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void t1394Diag_CancelIrp(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp) {
KIRQL Irql; PBUS_RESET_IRP BusResetIrp; PDEVICE_EXTENSION deviceExtension;

deviceExtension = DeviceObject->DeviceExtension;
KeAcquireSpinLock(&deviceExtension ->ResetSpinLock, &Irql);

BusResetIrp = (PBUS_RESET_ IRP)deviceExtension->BusResetIrps.Flink;
while (BusResetIrp) {

if (BusResetIrp->Irp == Irp) {
RemoveEntryList(&BusResetIrp-> BusResetIrpList);
ExFreePool(BusResetIrp);
break;

}
else if (BusResetIrp->BusResetIrpList.Flink == &deviceExtension->BusResetIrps)

break;
else

BusResetIrp = (PBUS_RESET_IRP) BusResetIrp->BusResetIrpList.Flink;
}

KeReleaseSpinLock(&deviceExtension ->ResetSpinLock, Irql);
IoReleaseCancelSpinLock(Irp->CancelIrql);
Irp->IoStatus.Status = STATUS_CANCELLED;
IoCompleteRequest(Irp, IO_NO_INCREMENT);

}

Concurrent programs with heap

Properties: memory safety, absence of memory leaks

Is this a well‐formed cyclic 
doubly‐linked list?

Discovered by shape analyses



Have to consider all possible interleavings/schedules:

State‐space explosion

Heap‐manipulation expands the set of possible thread interactions

Multicores mean more concurrency

Verification of (asynchronous) concurrent programs

... ............



No direct enumeration of interleavings

Existing methods focus on programs without dynamically‐
allocated memory

This talk: a thread‐modular shape analysis for concurrent 
programs based on concurrent separation logic

Thread‐modular reasoning

......

Consider every thread in isolation under some assumption on its 
environment

Captures possible interference 
from the other threads



Concurrent separation logic [O’Hearn 2002]

Heap‐manipulating programs with static locks and threads:

LOCK lk1, lk2;

T1() {
...
lock(lk2);
...
unlock(lk2);
...

}

T2() {
...
lock(lk2);
...
unlock(lk2);
...

}

lk1

lk2

Allocated address space is partitioned into several disjoint parts: 
thread‐local parts: can be accessed only by the corresponding thread

parts protected by free locks

View enforced by the logic: not true of all programs

Benefit: never have to consider local states of other threads

Local to

Local to

Protected by

Protected by



Concurrent separation logic [O’Hearn 2002]

lk1

lk2

lk1

lk2

lk1

Every lock lk annotated with a 
resource invariant I lk − a 
predicate on heaps:

Hoare logic:

Axioms for lock and unlock :

h NULL



Input:
Program with lock‐based synchronisation (for now: static locks and threads)

Sequential abstract interpretation‐based shape analysis (terms and conditions apply)

Output: 
Resource invariants for all locks

Local states of threads at all program points

Proves memory safety and data‐race freedom

Complexity:
Linear in the number of threads

Thread‐modular shape analysis [PLDI’07]

LOCK lk1, lk2;

T1() {
...
lock(lk2);
...
unlock(lk2);
...

}

T2() {
...
lock(lk2);
...
unlock(lk2);
...

}



Thread‐modular shape analysis

......

as an environment 
assumption



Analysing a thread
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Analysing a thread

LOCK lk;  //

T1() {

...

lock(lk);

...

...

...

unlock(lk);

...
}

lock : conjoin the current approximation      
of the resource invariant to the local state

unlock : split the local state Q into two parts

Local (Q): the new local state

Protect ed(Q): the new approximation of 
the resource invariant

Defined by application‐specific heuristics



Analysing a thread

NULLh

h NULL
LOCK lk;  //

T1() {

...

lock(lk);

...

...

...

unlock(lk);

...
}



Analysing a thread

NULLh

NULLh

LOCK lk;  //

T1() {

...

lock(lk);

...
// Insert an entry
...

unlock(lk);

...
}

Variables that correlate with the lock: 
variables accessed only when the lock is held 
[Pratikakis et al., 2006; Savage et al., 1997]

Protect ed(Q): the part of Q reachable from 
the variables that correlate with the lock

Similar heuristics for determining initial local 
states and resource invariants

h NULL



Analysing a thread

NULLh

LOCK lk;  //

T1() {

...

lock(lk);

...
// Insert an entry
...

unlock(lk);

...
}

h NULL

h NULL

NULLh

α − abstraction function of the sequential 
shape analysis



Implementation

A sequential shape analysis based on separation logic for 
device driver data structures [Berdine et al., 2007]

Firewire driver:

Part of the SLAyer/Terminator tool (Microsoft Research 
Cambridge): checks memory safety and liveness 
properties of device drivers



Back to the logic...

How can we believe an analysis? Would like it to 
produce certificates − proofs in a program logic 

Results could be used in proof‐carrying code or theorem 
proving systems

Does the analysis compute proofs in concurrent 
separation logic?

No: not all resource invariants I lk are allowed! 



Back to the logic...

In concurrent separation logic resource invariants have to be 
precise: in any heap there may be at most one subheap satisfying 
the invariant

Resource invariants computed by the analysis aren’t precise

The underlying logic of the analysis has no conjunction rule and
no precision restriction

The variant of the logic and the analysis proved sound together



What about dynamically‐allocated locks?

Unbounded numbers of locks –
a finite number of invariants

Abstract domain extended with 
elements representing locks 
with a given invariant

Concurrent separation logic 
extended appropriately 
[APLAS’07]

lk = new LOCK;
...
init(lk);
...
lock(lk);
...
unlock(lk);
...
finalize(lk);
...
del et e l k;



What about dynamic thread creation?

for (i = 0; i < n; i++) {
t[i] = fork(proc, i);

}
...
for (i = 0; i < n; i++) {

join(t[i]);
}

Can use algorithms for 
interprocedural heap analysis 
[SAS’06]

Part of the heap reachable 
from fork ’s parameters 
transferred to the thread

Concurrent separation logic 
extended appropriately 
[APLAS’07]



What about non‐blocking and fine‐grained concurrency?

Thread‐modular analysis works well on programs with coarse‐
grained synchronisation: one lock per data structure

Fine‐grained concurrency: multiple locks per data structure

Non‐blocking concurrency: lower‐level synchronisation 
techniques

Non‐blocking and fine‐grained concurrency need relations to 
describe interference

Combination of rely‐guarantee and separation logic [Vafeiadis & Parkinson 
2007; Feng, Ferreira & Shao 2007]

Shape analysis for non‐blocking and fine‐grained algorithms [Vafeiadis 2009]



Thread‐modular shape analysis

Efficient

unlike enumerating interleavings

Sound and precise

unlike most race‐detection analyses

Handles ownership transfer

unlike ownership type systems

Fully automatic

unlike systems based on VC generation


