checking with
JPF.

Acknowledgements: We would like to thank the BANDERA group at Kansas State
University, specifically, Matt Dwyer, John Hatcliff, Corina Pasareanu and Robby, for
letting us use their tools and for the great support they have given us.

References

1. T. Ball, S. Chaki, and S. Rajamani. Parameterized Verification of Multithreaded Software
Libraries . In Proceedings of TACAS01: Tools and Algorithms for the Construction and
Analysis of Systems, LNCS, Genova, Italy, April 2001.



2. T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian Abstractions for Model Check-
ing C Programs. In Proceedings of TACAS01: Tools and Algorithms for the Construction and
Analysis of Systems, LNCS, Genova, Italy, April 2001.

3. T. Ball and S. Rajamani. Bebop: A symbolic Model Checker for Boolean Programs. In
Proceedings of the 7th International SPIN Workshop, volume 1885 of LNCS, Stanford Uni-
versity, California, USA, August 2000. Springer-Verlag.

4. T. Ball and S. Rajamani. Checking Temporal Properties of Software with Boolean Programs.
In Proceedings of Workshop on Advances in Verification, July 2000.

5. C. Barrett, D. Dill, and J. Levitt. Validity Checking for Combinations of Theories with
Equality. In Formal Methods In Computer-Aided Design, volume 1166 of LNCS, pages
187–201, November 1996.

6. David Binkley. Precise executable interprocedural slices. ACM Letters on Programming
Languages and Systems, 2:31–45, 1993.

7. D. Bjørner and C. B. Jones, editors. Formal Specification and Software Development.
Prentice-Hall International, 1982.

8. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

9. Jingde Cheng. Dependence analysis of parallel and distributed programs and its applications.
In Proceedings of the 1997 Conference on advances in Parallel and Distributed Computing,
1997.

10. E.M. Clarke, E.A. Emerson, S. Jha, and A.P. Sistla. Symmetry Reductions in Model Check-
ing. In Proceedings of the 10th International Conference for Computer-Aided Verification.
Lecture Notes in Computer Science, 1427, June 1998.

11. E.M. Clarke, T. Filkorn, and S. Jha. Exploiting Symmetry in Temporal Logic Model Check-
ing. In Proceedings of the Fifth International Conference for Computer-Aided Verification.
Lecture Notes in Computer Science, 697, July 1993.

12. E.M. Clarke, M. Fujita, S.P. Rajan, T. Reps, S. Shankar, and T. Teitelbaum. Program slicing
of hardware description languages. Technical Report CMU-CS-99-103, Carnegie Mellon
University, School of Computer Science, 1999.

13. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided Abstrac-
tion Refinement. In Proceedings of the 12th International Conference for Computer-Aided
Verification. Lecture Notes in Computer Science, 1855, July 2000.

14. M. Colón and T. Uribe. Generating Finite-state Abstractions of Reactive Systems using De-
cision Procedures. In Proceedings of the 10th Conference on Computer-Aided Verification,
volume 1427 of LNCS, July 1998.

15. James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby, Shawn Laubach,
and Hongjun Zheng. Bandera : Extracting Finite-state Models from Java Source Code. In
Proceedings of the 22nd International Conference on Software Engineering, Limeric, Ire-
land., June 2000. ACM Press.

16. C. Cornes, J. Courant, J.C. Filliatre, G. Huet, P. Manoury, C Paulin-Mohring, C. Munoz,
C. Murthy, C. Parent, A. Saibi, and B. Werner. The Coq proof assistant reference manual,
version 5.10. Technical report, INRIA, Rocquencourt, France, February 1995. This version
is newer than the version used to verify the BRP-protocol in [40].

17. P. Cousot and R. Cousot. Abstract Interpretation Frameworks. Journal of Logic and Com-
putation, 4(2):511–547, August 1992.

18. Patrick Cousot and Radhia Cousot. Parallel combination of abstract interpretation and
model-based automatic analysis of software. In Proceedings of the First ACM SIGPLAN
Workshop on Automatic Analysis of Software, AAS’97, pages 91–98, 1997.

19. S. Das, D. Dill, and S. Park. Experience with predicate abstraction. In CAV ’99: 11th
International Conference on Computer Aided Verification, volume 1633 of LNCS, 1999.



20. C. Demartini, R. Iosif, and R. Sisto. A Deadlock Detection Tool for Concurrent Java Pro-
grams. Software Practice and Experience, 29(7):577–603, July 1999.

21. C. Demartini, R. Iosif, and R. Sisto. dSPIN: A Dynamic Extension of SPIN. In Proceedings
of the 6th SPIN Workshop, volume 1680 of LNCS, 1999.

22. Doron Drusinsky. The Temporal Rover and the ATG Rover. In Klaus Havelund, John Penix,
and Willem Visser, editors, SPIN Model Checking and Software Verification, volume 1885
of Lecture Notes in Computer Science, pages 323–330. Springer, 2000.

23. Matthew Dwyer, John Hatcliff, Robby Joehanes, Shawn Laubach, Corina Pasareanu, Robby,
Willem Visser, and Hongjun Zheng. Tool-supported Program Abstraction for Finite-state
Verification. In Proceedings of the 23rd International Conference on Software Engineering,
Toronto, Canada., May 2001. ACM Press.

24. E. Emerson and A. Sistla. Symmetry and Model Checking. In CAV ’93: 5th International
Conference on Computer Aided Verification, volume 697 of Lecture Notes in Computer Sci-
ence, 1993.

25. P. Godefroid. Model Checking for Programming Languages using VeriSoft. In Proceedings
of the 24th ACM Symposium on Principles of Programming Languages, pages 174–186,
Paris, January 1997.

26. Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems, volume
1032 of LNCS. Springer-Verlag, 1996.

27. M. J. C. Gordon. HOL: A proof generating system for higher-order logic. In G. Birtwistle
and P. A. Subrahmanyam, editors, VLSI Specification, Verification and Synthesis, pages 73–
128. Kluwer, Dordrecht, The Netherlands, 1988.

28. S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In CAV ’97: 6th
International Conference on Computer Aided Verification, volume 1254 of LNCS, 1997.

29. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, 8:231–274, 1987.

30. Jerry Harrow. Runtime Checking of Multithreaded Applications with Visual Threads. In
Klaus Havelund, John Penix, and Willem Visser, editors, SPIN Model Checking and Software
Verification, volume 1885 of Lecture Notes in Computer Science, pages 331–342. Springer,
2000.

31. J. Hatcliff, J.C. Corbett, M.B. Dwyer, S. Sokolowski, and H. Zheng. A formal study of
slicing for multi-threaded programs with jvm concurrency primitives. In Proceedings on the
1999 International Symposium on Static Analysis, pages 1–18, 1999.

32. K. Havelund. Java PathFinder, A Translator from Java to Promela. In Theoretical and
Practical Aspects of SPIN Model Checking – 5th and 6th International SPIN Workshops,
volume 1680 of LNCS. Springer-Verlag, July and September 1999. Trento, Italy – Toulouse,
France (presented at the 6th Workshop).

33. K. Havelund. Mechanical Verification of a Garbage Collector. In D. Méry and B. Sanders,
editors, FMPPTA’99: Fourth International Workshop on Formal Methods for Parallel Pro-
gramming : Theory and Applications, number 1586 in LNCS. Springer-Verlag, April 1999.
San Juan, Puerto Rico, USA.

34. K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser, and J. White. Formal
Analysis of the Remote Agent Before and After Flight. In Proceedings of the 5th NASA
Langley Formal Methods Workshop (to appear), June 2000.

35. K. Havelund, M. Lowry, and J. Penix. Formal Analysis of a Space Craft Controller using
SPIN. In Proceedings of the 4th SPIN workshop, Paris, France, November 1998. To appear
in IEEE Transactions of Software Engineering.

36. K. Havelund and T. Pressburger. Model Checking Java Programs using Java PathFinder. To
appear in a special issue of International Journal on Software Tools for Technology Transfer
(STTT) containing selected submissions to the 4th SPIN workshop, Paris, France, 1998,
February 1999.



37. K. Havelund and N. Shankar. Experiments in Theorem Proving and Model Checking for
Protocol Verification. In M-C. Gaudel and J. Woodcock, editors, FME’96: Industrial Benefit
and Advances in Formal Methods, volume 1051 of LNCS, pages 662–681. Springer-Verlag,
1996.

38. K. Havelund and J. Skakkebaek. Practical Application of Model Checking in Software Ver-
ification. In Proceedings of the 6th Workshop on the SPIN Verification System, volume 1680
of LNCS, Toulouse, France., September 1999.

39. Klaus Havelund. Using Runtime Analysis to Guide Model Checking of Java Programs. In
Klaus Havelund, John Penix, and Willem Visser, editors, SPIN Model Checking and Software
Verification, volume 1885 of Lecture Notes in Computer Science, pages 245–264. Springer,
2000.

40. L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof-checking a data link protocol.
Technical Report CS-R9420, Centrum voor Wiskunde en Informatica (CWI), Computer Sci-
ence/Department of Software Technology, March 1994.

41. C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Comm. ACM, 12(10):576–
580, 1969.

42. G.J. Holzmann. State Compression in Spin. In Proceedings of the Third Spin Workshop,
Twente University, The Netherlands, April 1997.

43. G.J. Holzmann. The Model Checker Spin. IEEE Trans. on Software Engineering, 23(5):279–
295, May 1997. Special issue on Formal Methods in Software Practice.

44. G.J. Holzmann. Logic verification of ansi-c code with spin. In Proceedings of the 7th
International SPIN Workshop, volume 1885 of LNCS, pages 131–147. Springer Verlag, Sep.
2000.

45. G.J. Holzmann and D. Peled. An Improvement in Formal Verification. In Proc. FORTE94,
Berne, Switzerland, October 1994.

46. G.J. Holzmann and Margaret H. Smith. Software model checking - extracting verification
models from source code. In Formal Methods for Protocol Engineering and Distributed
Systems, pages 481–497, Kluwer Academic Publ., Oct. 1999.

47. G.J. Holzmann and Margaret H. Smith. Automating software feature verification. Bell Labs
Technical Journal, 5(2):72–87, April-June 2000. Issue on Software Complexity.

48. R. Iosif and R. Sisto. Using Garbage Collection in Model Checking. In Proceedings of the
7th International SPIN Workshop, volume 1885 of LNCS, Stanford University, California,
USA, August 2000. Springer-Verlag.

49. C.W. Ip and D. Dill. Better verification through symmetry. In Proceedings of the Eleventh
International Symposium on Computer Hardware Description Languages and their Appli-
cation. North Holland, April 1993.

50. JavaClass, 2000. http://www.inf.fu-berlin.de/˜dahm/JavaClass/.
51. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal on Software

Tools for Technology Transfer, 1(1-2):134–152, Dec 1998.
52. Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokolsky, and Mahesh Viswanathan. Run-

time Assurance Based on Formal Specifications. In Proceedings of the International Con-
ference on Parallel and Distributed Processing Techniques and Applications, 1999.

53. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston, 1993.
54. R. Melton, D.L. Dill, C. Norris Ip, and U. Stern. Murphi Annotated Reference Manual,

Release 3.0. Technical report, Stanford University, Palo Alto, California, USA, July 1996.
55. Lynette I. Millett and Tim Teitelbaum. Slicing Promela and its application to model check-

ing, simulation, and protocol understanding. In Proceedings of the 4th International SPIN
Workshop, 1998.

56. N. Muscettola, P. Nayak, B. Pell, and B. Williams. Remote Agent: To Boldly Go Where No
AI System Has Gone Before. Artificial Intelligence, 103(1-2):5–48, August 1998.



57. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining Speci-
fication, Proof Checking, and Model Checking. In Rajeev Alur and Thomas A. Henzinger,
editors, Computer-Aided Verification, CAV ’96, number 1102 in LNCS, pages 411–414, New
Brunswick, NJ, July/August 1996. Springer-Verlag.

58. D. Park, U. Stern, J. Skakkebaek, and D. Dill. Java Model Checking. In Proceedings of the
15th IEEE International Conference on Automated Software Engineering, pages 253–256,
September 2000.

59. Corina Pasareanu, Matthew Dwyer, and Willem Visser. Finding Feasible Counter-examples
when Model Checking Abstracted Java Programs. In Proceedings of TACAS01: Tools and
Algorithms for the Construction and Analysis of Systems, LNCS, Genova, Italy, April 2001.

60. J. Penix, W. Visser, E. Engstrom, A. Larson, and N. Weininger. Verification of Time Parti-
tioning in the DEOS Scheduler Kernel. In Proceedings of the 22nd International Conference
on Software Engineering (to appear), Limeric, Ireland., June 2000. ACM Press.

61. D. M. Russinoff. A Mechanically Verified Incremental Garbage Collector. Formal Aspects
of Computing, 6:359–390, 1994.

62. H. Saidi. Modular and Incremental Analysis of Concurrent Software Systems. In Proceed-
ings of the 14th IEEE International Conference on Automated Software Engineering, pages
92–101, October 1999.

63. H. Saidi. Model Checking Guided Abstraction and Analysis. In Proceedings of the 7th Static
Analysis Symposium, 2000.

64. H. Saı̈di and N. Shankar. Abstract and Model Check while you Prove. In Proceedings of the
11th Conference on Computer-Aided Verification, volume 1633 of LNCS, pages 443–454,
July 1999.

65. S. Savage, M. Burrows, G. Nelson, and P. Sobalvarro. Eraser: A Dynamic Data Race Detec-
tor for Multithreaded Programs. ACM Transactions on Computer Systems, 15(4):391–411,
November 1997.

66. M. Spivey. The Z Notation: A Reference Manual, 2nd edition. Prentice Hall International
Series in Computer Science, 1992.

67. S. Stoller. Model-Checking Multi-threaded Distributed Java Programs . In Procceedings of
the 7th International SPIN Workshop, volume 1885 of LNCS, Stanford University, California,
USA, August 2000. Springer-Verlag.

68. The RAISE Language Group. The RAISE Specification Language. The BCS Practitioners
Series, Prentice-Hall, 1992.

69. Frank Tip. A survey of program slicing techniques. Journal of Programming Languages,
3:121–189, 1995.

70. Raja Valle-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon, and Phong
Co. Soot - a java optimization framework. In Proceedings of CASCON 1999, 1999.

71. W. Visser, K. Havelund, and J. Penix. Adding Active Objects to SPIN. In Proceedings of the
5th Workshop on the SPIN Verification System, Trento, Italy., July 1999.

72. W. Visser, S. Park, and J. Penix. Using Predicate Abstraction to Reduce Object-Oriented
Programs for Model Checking. In Proceedings of the 3rd ACM SIGSOFT Workshop on
Formal Methods in Software Practice, August 2000.

73. Mark Weiser. Program slicing. IEEE Transaction on Software Engineering, 1984.


