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The Multicore Revolution
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Computing Road Map
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Circle of

Continued Frustration

Better Future

Multicore Bump

Opportunity Intersection
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“A crisis is a terrible thing to waste”
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 Multicore revolution will change how software is built and 

sold

 Disruptive change offers opportunity for improvement

 Seize this opportunity to build robust and reliable software

 Ensure new software is better than old software
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Si Is Destiny
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Multicore Destiny
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??
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Moore’s Law
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40%/yr improvement in transistor density 

doubling every other year
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Moore’s Law Enforced
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Moore’s Dividend
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Outline
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 Where was Moore‟s Dividend spent?

 Software size

 Software functionality

 Programming complexity

 Is parallel computing a plausible successor?

 Parallel computing models

 Impact on computing
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∆Code Size < ∆Processor Speed
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Wikipedia estimates of LoC. Does not measure code shipped to customers. 

SPEC normalized between SPEC95 and SPEC2000.
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Where Moore’s Dividend

Was Spent

12

 Processor performance consumed by changes in:

 Software size

 Software functionality

 Programming complexity
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Expectations Evolve Since 1981
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 1 bit display

 25 lines of 80 chars (4K)

 16-640k memory

 Console

 stdio.h

 Single task, single address space

 No protection

 etc.

 24 bit display

 1280x1024 (64M)

 1-4GB memory

 GUI

 Window system

 Multi-tasking, virtual address space

 Sophisticated security

 etc.
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Recommended Windows 

Configurations
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Legacy Compatibility
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 Features monotonically increases

 Office user uses 10% of features

 Everyone uses a different 10% and 100% used

 Legacy compatibility sets floor

Relative to WinXP

Size Increase New Software Legacy Code

Files Lines New 

Files

Lines 

added 

or 

churned

Files 

untouched

Edited 

Files

Original 

Lines

Win 2k3 1.43 1.42 1.11 1.13 0.73 0.93 0.78

Vista 1.80 1.46 1.07 1.03 0.80 1.00 0.94
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Improvement Has Performance Cost
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 Improvements are pervasive

 Abstract model for many needs becomes less efficient

 Generality precludes optimization

 Example: print spooling

 Security, notification – 1.5-4x

 Color management, better text handling – 2x

 Resolution

 300*300 dip @ 1bit  600*600 @ 24bits (1MB  96MB)

 Memory latency and bandwidth
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Where Moore’s Dividend

Was Spent
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 Processor performance consumed by changes in:

 Software size

 Software functionality

 Programming complexity
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Increased Abstraction
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 High-level programming languages

 Object-oriented (C++, Java, C#)

 Interpreted (VB, Perl, Python, Ruby, etc.)

 Rich, abstract libraries

 C++ Standard Template Library (STL)

 Java class libraries

 .NET platform

 Domain-specific language/systems

 Ruby on Rails

 RoR = 1/3 PHP < Java < C
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Less Program Optimization
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 Increased performance and memory size dulls programmers‟ 
edge

 Gates changed “READY” to “OK” in Altair Basic to save 5 bytes

 Little understanding of processor performance models

 Who really understands cache behavior?

 Increasing reliance on compiler optimization

 Uniformly “good” quality

 Sometimes 10-100x off hand-written code

 Performance is not an abstraction

 Cuts across software abstractions

 Think globally, act locally
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This is not bad!
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 Increased abstraction 

improves productivity and 

enables richer functionality

 Without abstraction, 

modern software is beyond 

human comprehension

 SAP Business Suite is 319 

million LoC

OS MLoC

Red Hat Linux 7.1 30

Debian 3.0 104

Debian 4.0 283

Mac Os X 10.4 86

Windows XP 40

Windows Vista 50

Source: Wikipedia.org
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Software Development,

c. 1950 – 2005
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Increased  
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Larger, more 
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Software Development,

RIP 2005?
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Outline
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 Where Moore‟s Dividend was spent?

 Is parallel computing a plausible successor?

 New parallel computing models

 Impact on computing
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Can Multicore Supplant

Moore’s Dividend?
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 Double cores instead of increasing speed

 NO, at least without major innovation

 Sequential code

 Lack of parallel algorithms

 Difficult programming

 Few abstractions
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Some Confusion Out There
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Sequential Code
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 Existing code is sequential
 Series of decisions/actions

 Difficult to change execution model

 Failed parallel compiler effort in „80s-‟90s
 Compiler cannot change fundamental programming model

 Failed instruction-level parallelism in 90‟s-00‟s
 Dynamic mechanisms cannot find more than 2–4x parallelism

 Artifact of problems & thinking
 Not language specific

0

0.5

1

1.5

2

P
ar

al
le

li
sm

1

2

3

4

H
ar

ri
s 

&
 S

in
gh

 [
IC

FP
 0

7]

http://msrhelp/default.aspx


Parallel Algorithms
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“In the context of sequential algorithms, it is standard practice to 

design more complex algorithms that outperform simpler ones 

(for example, by implementing a balanced tree instead of a list). 

For non-blocking algorithms, however, implementing more 

complex data structures has been prohibitively difficult.

[Herlihy, Luchangco, Moir, Scherer, PODC 2003]

Discussing a concurrent red-black tree

(data structures 101).
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Sadistic Homework (c. Maurice Herlihy)
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enq(x) enq(y)
Double-ended queue

No interference if ends 

“far enough” apart
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Sadistic Homework
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enq(x) enq(y)
Double-ended queue

Interference OK if ends “close 

enough” together
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Sadistic Homework
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deq() deq()
Double-ended queue

Make sure suspended 

dequeuers awake as needed


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You Try It …
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 One lock?

 too conservative

 Locks at each end?

 deadlock, too complicated, etc

 Waking blocked dequeuers?

 harder that it looks
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Solution
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 Clean solution is a publishable result

 [Michael & Scott, PODC 96]

 What kind of world are we moving to when solutions to such 

elementary problems are publishable?
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Difficult Programming
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 Parallel programming is as difficult as sequential 

programming +

 Synchronization

 Data races

 Non-determinism

 Non-existent language and tools support
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Few Parallel Abstractions
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 Parallel programming models are low-level and machine-
specific

 Shared memory or message passing (~ hardware)

 Parallel programming constructs are “assembly language”

 Thread == processor

 Semaphore == atomic increment

 Lock == compare & swap

 Performance models are machine-specific

 Parallel programs are low-level and machine-specific
 Hard to port, reuse investments, develop market, or gain 

economies of scale

http://msrhelp/default.aspx


Outline
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 Where Moore‟s Dividend was spent?

 Is parallel computing a plausible successor?

 Parallel computing models

 Impact on computing
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Parallelism Will Change Computing
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 Last revolution was commodity multiprocessors

 Supplanted specialized processors and mainframes

 “Killer micros” improved at 50%/yr

 Software industry was born

 If existing applications and systems cannot use parallelism, 

new applications and systems will

 Software + services

 Mobile computing
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Cloud Computing

37

http://msrhelp/default.aspx
http://developer.amazonwebservices.com/connect/index.jspa


New Software Architecture
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Embarrassingly Parallel
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 Even sequential applications become parallel when hosted

 Few dependencies between users

 Moore‟s Benefits accrue to platform owner

 2x cores 

 ½ servers (+ ½ power, space, cooling, etc.)

 Or 2x service (same cost)

 Many implications for desktop platform, mobility, etc.

 Tradeoffs not entirely one-sided because of latency, 

bandwidth, privacy, off-line considerations; as well as capital 

investment, security, programming problems
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Mobile is Parallel
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Parallelism Reduces Energy
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8-bit adder/compare

– 40MHz at 5V, area = 530 km
2

– Base power Pref

Two parallel interleaved adder/cmp units

– 20MHz at 2.9V, area = 1,800 km
2

(3.4x)

– Power = 0.36 Pref

One pipelined adder/cmp unit

– 40MHz at 2.9V, area = 690 km
2

(1.3x)

– Power = 0.39 Pref

Pipelined and parallel

– 20MHz at 2.0V, area = 1,961 km
2

(3.7x)

– Power = 0.2 Pref

Chandrakasan et. al, IEEE JSSC 27(4), April 1992. Slide from Krste Asanovic, “Clock and Power,” 6.375, March 07.
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Heterogeneous Parallelism

Really Reduces Energy
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Opportunity to Rethink Computing

43

 Day-to-day challenges should not obscure opportunity for 

major improvements in computing experience

 PC (Mac, Linux, etc.) is not epitome of computing (I hope)

 Focus on performance can eclipse more important qualities 

(reliability, robustness)

 Wasteful to use half of processors to monitor other half?

 Disruptive changes are opportunity to introduce “impossible” 

improvements
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Singularity Project
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 Large Microsoft Research project with 
goal of more robust and reliable 
software
 Galen Hunt, Jim Larus, and many others

 Started with firm architectural 
principles
 Software will fail, system should not

 System should be self-describing

 Verify as many system aspects as 
possible

 No single magic bullet
 Mutually reinforcing improvements to 

languages and compilers, systems, and 
tools

Safe

Languages

(C#)

Verification

Tools

Improved OS 

Architecture
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Key Tenets
1. Use safe programming languages everywhere

 Safe  type safe and memory safe (C# or Java)

 Everywhere  applications, extensions, OS services, device drivers, 

kernel

2. Improve system resilience in the face of software errors

 Failure containment boundaries

 Explicit failure notification model

3. Facilitate modular verification

 Make system “self-describing,” so pieces can be examined in isolation

 Specify and check behavior at many levels of abstraction

 Facilitate automated analysis

45
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Singularity OS Architecture
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 Safe micro-kernel
 95% written in C#

 17% of files contain unsafe C#

 5% of files contain x86 asm or C++

 Services and device drivers in 
processes

 Software isolated processes (SIPs)
 All user code is verifiably safe 

 Some unsafe code in trusted runtime

 Processes and kernel sealed

 Communication via channels
 Channel behavior is specified and 

checked

 Fast and efficient communication

 Working research prototype 
 Not Windows replacement
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Challenge 1: Pervasive Safe Languages
 Modern, safe programming languages
 Prevent entire classes of (serious) defects
 Easier to analyze

 Singularity is written in extended C#
 Spec# (C# + pre/post-conditions and invariants)
 Sing# adds features to increase control over allocation, initialization, and 

memory layout

 Evolve language to support Singularity abstractions
 Channel communications
 Factor libraries into composable pieces
 Compile-time reflection

 Native compiler and runtime
 No bytecodes or MSIL
 No JVM or CLR

47
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Challenge 2:  Improve Resilience 

 Cannot build software without defects

 Verification is a chimera

 (But we could still do a lot better)

 Software defects should not cause system failure

 A resilient system architecture should

 Isolate system components to prevent data corruption

 Provide clear failure notification

 Implement policy for restarting failed component

 Existing system architectures lack isolation and resilience

48
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Open Process Architecture

 Ubiquitous architecture (Windows, Unix, 
Java, etc.)
 DLLs, classes, plug-ins, device drivers, 

etc. 

 Processes are not sealed
 Dynamic code loading and runtime code 

generation

 Shared memory

 System API allow process to alter 
another‟s state

 Low dependability
 85% of Windows crashes caused by third 

party code in kernel

 Interface between host  and extension 
often poorly documented and understood

 Maintenance nightmare

49

Process
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Sealed Processes 

 Singularity processes are sealed
 No dynamic code loading or 

run-time code generation
 All code present when process 

starts execution
 Extensions execute in distinct 

processes 
 Separate closed environments with 

well-defined interfaces

 No shared memory

 Fundamental unit of failure 
isolation

 Improved optimization, 
verification, security

50

Extension

Process

Kernel

Extension
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Isolation Requires

Lightweight Processes

 Existing processes rely on virtual memory and protection domains

 VM prevents reference into other address spaces

 Protection prevents unprivileged code from access system resources

 Processes are expensive to create and schedule

 High cost to cross protection domains (rings), handle TLB misses, and 

manipulate address spaces

 Cost encourages monolithic architecture

 Expensive process creation and inter-process communication

 Large, undifferentiated applications

 Dynamically loaded extensions

51
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Software Isolated Processes (SIPs)

 Protection and isolation enforced by language safety and kernel API design
 Process owns a set of pages
 All of process‟s objects reside on its pages (object space, not address space)
 Language safety ensures process can‟t create or mutate reference to other 

pages

 Global invariants:
 No process contains a pointer to another process‟s object space
 No pointers from exchange heap into process

52

P2 P3P1
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Interprocess Communications

 Channels are strongly typed (value & behavior), bidirectional communications ports
 Messages passing with extensive language support

 Messages live outside processes, in exchange heap
 Only a single reference to a message

 “Mailbox” semantics enforced by linear types
 Copying and pointer passing are semantically indistinguishable

 Channel buffers pre-allocated according to contract

53

P2 P3P1

exchange heap
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Hardware is Costly
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Webfiles Macrobenchmark
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Challenge 3: Verify More

 Process internals (code):
 Type safety
 Object invariants
 Method pre- & post- conditions
 Component interfaces

 Process externals:
 Channel contracts
 Resource access & dependencies

 System:
 Communication safety
 Hardware resource conflict free
 Namespace conflict free

 Static verification: before code runs

55
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Cloud Computing

Challenges

56

 Software stack (client and server) that is robust and reliable

 Fail and recover, not fail and restart

 Build on best language, tool, and software development 
practices

 Security from the beginning

 Software behaves in understandable and predictable manner

 Users have no idea what is “behind the curtain” (and don‟t want 
to)

 Natural interfaces

 New, compelling uses for computing

 Personal assistant
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Research Community

Challenges

57

 Rethink assumptions behind software stack

 Multics was an amazing project, 40 years ago

 The world has changed, so should our assumptions

 People develop software

 Social/organization issues are huge factor

 Tools are secondary

 Huge gap between research and practice

 Researchers are unaware of practical issues, problems, and 

trends

 Practitioners‟ formal education ends when they graduate
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Software

58

Well this place is old

It feels just like a beat up truck

I turn the engine, but the engine doesn't turn

Well it smells of cheap wine & cigarettes

This place is always such a mess

Sometimes I think I'd like to watch it burn

I'm so alone, and I feel just like somebody else

Man, I ain't changed, but I know I ain't the same

– One Headlight, Jakob Dylan (Wallflowers)
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