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a b s t r a c t

Information, as well as its qualifiers, or meta-information, forms the basis of human deci-
sion-making. Human behavior models (HBMs) therefore require the development of repre-
sentations of both information and meta-information. However, while existing models and
modeling approaches may include computational technologies that support meta-informa-
tion analysis, they generally neglect its role in human reasoning. Herein, we describe the
application of Bayesian belief networks to model how humans calculate, aggregate, and
reason about meta-information when making decisions.

Published by Elsevier Inc.

1. Introduction

Human decision-making in real-time, dynamic environments is increasingly becoming a complex information manage-
ment task, as new technologies generate ever-larger amounts of potentially relevant data. Decision-makers must therefore
manage this incoming information, integrating it with previously gained knowledge to develop an understanding of the cur-
rent situation (sometimes termed ‘‘situational awareness” [1,2]). With this understanding, the decision-maker develops and
selects a course of action that he or she believes will lead to a successful outcome. The ability to successfully decide on an
effective course of action depends on the decision-maker’s skill and experience in processing and understanding informa-
tion. This ability fundamentally relies not only on understanding the domain-related information but also on the qualifiers,
or associated meta-information, describing that information (e.g., recency, reliability, source, etc.). Such qualities contextual-
ize information, and therefore can critically influence how a decision-maker will process, understand, and act on that infor-
mation. For example, Suzy decides to attend the new contemporary art museum despite an email from Rob describing it as
‘‘boring” because this comment comes from Rob, who dislikes modern art. The information ‘‘the museum is boring” is qual-
ified by its source, Rob, and Suzy’s reasoning is impacted by her prior knowledge of that source. If the source of the infor-
mation changes, or knowledge about that sources changes, the information may result in different perceptions, reasoning,
and action from Suzy.

This simple example represents but one of many cases where we have explored the role of meta-information in human
reasoning. Our analysis of cognitive tasks across different domains (e.g., wildfire management, military command and con-
trol, intelligence analysis, sensor management, weather impact analysis, among others) has revealed that decision-makers
reason using meta-information [3]. This research is substantiated by the considerable literature on reasoning under uncer-
tainty, which we consider to be one form of meta-information [4–6]. As such, we have developed working definitions for
terms that we use throughout this paper, as adapted from [7,8]
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! Data is output (processed or unprocessed) from a human or machine system that may or may not be useful in the deci-
sion-making process (e.g., radar reports atmospheric conditions, Joe says a storm is coming, etc.).

! Information is recognized inputs that are necessary or usable in a directed decision-making process or behavior (e.g., a
storm is coming that may affect the UAV’s flight capabilities).

! Meta-data is characteristics or qualifiers of data that may or may not be useful in the decision-making process (e.g.,
ground-based radar Y can only locate aircraft with an error of +/"1.5 m).

! Meta-information is characteristics or qualifiers of information, affecting a human’s (or a model of a human’s) decision-
making, reasoning, or behavior:
# Information processing (e.g., reports flagged as ‘‘important” are used first).
# Situation awareness (e.g., because information about wind speed is recent and certain, the model can ascertain which

towns are threatened by tornados).
# Decision-making (e.g., because information about the adversary’s location is 30 h old, the model must actively gather

new information before moving into that location).

Categorizing inputs according to these definitions is dependent on the particular cognitive task and the context in which
that task is performed. Nevertheless, the definitions serve to explicitly identify the critical role of meta-information in hu-
man decision-making. Our general approach to understanding the specific role of meta-information in this process involves
an iterative application of cognitive systems engineering (CSE), a methodology for defining aspects of human reasoning and
behavior to aid system design that involves several phases of cognitive analysis, concept development, and user evaluation
[9–11].

Because of its role in reasoning, and particularly in human reasoning, any agent or human behavior model (HBM) that at-
tempts to replicate human cognitive processes (e.g., advanced models such as SAMPLE [12], SOAR [13], or ACT-R [14]) must
necessarily capture the impacts of meta-information on those processes. HBMs are useful in a wide variety of applications,
including both theoretical (e.g., developing and testing theories of human cognition, including emotions, perception, deci-
sion-making, and action performance) [15–18] and practical (e.g., representing realistic human behavior in training and
other simulation environments, such as games, tracking human behavior to automatically adapt decision-support, or simply
managing complex tasks normally performed by humans) [19–21].

These applications will necessarily span domains where it is critical to incorporate models of how humans reason about
meta-information. While each of the existing HBMs mentioned above provides generic representations that will allow a sav-
vy designer to integrate meta-information, none of them require or particularly encourage the inclusion of meta-informa-
tion. Furthermore, modelers typically do not address meta-information in these representations. Meta-information is not
always available in the incoming data stream for these models, and may need to be separately obtained either through spe-
cific requests or additional computation. Once obtained, it would need to be integrated into a larger decision-making process
(i.e., the role of track confidence in air combat threat analysis). In addition, types of meta-information are not always inde-
pendent, meaning additional aggregation might be necessary before application to information processing, situation assess-
ment, or decision-making processes. Clearly, incorporating meta-information in human behavior models represents a
significant challenge.

In our efforts to model expert human decision-making behaviors using SAMPLE [19,22,23], we have explored a number of
approaches to the inclusion of meta-information, including rule-based behavior moderation and direct decision-making pro-
cedure modification [24]. Often, in implementing decision-making processes described or demonstrated by subject matter
experts (SMEs), we apply Bayesian belief networks (BBNs) to capture the situation assessment (SA) processes and meta-
information gathering processes that individual decision-makers use to aggregate data and construct beliefs about their
environment. In past efforts [19,24], we have applied meta-information to SA processes in several ways, including informa-
tion filtering (e.g., determining which information behavior models should attend to), input calculations (e.g., moderating
sensor readings based on meta-information about those sensors), and direct SA impact (e.g., additional nodes in SA models).

The focus of the research reviewed in this paper has been the exploration of Bayesian approaches to modeling reasoning
about meta-information within our human behavior models. This research spans across several efforts and domains. In each
of these efforts, one of our underlying goals was to understand the nature of the influence of meta-information, and generate
approaches to modeling its impact. In Section 2, we describe relevant background material, including related material on
human and computational reasoning about uncertainty. In Section 3, we cover methods for computing and aggregating
meta-information from incoming data, as well as methods for incorporating meta-information into human behavior models.
Finally, in Section 4, we present conclusions and directions for future work.

2. Background

Most recent research into the kinds of difficulties presented by the need for decision-makers to reason about meta-infor-
mation have been centered on uncertainty [25–29]. We posit that uncertainty of information is only one type of qualifier that
may affect information processing, situation awareness (or understanding), and decision-making. Below, we discuss relevant
research that has been focused on the role of uncertainty in human decision-making and computational approaches to man-
aging uncertainty. We also present our prior attempts to broadly define the types of meta-information we have encountered
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across different decision-making domains and a description of the SAMPLE architecture in which we develop human behav-
ior models.

2.1. Uncertainty and human decision-making

Human decision-making under uncertainty is recognized to deviate from classical, logical decision-making and to be
based largely on experience-based heuristic methods [30]. Often, these heuristic approaches represent how experts reason
about the meta-information surrounding these decision-making processes, and are therefore crucial to capture in accurate
decision-making models. Several attempts have been made to categorize different types of uncertainty and to identify how
they affect the decision-making process. One method for classifying uncertainty is to look at its source, for instance, dividing
uncertainty into forms that come from computational models as opposed to human interpretation [31]. Another method is to
examine its use in the decision-making process, resulting in categories of uncertainty, which has resulted in categories such
as executional uncertainty, goal uncertainty, and environmental uncertainty [32]. Another set of classifications developed by
Lipshitz and Strauss [33] divides forms of uncertainty into inadequate understanding, lack of information, and conflicted alter-
natives. Similar taxonomies were developed by Schunn et al. [31] and Klein [34]. These taxonomies can prove to be useful in
attempts to develop descriptive models of human reasoning. For example, Lipshitz and Straus [33] discuss five strategies
for reasoning under uncertainty: (1) reduce uncertainty by collecting more information; (2) use assumptions to fill in gaps
of knowledge; (3) weigh pros and cons; (4) forestall; and (5) suppress uncertain information. While these classifications of
uncertainty and an understanding of their impacts on decision-making have been useful in the development of models of
human behavior, they may not generalize to other types of meta-information not fundamentally based on uncertainty
(e.g., factors such as pedigree or recency which also serve to contextualize information and impact how it is perceived,
understood, and used to drive behavior).

2.2. Computational approaches to uncertainty

Computational systems have been developed to reason about uncertainties present in the real world in tasks ranging from
weather forecasting to network security to financial risk management. To support this development, a variety of computa-
tional approaches have been developed to explicitly support reasoning about one or more types of uncertainty [35,36]. These
approaches include: probability measures, Dempster–Shafer belief functions [37], extensions to first-order logic (e.g., defea-
sible reasoning [38], argumentation [39]), ranking functions, ‘‘plausibility” measures [35], fuzzy set theory [40], and causal
network methods (e.g., Bayesian belief networks [41], similarity networks [42], influence diagrams [43]). Within these ap-
proaches, additional methods have been developed for aggregating and propagating uncertainty (e.g., computing ‘‘second-
order uncertainty” in Bayesian networks) [44]. This list, by no means exhaustive, represents the focus of computational re-
search on the need to support automated reasoning about uncertainty [45].

Some effort has been made, as part of the development of these approaches, to define uncertainty and to describe taxo-
nomies of uncertainties that computational systems may reason about. Of these taxonomies, Smets [46], Smithson [47], and
Bosc and Prade [48] are notable. However, examination of these (and other attempts to structure the meaning of ‘‘uncer-
tainty”), and the large variation in definitions and taxonomies supports Elkan’s [49] assertion that developing such taxono-
mies is largely a philosophical exercise. This assertion may relate to the degree to which the development of these
computational approaches are tied to an understanding of (and desire to model) human reasoning, particularly relative to
a particular task or context. Within a specific task (or class of tasks), it may be possible to study the impacts of uncertainty,
and meta-information more generally) on human reasoning, and then apply these techniques to model that reasoning.

Relatively recently, there has been increased interest in the management of meta-data, a term used to describe more
broadly the various ways that data may be qualified [50,51]. This term has been applied to file systems, computer programs,
images, relational databases, and data warehouses (i.e., its application is largely contained within the information technol-
ogy community). Examples of meta-data include how, when, and by whom a particular set of data was collected, and how
the data is formatted (e.g., a typical email header contains many examples of meta-data). This work has been focused on the
tagging and handling of data according to its meta-data with little linkage to human reasoning about that meta-data (e.g.,
how do the components of the email header contribute to the order in which a human might process their email?). Because
these efforts have been focused on the qualities inherent in the data rather than the qualities of the information that are used
by a human to process, understand, and act, they are less pertinent to our interest in modeling how meta-information may
impact human reasoning and behavior.

2.3. Sources and types of meta-information

In analysis efforts described in previous work [8], we identified the main types of meta-information that impact the deci-
sion-making process within a set of well-defined application domains (Table 1). These types were derived from cognitive
task analysis (CTA) [11,52] with a number of subject matter experts (SMEs), a systematic process that reveals the character-
istics of the work domain as well as the cognitive process used to perform work through observation and interviewing tech-
niques. Across these analysis efforts, we also developed prototype concepts for decision-support, and conducted user
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evaluation to further refine our understanding of the cognitive mechanisms in use in the work domain. This research encom-
passed interactions with over 30 domain experts (in the different domains) and over 500 h of interviews, observation, and
evaluation. Based on our experience in human behavior modeling, knowledge elicitation, and the supporting literature [53–
57], we believe that this overall approach to developing an understanding of expert reasoning and behavior is sufficient to
begin to understand the impact of meta-information in human cognition at a level that supports modeling. One product of

Table 1
Sources and types of meta-information in explored domains (see Pfautz et al. [3] for a more detailed analysis)

Meta-information type Sub-types or related types Example impacts on decision-making

Characteristics of the
information source

Type of data the source can
produce

Because Pete is extremely experienced, and has been largely successful in the
past, Pete’s reports on new business directions will be given more weight by
senior managementType of processing used

Range of data generated
Baseline error rates
Frequency of reporting
Ability to report its status and
characteristics of that report
Inherent biases
Past performance and history
Directly observing or deriving
information

Characteristics of the source as a
function of other factors

Time Because his superiors know that Jim is located in the middle of a major dust
storm, he is likely to miss observing a passing enemy, leading his superiors to
disregard his report that nobody has passed

Location in environment (e.g.,
terrain and weather)
Types of intermediate processing
Content of report

Uncertainty Spatial uncertainties Emma’s estimate of the number of individuals in a large crowd is imprecise
because the crowd was constantly changing in size over time as people came and
went, therefore the event organizers prepared extra food

Temporal uncertainties
Uncertainties about uncertainty
reporting
Likelihood
Probability
Confidence
Accuracy
Precision

Ambiguity Specificity or resolution of
information

Juan’s report that a car is coming up the road is not enough for Bobby to start
making dinner, because it’s not clear if the car is actually the car belonging to
their dinner guestsLevel of abstraction of

information

Information context (i.e.,
relationship to other
information)

Degree of confirming or
disconfirming information

Without any information on the quality of her water, Jane would not drink it.
Because both Rakesh and Bill independently tested and confirmed the water
quality, Jane feels safe drinking itPaucity of information

Frequency of reporting of
information
Missing or degraded information
qualifiers
Information-to-noise ratio

Reliability of source W.r.t. source characteristics Channel 5’s weatherperson is the most experienced at predicting snow, so
Charles always tunes into Channel 5 on cold days before he decides to drive his
sports car or pick-up truck

W.r.t. information context

Credibility of content from
source

W.r.t. reliability Chen never uses Bob’s recommendations on which football team will win in his
office pool, because he knows Bob does not know anything about footballW.r.t. type of content

W.r.t. type of source
W.r.t. information context

Relevance or pertinence W.r.t. specific mission goals Sam’s reports about the weather have no impact on the decision by the
schoolkids about whether to play volleyball or kickball because they are playing
inside in the gymnasium

W.r.t. actual/perceived
information needs
W.r.t. broader operational
context
W.r.t. current hypotheses about
the situation

Temporal qualifiers Staleness While Ed may be trustworthy, his report from 6 h ago about, where the weather
balloon is may not be accepted, as the balloon has likely drifted a significant
distance in that time

Recency
Certainty about time of reporting
Latency
Lag
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these analyses has been the development of a list of sources and types of meta-information we have consistently encoun-
tered across application domains. As opposed to the taxonomies of uncertainty discussed earlier, these sources and types
come strictly from the study of human reasoning.

In our analysis, we discovered that the specific aspects of meta-information that are (or should be) considered by the deci-
sion-maker depend on the particular domain of application, and the particular task being performed in that domain or appli-
cation. By examining the specific factors that contribute to and constitute meta-information in the domains we examined, we
were able to define a list of specific types of meta-information we encountered. While these types may or may not be appli-
cable in other domains, they at least provide a useful aid in the identification of similar types of meta-information when ana-
lyzing different types of decision-making in other domains, and provide the basis for beginning to model the impacts of
meta-information on human reasoning.

2.4. Modeling human reasoning and behavior

The computational representation of human reasoning and behavior has applications in a range of domains, supporting
training, modeling and simulation, as well as efforts simply to better understand human perception, reasoning, and action.
Many approaches to modeling have been developed and documented (see Pew and Mavor [58] for an overview of a subset of
these approaches). In this paper, we discuss human behavior modeling with respect to our own efforts to model human cog-
nition and behavior based on recognition-primed decision-making [59]. Fig. 1 illustrates our modeling approach, SAMPLE
(situation assessment model for person-in-the-loop evaluation), which is a domain-independent architecture developed for
modeling situation awareness-centered decision-making in high-stress, time-critical environments, based largely on Klein’s
theory of recognition-primed decision-making [60]. Recognition-primed decision-making posits that experts do not do sig-
nificant amounts of reasoning and problem solving, but rather have been trained to recognize the criticial elements of a sit-
uation and to act accordingly. Functionally, SAMPLE is a general-use HBM that has been applied in a variety of domains,
including the commercial aviation arena in air/ground traffic management simulations [23], in the modeling of adversary
pilots in military simulations [12], and in the modeling of the impacts of stressors and individual differences in small unit
military operations in urban terrain.

SAMPLE communicates with a simulated environment (the ‘‘World”) through sensors and actions. Inputs to SAMPLE are
first processed by an information processing module. This module is typically built using Fuzzy logic [61] components that
turn the real-valued sensor data into fuzzy membership values that are more compatible with the way human decision-mak-
ers tend to reason about domains. In more complex situations, it can include a filtering system capable of simulating the
agent’s current attentional focus.

Fig. 1. SAMPLE cognitive modeling architecture.
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The processed data, in the form of detected events and structured states, is passed to a situation assessment module. This
module primarily uses Bayesian reasoning to reason about probabilistic events and situations in an attempt to model the
agent’s understanding of the unfolding situation through deductive and abductive reasoning. This, in keeping with our rec-
ognition-primed approach to behavior modeling, is where the bulk of the complex reasoning and inference are done. We
have found that, although Bayesian reasoning is not fully consistent with cognitive experiment data [15], it does provide
a good approximation of the human ability to fuse both causal and diagnostic information and meta-information. Other ap-
proaches to modeling human situation awareness (e.g., rule-based systems) generally have difficulty modeling such infor-
mation processing [62].

The assessed situation is passed to a decision-making module that uses it to select appropriate responses and actions.
SAMPLE uses traditional rule-based expert-system technology [63] for this purpose. In keeping with the recognition-primed
decision-making philosophy of SAMPLE [60], the decision-making module in models of expert users is typically relatively
straightforward; once the situation is properly understood, experts tend to be able to act fairly directly without the need
for more complex planning and problem-solving processes. So, in many situations, this stage can be as simple as a response
lookup. In other cases, however, this step performs more complex reasoning in an attempt to satisfy conflicting goals or to
respond most appropriately to a complex, uncertain, or unexpected situation.

Each of the three main processing modules has access to both long-term and short-term memory. Long-term memory is
used to store the expert knowledge of the agent, such as specific BBNs used for analyzing the domain. Short-term memory is
used to store information about the current state of the agent and the environment, such as the particular belief values asso-
ciated with nodes in the BBN.

3. Bayesian approaches to modeling reasoning about and with meta-information

An important and difficult aspect of modeling human cognitive and behavioral processes is the need to reflect the known
impacts of meta-information on those processes. Our analyses across decision-making domains, has revealed a number of
different types of qualifiers that can influence information interpretation, understanding, and resulting action, and has made
clear the cognitive complexity that should be captured by efforts in any representation of human thought and behavior.
HBMs must necessarily process incoming information according to its meta-information, assess the situation represented
by that information given its contextualizing meta-information, and select behavioral options based on that assessment.
Our prior research on the analysis of the role of meta-information in human reasoning [3,8] has led us to identify five fea-
tures of this reasoning that need representation within human behavior models:

(1) The model should succeed or fail to recognize relevant meta-information as a function of attentional and cognitive
demands (e.g., when too much information is present, the model may fail to appreciate that a message is stale and
therefore no longer true).

(2) The model should support the representation of successful and unsuccessful human strategies to process information
according to meta-information (e.g., the model should respond to email tagged as ‘‘critical” first).

(3) The model should represent the aggregation of meta-information (e.g., the model should be able to fuse meta-informa-
tion about different sources, different levels of credibility, different time stamps, and different perceived relevance to
current activities).

(4) The model should capture how effectively meta-information is understood relative to any prior understanding or knowl-
edge (e.g., the model may assume that the situation is dangerous because meta-information about the prior reliability
of a warning’s source is not factored into the assessment).

(5) The model should succeed and fail at incorporating meta-information-mediated situation assessments into behavior or
decisions (e.g., the model may understand that the warning’s source is not reliable, but still react to a threat).

Our goal in this work is to illustrate methods by which these aspects of human reasoning and decision-making processes
with and about meta-information can be represented.

Below, we describe our general approach to modeling using Bayesian belief networks (BBNs) and why this computational
formalism is well suited to modeling human reasoning about meta-information (Section 3.1). Next, we discuss how BBNs
could be applied to modeling the recognition,processing, and aggregation of meta-information (Section 3.2). Then, we discuss
the application of meta-information within models to influence situation assessment (e.g., understanding) and decision-mak-
ing (e.g., behavior) (Section 3.3).

3.1. Methods for representing human reasoning

It has been our experience that Bayesian belief networks (BBNs) are particularly versatile tools for modeling a wide range
of HBM meta-information reasoning requirements, including the recognition, processing, aggregation, understanding and
application of meta-information. In this review, we analyze a range of Bayesian modeling approaches that we have taken
to integrate meta-information in previous efforts. We recommend additional research focusing on the application of other
technologies to meta-information modeling, including, but not limited to, fuzzy set theory, rule-based production systems,
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and case-based reasoning. Such research efforts would compliment the work described here, and expand the horizon of hu-
man behavior modeling.

Another reason BBNs are particularly applicable in this domain is their versatility in addressing multiple types of mod-
eling requirements. In most problem domains, there are two distinct types of meta-information reasoning that can be cap-
tured: deductive reasoning, in which we reason about factors that predict an outcome, and abductive reasoning, in which we
reason about the degree of support for a particular hypothesis. BBNs support both types of reasoning, and therefore can be
used to model abduction, deduction, or both. In a practical sense, this means we can generate BBNs to support modeling of
the expert’s reasoning (e.g., deductive reasoning about the expert’s confidence in a sensor given meta-information surround-
ing the sensor report, such as personal expectations and information context, as shown in Fig. 2a) or modeling of the sensor’s
error likelihood (e.g., reasoning abductively about overall sensor error from various factors affected by that error, such as
standard sensor errors (e.g., precision errors) and environmental errors, as shown in Fig. 2b). This allows models to capture
the range of ways in which people think about meta-information in their decision-making process.

To apply BBNs in either of these manners, one must have an understanding of not only the domain, but also the ramifi-
cation of applying different modeling techniques to the problem. In a generic sense, the application of a particular type of
reasoning to a problem may seem trivial; e.g., reasoning about the support for hypothesis given some evidence vs. reasoning
about the likely outcome given some evidence. However, the nature of many problem domains is such that multiple types of
reasoning could be used effectively for the same problem and only the semantics of the application will differ. This problem
requires further investigation as additional computational techniques for supporting meta-information analysis are
explored.

3.2. Modeling the recognition and aggregation of meta-information

Decision-makers recognize, process, and aggregate meta-information in a number of ways. In many cases, a human deci-
sion-maker will have to compute meta-information from multiple factors, often including data, meta-data, information, and
other meta-information (e.g., in a poker game, is Bob bluffing if his eye twitches and he shifts frequently when he raises?).
While some systems have the ability to produce meta-data about their performance (e.g., a tool of type X has an error of
±0.5), only in particular tasks can that meta-data be used directly as meta-information. Generally, however, humans develop
meta-information during their reasoning process. Effective cognitive models must behave similarly.

In modeling human reasoning, data streams are commonly not tagged as information or meta-information. Data and
meta-data can map to components of meta-information in a number of different ways, including:

# One-to-one mappings, in which specific data and meta-data components can be directly read as meta-information (e.g.,
latency of a sensor report).

# Many-to-one mappings, in which a number of data and meta-data components from a number of sensors can be fused into
one component of meta-information (e.g., fuse the differences between reports from five sensor streams into one uncer-
tainty value).

# One-to-many mappings, in which a number of meta-information components can be extracted from a simple data ele-
ment (e.g., given a particular sensor type, one can infer reliability and pertinence of the data stream).

# Many-to-many mappings, in which a number of data streams can be fused to produce a number of meta-information com-
ponents (e.g., eight sensors with varying characteristics have their streams fused by two different algorithms producing
recency and confidence values).

Additionally, once meta-information is calculated, it can influence the information gathering, situation assessment, and
decision-making process in each of the above manners. Because there is such a wide range of interactions in the calculation
and application of meta-information, there are a wide range of uncertainty-oriented technologies that can be used to model
it, as discussed in Section 2.2.

Fig. 2. Deductive vs. abductive reasoning: (a) deductive and (b) abductive.
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BBNs, in particular, can be directly applied to model this cognitive computation of meta-information, as illustrated in
Fig. 3, which shows a BBN designed to deductively combine various environmental data components with intrinsic sensor
error to calculate an overall error for a sensor. In this example, features that lead to certain error conditions are specified,
such as cloud cover, temperature, and precipitation level providing evidence for weather obstructions, which in turn provides
evidence for environmental errors.

This BBN does not explicitly include the effect of the sensor type, or other moderating information, on the ways in which
these environmental factors influence errors. Additional moderators can be added in several different ways. First, separate
BBNs can be used to model different systems (e.g., a second sensor might be unaffected by, and therefore drop, the light con-
ditions branch of this BBN). While this provides the most flexibility in addressing highly complex differences in the models, it
can also pose a significant computational detriment, as additional BBNs are loaded and used. Another possibility would be to
write software that dynamically modifies the conditional probability tables (CPTs) within the network based on the cur-
rently selected sensor (e.g., making one sensor more sensitive to weather changes than another), or to add a node to the net-
work that changes the CPT behavior based on the selected sensor (as shown in Fig. 4).

This reduces the computational complexity, but can reduce the transparency of the BBN’s behavior. In more simplistic
cases, designers can go so far as to add nodes to the network to manage the new component (e.g., add a node that specifies
which sensor type is being used). While this can make a calculation more accurate, it can rapidly increase the complexity of
the BBN. Another issue that often arises is the calculation of this meta-information over space and time (e.g., How well does
the sensor perform in this region, with these terrain restrictions? How does performance degrade as the battery runs
down?), creating a need for enhanced modeling methods such as dynamic Bayesian belief nets (DBNs). A DBN is an extension
of a static BBN used to model a stochastic process (i.e., to model a world that changes over time), by using past and current
obtained evidence to compute beliefs about the past, current, and future state of the world [37].

Because meta-information types are not inherently independent (e.g., the type of information being considered interacts
with the type of source providing the information to influence reliability), different meta-information components will often
need to be aggregated. One approach to combining meta-information of various types is aggregation through the application
of BBNs. Fig. 5 provides an example of aggregating different types of meta-information, where the effect of available infor-
mation on confidence (e.g., is there lots of supporting or conflicting information from other data sources?), the effect of cur-
rent expectations on confidence (e.g., does the given information fit what the human behavior model expects to occur?), and
the overall sensor error (e.g., combination of sensor obstructions, including weather, terrain, etc.) are combined into an over-
all confidence of a specific sensor report, impacting the interpretation of that report.

Like the computation of a specific type of meta-information, knowing the best means to aggregate meta-information is
challenging. Observation and study of human decision-making amongst subject matter experts may provide some justifica-
tion, but will often unavoidably result in inclusion of biases (e.g., predisposition to particular source types or biased inter-
pretation of meta-information influences). On the other hand, using engineering data about sources may not adequately
represent how a human would reason about meta-information, resulting in less reflective human behavior models. There-
fore, the development of methods that model how decision-makers aggregate meta-information is an open research chal-

Fig. 3. Computing environmental error meta-information from environmental data.
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lenge that we continue to investigate. Furthermore, the influence of meta-information on how a behavioral decision should
be made (or how a piece of information should be assessed) needs to be further investigated to understand what types of
meta-information would normally be calculated by humans and, particularly, the impact of not calculating meta-information
on the accuracy of the decision-making process.

3.3. Modeling the impact of meta-information on situation assessment

If we assume that meta-information can be computed and/or aggregated in some tractable manner by the cognitive mod-
el, then the next step is to capture how meta-information could be used in modeling a human reasoning process, including
situation understanding and behavior. One approach is to simply filter or prioritize information based on meta-information.
For example, when receiving a large number of incoming sensor reports, we might limit the reports impacting a cognitive
model based on results of meta-information analysis (e.g., only selecting those with the highest confidence). This approach
requires some degree of cognitive task analysis (and/or human-in-the-loop experimentation) to determine how an expert
would perform this filtering or prioritization based on the given meta-information, as well as the current decision-making
task and the current situation. However, because attentional allocation and filtering mechanisms have already been modeled

Fig. 4. Sensor type as node in network: (a) sensor 3 more sensitive to terrain obstruction and (b) sensor 1 more sensitive to weather obstruction.
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in some detail [64], extending them to incorporate filtering/prioritization based on meta-information is a relatively simple
application of the previously discussed meta-information calculations.

Another way to incorporate meta-information is to include it within BBN models of information gathering, situation
assessment, and decision-making processes. This involves generating BBNs to base beliefs and actions on the application
of meta-information (e.g., if a threat report is sufficiently recent, then act on the report) and/or changing internal data rep-
resentations according to meta-information (e.g., if confidence is high, then interpret data with more precision). For example,
a BBN used by air-combat pilots to analyze the location of an approaching track might be enhanced with a meta-information
node aggregating the track confidence, as illustrated in Fig. 6. In this example, when information is posted informing the
model that the confidence is low, the threat level increases, representing the expert pilot likelihood of worrying more about
threats for which there is little information available. This will result in the model emphasizing information gathering for
this particular track, which may lead to an increase in track confidence and, ultimately, a more accurate calculation of
the threat posed by the track.

This approach allows the meta-information to be incorporated into the cognitive reasoning process and allows some ex-
plicit control over its influence. Furthermore, with DBNs, it could incorporate the influence over time and handle multiple
types of influence (e.g., inhibitory, excitatory) on other variables. However, because of the number of potential types of
meta-information, this approach may rapidly overload the representation of the BBN, increasing its computational complex-
ity and obfuscating its purpose.

Another approach is to use the meta-information in a specific parameter; in BBNs, this means directly changing the evi-
dence posted on a particular node based on meta-information. We find that by including meta-information in these ‘‘glue-
code” approaches, we can ensure meta-information has precise effects on data, without dramatically modifying the com-
plexity of our models. Examples of how evidence could be alternatively computed are shown in Table 2. Here, each of the
calculated probabilities represents one possible discrete value for a node in a BBN. Rather than setting information values
in behavior modeling BBNs based purely on incoming sensor information, the evidence is moderated externally based on
meta-information such as sensor reliability, information confidence, credibility, and sensor type, following guidelines ex-
tracted from cognitive task analysis. For example, in Table 2, the probability that the location of a detected entity is ‘‘near”
is calculated by multiplying the sensor value (K) by a meta-information representation of the reliability of that sensor, rather
than simply processing the sensor value itself. Lethality of an enemy unit might be similarly calculated based on some hu-
man intelligence report (J) multiplied by the behavior model’s confidence in that human intelligence. These computational
formulas for calculating BBN values can be as complex as necessary, potentially being represented through some function
of sensor value, sensor type, and a host of available meta-information concerning that sensor and related environmental
information.

Fig. 5. Aggregating meta-information to compute overall confidence.
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This approach, in which meta-information is managed externally from the BBN (and not explicitly captured in the graph-
ical representation), can reduce some computational complexity. However, hiding the intermediate calculations through
which meta-information is integrated could obfuscate the representation of the reasoning process, and substantially limit
the robustness with which meta-information is integrated into the behavior model.

4. Conclusion

A key aspect of modeling human behavior is capturing the effect of meta-information on information processing,
situation assessment, and decision-making. Our experience performing analyses of human cognition and action in different

Table 2
Examples of computing the probability of a discrete value for a BBN node

Probability (location = ‘‘near”) = K*Reliability
Probability (lethality = ‘‘low”) = J*Confidence
Probability (threat = ‘‘high”) = f (value, type, credibility)

Fig. 6. Incorporating meta-information explicitly into a BBN: (a) no confidence information posted and (b) low confidence posting increases analyzed
threat.

S.L. Guarino et al. / International Journal of Approximate Reasoning 50 (2009) 437–449 447



decision-making domains has shown that humans use (and/or fail to use) this meta-information when making decisions.
Although many advanced human behavior models have methods by which meta-information could be explicitly represented
(e.g., rules in SOAR or ACT-R, BBNs and rules in SAMPLE, etc.), none of these models require or even encourage the inclusion
of meta-information when modeling human behavior. In this effort, we have begun to explore approaches to modeling meta-
information generation and application using BBNs. Each of these approaches has been applied within SAMPLE agents to
more accurately model decision-making processes. We described the application of meta-information and BBNs in modeling
each of the following types of cognitive tasks:

# Recognition of relevant meta-information based on aggregation of available data, meta-data, information, and meta-infor-
mation into types of meta-information.

# Filtering and prioritization of information based on meta-information.
# Aggregation of different types of meta-information to acquire their combined impact.
# Understanding of the impact of meta-information on existing knowledge.
# Incorporation of meta-information into mediation of situation assessment and decision-making.

These approaches clearly indicate how BBNs can provide an effective tool for modeling and application of meta-informa-
tion in cognitive modeling efforts.

In addition, this research has indicated a more general need to more carefully include the influence of meta-information
when designing complex human behavior models (and/or systems that support human reasoning [3]). In future efforts, we
foresee the application of these approaches within our own SAMPLE agents, and recommend the inclusion of meta-informa-
tion within the wide range of cognitive models applied in other modeling architectures.
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