
James Larus

Microsoft Research

High Confidence Software and Systems Conference

May 18, 2009

Multicore and Cloud Computing –

Time to Start Afresh

The Multicore Revolution

2

or

http://msrhelp/default.aspx

Computing Road Map

3

Circle of

Continued Frustration

Better Future

Multicore Bump

Opportunity Intersection

http://msrhelp/default.aspx

“A crisis is a terrible thing to waste”

4

 Multicore revolution will change how software is built and

sold

 Disruptive change offers opportunity for improvement

 Seize this opportunity to build robust and reliable software

 Ensure new software is better than old software

http://msrhelp/default.aspx

Si Is Destiny

5

http://msrhelp/default.aspx

Multicore Destiny

6

??

http://msrhelp/default.aspx

Moore’s Law

7

40%/yr improvement in transistor density

doubling every other year

http://msrhelp/default.aspx

Moore’s Law Enforced

8

1,500x

18,000x

133x

In
te

l,
 “

E
vo

lu
ti

on
 o

f
a

R
ev

ol
ut

io
n,

”
ht

tp
:/

/
do

w
nl

oa
d.

in
te

l.
co

m

1974 2003

http://msrhelp/default.aspx

Moore’s Dividend

9

10

100

1000

10000

Sep-95 Sep-96 Sep-97 Sep-98 Sep-99 Sep-00 Sep-01 Sep-02 Sep-03 Sep-04 Sep-05 Sep-06 Sep-07

SPEC Integer Performance (single proc x86)

Normalized CPU2000

http://msrhelp/default.aspx

Outline

10

 Where was Moore‟s Dividend spent?

 Software size

 Software functionality

 Programming complexity

 Is parallel computing a plausible successor?

 Parallel computing models

 Impact on computing

http://msrhelp/default.aspx

∆Code Size < ∆Processor Speed

11

Wikipedia estimates of LoC. Does not measure code shipped to customers.

SPEC normalized between SPEC95 and SPEC2000.

1

10

100

1000

Win 3.1 Win 95 NT 4.0 Win 98 Win XP Win 2003 Server Vista

Windows LoC

SPEC INT

Moore's Law

Qualitative

improvement

http://msrhelp/default.aspx

Where Moore’s Dividend

Was Spent

12

 Processor performance consumed by changes in:

 Software size

 Software functionality

 Programming complexity

http://msrhelp/default.aspx

Expectations Evolve Since 1981

13

 1 bit display

 25 lines of 80 chars (4K)

 16-640k memory

 Console

 stdio.h

 Single task, single address space

 No protection

 etc.

 24 bit display

 1280x1024 (64M)

 1-4GB memory

 GUI

 Window system

 Multi-tasking, virtual address space

 Sophisticated security

 etc.

http://msrhelp/default.aspx
http://en.wikipedia.org/wiki/Image:IBM_PC_5150.jpg

Recommended Windows

Configurations

14

1.0

10.0

100.0

1000.0

Windows 3.1 NT 3.51 Windows 95 Windows 98 Windows 2000 Windows XP Windows XP
SP2

Vista Premium

Processor (SPECInt)

Memory (MB)

Disk (MB)

Moore's Law

http://msrhelp/default.aspx

Legacy Compatibility

15

 Features monotonically increases

 Office user uses 10% of features

 Everyone uses a different 10% and 100% used

 Legacy compatibility sets floor

Relative to WinXP

Size Increase New Software Legacy Code

Files Lines New

Files

Lines

added

or

churned

Files

untouched

Edited

Files

Original

Lines

Win 2k3 1.43 1.42 1.11 1.13 0.73 0.93 0.78

Vista 1.80 1.46 1.07 1.03 0.80 1.00 0.94

http://msrhelp/default.aspx

Improvement Has Performance Cost

16

 Improvements are pervasive

 Abstract model for many needs becomes less efficient

 Generality precludes optimization

 Example: print spooling

 Security, notification – 1.5-4x

 Color management, better text handling – 2x

 Resolution

 300*300 dip @ 1bit 600*600 @ 24bits (1MB 96MB)

 Memory latency and bandwidth

http://msrhelp/default.aspx

Where Moore’s Dividend

Was Spent

17

 Processor performance consumed by changes in:

 Software size

 Software functionality

 Programming complexity

http://msrhelp/default.aspx

Increased Abstraction

18

 High-level programming languages

 Object-oriented (C++, Java, C#)

 Interpreted (VB, Perl, Python, Ruby, etc.)

 Rich, abstract libraries

 C++ Standard Template Library (STL)

 Java class libraries

 .NET platform

 Domain-specific language/systems

 Ruby on Rails

 RoR = 1/3 PHP < Java < C

http://msrhelp/default.aspx

Less Program Optimization

19

 Increased performance and memory size dulls programmers‟
edge

 Gates changed “READY” to “OK” in Altair Basic to save 5 bytes

 Little understanding of processor performance models

 Who really understands cache behavior?

 Increasing reliance on compiler optimization

 Uniformly “good” quality

 Sometimes 10-100x off hand-written code

 Performance is not an abstraction

 Cuts across software abstractions

 Think globally, act locally

http://msrhelp/default.aspx

This is not bad!

20

 Increased abstraction

improves productivity and

enables richer functionality

 Without abstraction,

modern software is beyond

human comprehension

 SAP Business Suite is 319

million LoC

OS MLoC

Red Hat Linux 7.1 30

Debian 3.0 104

Debian 4.0 283

Mac Os X 10.4 86

Windows XP 40

Windows Vista 50

Source: Wikipedia.org

http://msrhelp/default.aspx

Software Development,

c. 1950 – 2005

21

Increased
processor

performance

Larger, more
feature-full

software

Larger
development

teams

High-level
languages and
programming
abstractions

Slower
programs

http://msrhelp/default.aspx

Software Development,

RIP 2005?

22

Increased
processor

performance

Larger, more
feature-full

software

Larger
development

teams

High-level
languages and
programming
abstractions

Slower
programs

X

http://msrhelp/default.aspx

Outline

23

 Where Moore‟s Dividend was spent?

 Is parallel computing a plausible successor?

 New parallel computing models

 Impact on computing

http://msrhelp/default.aspx

Can Multicore Supplant

Moore’s Dividend?

24

 Double cores instead of increasing speed

 NO, at least without major innovation

 Sequential code

 Lack of parallel algorithms

 Difficult programming

 Few abstractions

http://msrhelp/default.aspx

Some Confusion Out There

25

http://msrhelp/default.aspx

Sequential Code

26

 Existing code is sequential
 Series of decisions/actions

 Difficult to change execution model

 Failed parallel compiler effort in „80s-‟90s
 Compiler cannot change fundamental programming model

 Failed instruction-level parallelism in 90‟s-00‟s
 Dynamic mechanisms cannot find more than 2–4x parallelism

 Artifact of problems & thinking
 Not language specific

0

0.5

1

1.5

2

P
ar

al
le

li
sm

1

2

3

4

H
ar

ri
s

&
 S

in
gh

 [
IC

FP
 0

7]

http://msrhelp/default.aspx

Parallel Algorithms

27

“In the context of sequential algorithms, it is standard practice to

design more complex algorithms that outperform simpler ones

(for example, by implementing a balanced tree instead of a list).

For non-blocking algorithms, however, implementing more

complex data structures has been prohibitively difficult.

[Herlihy, Luchangco, Moir, Scherer, PODC 2003]

Discussing a concurrent red-black tree

(data structures 101).

http://msrhelp/default.aspx

Sadistic Homework (c. Maurice Herlihy)

28

enq(x) enq(y)
Double-ended queue

No interference if ends

“far enough” apart

http://msrhelp/default.aspx

Sadistic Homework

29

enq(x) enq(y)
Double-ended queue

Interference OK if ends “close

enough” together

http://msrhelp/default.aspx

Sadistic Homework

30

deq() deq()
Double-ended queue

Make sure suspended

dequeuers awake as needed

http://msrhelp/default.aspx

You Try It …

31

 One lock?

 too conservative

 Locks at each end?

 deadlock, too complicated, etc

 Waking blocked dequeuers?

 harder that it looks

http://msrhelp/default.aspx

Solution

32

 Clean solution is a publishable result

 [Michael & Scott, PODC 96]

 What kind of world are we moving to when solutions to such

elementary problems are publishable?

http://msrhelp/default.aspx

Difficult Programming

33

 Parallel programming is as difficult as sequential

programming +

 Synchronization

 Data races

 Non-determinism

 Non-existent language and tools support

http://msrhelp/default.aspx

Few Parallel Abstractions

34

 Parallel programming models are low-level and machine-
specific

 Shared memory or message passing (~ hardware)

 Parallel programming constructs are “assembly language”

 Thread == processor

 Semaphore == atomic increment

 Lock == compare & swap

 Performance models are machine-specific

 Parallel programs are low-level and machine-specific
 Hard to port, reuse investments, develop market, or gain

economies of scale

http://msrhelp/default.aspx

Outline

35

 Where Moore‟s Dividend was spent?

 Is parallel computing a plausible successor?

 Parallel computing models

 Impact on computing

http://msrhelp/default.aspx

Parallelism Will Change Computing

36

 Last revolution was commodity multiprocessors

 Supplanted specialized processors and mainframes

 “Killer micros” improved at 50%/yr

 Software industry was born

 If existing applications and systems cannot use parallelism,

new applications and systems will

 Software + services

 Mobile computing

http://msrhelp/default.aspx

Cloud Computing

37

http://msrhelp/default.aspx
http://developer.amazonwebservices.com/connect/index.jspa

New Software Architecture

38

http://msrhelp/default.aspx

Embarrassingly Parallel

39

 Even sequential applications become parallel when hosted

 Few dependencies between users

 Moore‟s Benefits accrue to platform owner

 2x cores

 ½ servers (+ ½ power, space, cooling, etc.)

 Or 2x service (same cost)

 Many implications for desktop platform, mobility, etc.

 Tradeoffs not entirely one-sided because of latency,

bandwidth, privacy, off-line considerations; as well as capital

investment, security, programming problems

http://msrhelp/default.aspx

Mobile is Parallel

40

http://msrhelp/default.aspx

Parallelism Reduces Energy

41

8-bit adder/compare

– 40MHz at 5V, area = 530 km
2

– Base power Pref

Two parallel interleaved adder/cmp units

– 20MHz at 2.9V, area = 1,800 km
2

(3.4x)

– Power = 0.36 Pref

One pipelined adder/cmp unit

– 40MHz at 2.9V, area = 690 km
2

(1.3x)

– Power = 0.39 Pref

Pipelined and parallel

– 20MHz at 2.0V, area = 1,961 km
2

(3.7x)

– Power = 0.2 Pref

Chandrakasan et. al, IEEE JSSC 27(4), April 1992. Slide from Krste Asanovic, “Clock and Power,” 6.375, March 07.

+

+ +

+

+

+

+

+

+

http://msrhelp/default.aspx

Heterogeneous Parallelism

Really Reduces Energy

42

B
et

te
r

Single, General Purpose
Processor

Multiple, Specialized
Processors

Mihai Budiu, “On The Energy Efficiency of Computation,” Talk,Feb 2004.

Pe
nt

iu
m

http://msrhelp/default.aspx

Opportunity to Rethink Computing

43

 Day-to-day challenges should not obscure opportunity for

major improvements in computing experience

 PC (Mac, Linux, etc.) is not epitome of computing (I hope)

 Focus on performance can eclipse more important qualities

(reliability, robustness)

 Wasteful to use half of processors to monitor other half?

 Disruptive changes are opportunity to introduce “impossible”

improvements

http://msrhelp/default.aspx

Singularity Project

44

 Large Microsoft Research project with
goal of more robust and reliable
software
 Galen Hunt, Jim Larus, and many others

 Started with firm architectural
principles
 Software will fail, system should not

 System should be self-describing

 Verify as many system aspects as
possible

 No single magic bullet
 Mutually reinforcing improvements to

languages and compilers, systems, and
tools

Safe

Languages

(C#)

Verification

Tools

Improved OS

Architecture

http://msrhelp/default.aspx

Key Tenets
1. Use safe programming languages everywhere

 Safe type safe and memory safe (C# or Java)

 Everywhere applications, extensions, OS services, device drivers,

kernel

2. Improve system resilience in the face of software errors

 Failure containment boundaries

 Explicit failure notification model

3. Facilitate modular verification

 Make system “self-describing,” so pieces can be examined in isolation

 Specify and check behavior at many levels of abstraction

 Facilitate automated analysis

45

http://msrhelp/default.aspx

Singularity OS Architecture

46

 Safe micro-kernel
 95% written in C#

 17% of files contain unsafe C#

 5% of files contain x86 asm or C++

 Services and device drivers in
processes

 Software isolated processes (SIPs)
 All user code is verifiably safe

 Some unsafe code in trusted runtime

 Processes and kernel sealed

 Communication via channels
 Channel behavior is specified and

checked

 Fast and efficient communication

 Working research prototype
 Not Windows replacement

channels

kernel

runtime

kernel
class
library

p
ro

ce
ss

e
s

kernel API

HAL

page mgr
scheduler
chan mgr
proc mgr
i/o mgr

network
driver

web
server

TCP/IP
stack

content
extension

ext.
class
library

server
class
library

tcp
class
library

driver
class
library

runtimeruntimeruntimeruntime

http://msrhelp/default.aspx

Challenge 1: Pervasive Safe Languages
 Modern, safe programming languages
 Prevent entire classes of (serious) defects
 Easier to analyze

 Singularity is written in extended C#
 Spec# (C# + pre/post-conditions and invariants)
 Sing# adds features to increase control over allocation, initialization, and

memory layout

 Evolve language to support Singularity abstractions
 Channel communications
 Factor libraries into composable pieces
 Compile-time reflection

 Native compiler and runtime
 No bytecodes or MSIL
 No JVM or CLR

47

http://msrhelp/default.aspx

Challenge 2: Improve Resilience

 Cannot build software without defects

 Verification is a chimera

 (But we could still do a lot better)

 Software defects should not cause system failure

 A resilient system architecture should

 Isolate system components to prevent data corruption

 Provide clear failure notification

 Implement policy for restarting failed component

 Existing system architectures lack isolation and resilience

48

http://msrhelp/default.aspx

Open Process Architecture

 Ubiquitous architecture (Windows, Unix,
Java, etc.)
 DLLs, classes, plug-ins, device drivers,

etc.

 Processes are not sealed
 Dynamic code loading and runtime code

generation

 Shared memory

 System API allow process to alter
another‟s state

 Low dependability
 85% of Windows crashes caused by third

party code in kernel

 Interface between host and extension
often poorly documented and understood

 Maintenance nightmare

49

Process

http://msrhelp/default.aspx

Sealed Processes

 Singularity processes are sealed
 No dynamic code loading or

run-time code generation
 All code present when process

starts execution
 Extensions execute in distinct

processes
 Separate closed environments with

well-defined interfaces

 No shared memory

 Fundamental unit of failure
isolation

 Improved optimization,
verification, security

50

Extension

Process

Kernel

Extension

http://msrhelp/default.aspx

Isolation Requires

Lightweight Processes

 Existing processes rely on virtual memory and protection domains

 VM prevents reference into other address spaces

 Protection prevents unprivileged code from access system resources

 Processes are expensive to create and schedule

 High cost to cross protection domains (rings), handle TLB misses, and

manipulate address spaces

 Cost encourages monolithic architecture

 Expensive process creation and inter-process communication

 Large, undifferentiated applications

 Dynamically loaded extensions

51

http://msrhelp/default.aspx

Software Isolated Processes (SIPs)

 Protection and isolation enforced by language safety and kernel API design
 Process owns a set of pages
 All of process‟s objects reside on its pages (object space, not address space)
 Language safety ensures process can‟t create or mutate reference to other

pages

 Global invariants:
 No process contains a pointer to another process‟s object space
 No pointers from exchange heap into process

52

P2 P3P1

http://msrhelp/default.aspx

Interprocess Communications

 Channels are strongly typed (value & behavior), bidirectional communications ports
 Messages passing with extensive language support

 Messages live outside processes, in exchange heap
 Only a single reference to a message

 “Mailbox” semantics enforced by linear types
 Copying and pointer passing are semantically indistinguishable

 Channel buffers pre-allocated according to contract

53

P2 P3P1

exchange heap

http://msrhelp/default.aspx

Hardware is Costly

54

Webfiles Macrobenchmark

-4.7%

+6.3%

+18.9%

+33.0%
+37.7%

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

No runtime

checks

Physical

Memory

Add VM Add Separate

Address Space

Add Ring 3 Full Microkernel

Unsafe Code Tax

Safe Code Tax

http://msrhelp/default.aspx

Challenge 3: Verify More

 Process internals (code):
 Type safety
 Object invariants
 Method pre- & post- conditions
 Component interfaces

 Process externals:
 Channel contracts
 Resource access & dependencies

 System:
 Communication safety
 Hardware resource conflict free
 Namespace conflict free

 Static verification: before code runs

55

channels

kernel

runtime

kernel
class
library

p
ro

ce
ss

e
s

kernel API

HAL

page mgr
scheduler
chan mgr
proc mgr
i/o mgr

network
driver

web
server

TCP/IP
stack

content
extension

ext.
class
library

server
class
library

tcp
class
library

driver
class
library

runtimeruntimeruntimeruntime

http://msrhelp/default.aspx

Cloud Computing

Challenges

56

 Software stack (client and server) that is robust and reliable

 Fail and recover, not fail and restart

 Build on best language, tool, and software development
practices

 Security from the beginning

 Software behaves in understandable and predictable manner

 Users have no idea what is “behind the curtain” (and don‟t want
to)

 Natural interfaces

 New, compelling uses for computing

 Personal assistant

http://msrhelp/default.aspx

Research Community

Challenges

57

 Rethink assumptions behind software stack

 Multics was an amazing project, 40 years ago

 The world has changed, so should our assumptions

 People develop software

 Social/organization issues are huge factor

 Tools are secondary

 Huge gap between research and practice

 Researchers are unaware of practical issues, problems, and

trends

 Practitioners‟ formal education ends when they graduate

http://msrhelp/default.aspx

Software

58

Well this place is old

It feels just like a beat up truck

I turn the engine, but the engine doesn't turn

Well it smells of cheap wine & cigarettes

This place is always such a mess

Sometimes I think I'd like to watch it burn

I'm so alone, and I feel just like somebody else

Man, I ain't changed, but I know I ain't the same

– One Headlight, Jakob Dylan (Wallflowers)

http://msrhelp/default.aspx

