Modular verification of
concurrent programs with heap

Alexey Gotsman
University of Cambridge

Joint work with Josh Berdine, Byron Cook,
Noam Rinetzky, and Mooly Sagiv

Concurrent programs with heap

void t1394Diag_Cancellmp(IN PDEVICE_OBJECT DeviceObject, IN PIRP Ip){
KIRQL Irgl; PBUS RESET IRP BusResetip; PDEVICE_EXTENSIO?

Is this a well-formed cyclic
doubly-linked list?

Discovered by shape analyses \

BusResetirp = (PBUS _RESET_ IRP)deviceExtension->BusResetlpSEn
while (BusResetlrp) {
if BusResetlp->Ip=Ip{ =
RemoveEntryList(&BusResetip-> BusResetlrpList);

ExFreePool(BusResetlm);
break;

}

else if (BusResetlp->BusResetlrpList.Hink == &deviceExtension->BusResetlps)
break;

else
BusResetlp = (PBUS_RESET IRP) BusResetlrp->BusResetirpList.Fink;

deviceExtension = DeviceObject->DeviceExtension,
KeAcquireSpinLock(&deviceExtension ->ResetSpinLock, &My

}

KeReleaseSpinLock(&deviceExtension ->ResetSpinLock, Irql);
loReleaseCancelSpinLock(Ip->Cancellrq]);

Irp->loStatus.Status = STATUS_ CANCELLED;
loCompleteRequest(Ip, IO_NO_INCREMENT);

- Properties: memory safety, absence of memory leaks

Verification of (asynchronous) concurrent programs

—>Have to consider all possible interleavings/schedules:

—> State-space explosion
—>Heap-manipulation expands the set of possible thread interactions
- Multicores mean more concurrency

Thread-modular reasoning

— Consider every thread in isolation under some assumption on its
environment

Ty
V\

g5 aptures possible interference

- L from the other threads
V\

\
s mi
L1

—>No direct enumeration of interleavings

- Existing methods focus on programs without dynamically-
allocated memory

—This talk: a thread-modular shape analysis for concurrent
programs based on concurrent separation logic

Concurrent separation logic [O’'Hearn 2002]

Heap-manipulating programs with static locks and threads:

LOCK K1, k2;
Protected by
T,04 T,0{
lock(k2); lock(lk2): Local to T}
unlock(lk2); unlock(k2);
} }

— Allocated address space is partitioned into several disjoint parts:
= thread-local parts: can be accessed only by the corresponding thread
= parts protected by free locks

—View enforced by the logic: not true of all programs
- Benefit: never have to consider local states of other threads

Concurrent separation logic [O’'Hearn 2002]

—>Every lock kK annotated with a
resource invariant |, —a
predicate on heaps:

h— — — NULL

—Hoare logic: {P} C {Q}

—> Axioms for lock and unlock :

[P} lock(1k) {P Iy}

{P % I} unlock(1k) {P}

lock(k2):

unlock(k2);

} “9Q
-2 Input:

" Program with lock-based synchronisation (for now: static locks and threads)

= Sequential abstract interpretation-based shape analysis (terms and conditions apply)
— Output:

= Resource invariants for all locks

= Local states of threads at all program points

= Proves memory safety and data-race freedom
- Complexity:

= Linear in the number of threads

Thread-modular shape analysis

I as an environment
assumption

Analysing a thread

LOCKIk;, # IE

T0{

x i i

lock(K);

unlock(lK);

Analysing a thread

LOCKIk;, / IE

T0{

x i i

{P}
lock(K);

unlock(lK);

Analysing a thread

LOCKk, — #f IE

T0{

- e
X H H
]

[P}
lock(K);

H HoB D B
J & Fvo L
YL T A o
L .

- lock : conjoin the current approximation 77
of the resource invariant to the local state

unlock(lk);

Analysing a thread

LOCKk, /I

T,0{

- e
X H H
]

(P}

©o > lock : conjoin the current approximation 1%
of the resource invariant to the local state

Analysing a thread
LOCKIk, — / IE

[EATS

< f -
[A H H
L}

(P}

‘ 1k - lock : conjoin the current approximation 1%,

of the resource invariant to the local state

{Q) = Local(Q) * Protected(Q)} > unlock : split the local state Q into two parts
unlock(lk); = Lod (Q): the new local state
{Local(Q)} » Proted ed(Q): the new approximation of

the resource invariant
= Defined by application-specific heuristics

Analysing a thread

LOCKlk; # If

T0{

- e
X H H
]

(P}

A 7/ N\ — . / AN\
{1 — 1 nAlifl 1) v HWrnntTortonifl 1Y L
W — LVUuLdl\\w) VLeLLCU W o
L d - - 7

— NULL

— NULL

Analysing a thread

LOCKIk;, /I I¥ I h— RGN -+ NULL
T,04 k.
1: 17 h— — NULL
{P} Q: P x (h — > —> NULL)
lock(k); L1 '
(P Ik} Local(Q@) Protected(Q)

— Variables that correlate with the lock:

;;"_,\i : RN e Bt AN variables accessed only when the lock is held
e = LOCAlLy) * Frotectedils) s [Pratikakis et al., 2006; Savage et al., 1997]
unlock(lk);
{Local(@)}
- Proted ed(Q): the part of Q reachable from
the variables that correlate with the lock
]]/?1 _ [fk y Protected(Q) —> Similar heuristics for determining initial local

states and resource invariants

Analysing a thread

LOCKI; — /f

F 'y

L1k

Iy = > [NULL
T,0{ -
1 {po Iy | h— — NULL
{P} Q: P * (h _ - B, NULL)
lock(K): L1 |
(P * I} Local(@) Protected(Q)
I/ Insert an entry v
unlock(k), o
{Local(@)} h— > T — NULL
) a(Protected(Q))

o — abstraction function of the sequential

5 = I, V a(Protected(Q)) shape analysis

Implementation

— A sequential shape analysis based on separation logic for
device driver data structures [Berdine et al., 2007]

—>Firewire driver:

Dispatch routines 3 6 9 12 15 18
Time (sec) 114 | 27.7 | 50.3 | 79.9 | 118.7 | 170.7

—Part of the SLAyer/Terminator tool (Microsoft Research
Cambridge): checks memory safety and liveness
properties of device drivers

Back to the logic...

—>How can we believe an analysis? Would like it to
produce certificates — proofs in a program logic

—>Results could be used in proof-carrying code or theorem
proving systems

—Does the analysis compute proofs in concurrent
separation logic?

—>No: not all resource invariants |, are allowed!

Back to the logic...

{P} C {1} {P}C{Qs}
{P} C{Q1 N Q2}

—In concurrent separation logic resource invariants have to be
precise: in any heap there may be at most one subheap satisfying
the invariant

—>Resource invariants computed by the analysis aren’t precise

—>The underlying logic of the analysis has no conjunction rule and
no precision restriction

—>The variant of the logic and the analysis proved sound together

What about dynamically-allocated locks?

lk = new LOCK;
i:nit(lk);

I:ock(lk);

:unlock(lk);
1:inalize(lk);

del ete | k;

— Unbounded numbers of locks —
a finite number of invariants

- Abstract domain extended with
elements representing locks
with a given invariant

- Concurrent separation logic
extended appropriately
[APLAS’'07]

What about dynamic thread creation?

—Can use algorithms for
interprocedural heap analysis

[SAS’06]
for (=0 i<n i++) {
ti] = fork(proc, i)
}
: —Part of the heap reachable
for (=0;i<n i+ { from fork ‘s parameters
join(tfi]); transferred to the thread
}

—>Concurrent separation logic
extended appropriately
[APLAS’07]

What about non-blocking and fine-grained concurrency?

—>Thread-modular analysis works well on programs with coarse-
grained synchronisation: one lock per data structure

- Fine-grained concurrency: multiple locks per data structure

—>Non-blocking concurrency: lower-level synchronisation
techniques

—>Non-blocking and fine-grained concurrency need relations to
describe interference

= Combination of rely-guarantee and separation logic [Vafeiadis & Parkinson
2007; Feng, Ferreira & Shao 2007]

= Shape analysis for non-blocking and fine-grained algorithms [Vafeiadis 2009]

Thread-modular shape analysis

—> Efficient
unlike enumerating interleavings

—>Sound and precise
unlike most race-detection analyses

—>Handles ownership transfer
unlike ownership type systems

- Fully automatic
unlike systems based on VC generation

