
James Larus

Microsoft Research

High Confidence Software and Systems Conference

May 18, 2009

Multicore and Cloud Computing –

Time to Start Afresh

The Multicore Revolution

2

or

http://msrhelp/default.aspx

Computing Road Map

3

Circle of

Continued Frustration

Better Future

Multicore Bump

Opportunity Intersection

http://msrhelp/default.aspx

“A crisis is a terrible thing to waste”

4

 Multicore revolution will change how software is built and

sold

 Disruptive change offers opportunity for improvement

 Seize this opportunity to build robust and reliable software

 Ensure new software is better than old software

http://msrhelp/default.aspx

Si Is Destiny

5

http://msrhelp/default.aspx

Multicore Destiny

6

??

http://msrhelp/default.aspx

Moore’s Law

7

40%/yr improvement in transistor density 

doubling every other year

http://msrhelp/default.aspx

Moore’s Law Enforced

8

1,500x

18,000x

133x

In
te

l,
 “

E
vo

lu
ti

on
 o

f
a

R
ev

ol
ut

io
n,

”
ht

tp
:/

/
do

w
nl

oa
d.

in
te

l.
co

m

1974 2003

http://msrhelp/default.aspx

Moore’s Dividend

9

10

100

1000

10000

Sep-95 Sep-96 Sep-97 Sep-98 Sep-99 Sep-00 Sep-01 Sep-02 Sep-03 Sep-04 Sep-05 Sep-06 Sep-07

SPEC Integer Performance (single proc x86)

Normalized CPU2000

http://msrhelp/default.aspx

Outline

10

 Where was Moore‟s Dividend spent?

 Software size

 Software functionality

 Programming complexity

 Is parallel computing a plausible successor?

 Parallel computing models

 Impact on computing

http://msrhelp/default.aspx

∆Code Size < ∆Processor Speed

11

Wikipedia estimates of LoC. Does not measure code shipped to customers.

SPEC normalized between SPEC95 and SPEC2000.

1

10

100

1000

Win 3.1 Win 95 NT 4.0 Win 98 Win XP Win 2003 Server Vista

Windows LoC

SPEC INT

Moore's Law

Qualitative

improvement

http://msrhelp/default.aspx

Where Moore’s Dividend

Was Spent

12

 Processor performance consumed by changes in:

 Software size

 Software functionality

 Programming complexity

http://msrhelp/default.aspx

Expectations Evolve Since 1981

13

 1 bit display

 25 lines of 80 chars (4K)

 16-640k memory

 Console

 stdio.h

 Single task, single address space

 No protection

 etc.

 24 bit display

 1280x1024 (64M)

 1-4GB memory

 GUI

 Window system

 Multi-tasking, virtual address space

 Sophisticated security

 etc.

http://msrhelp/default.aspx
http://en.wikipedia.org/wiki/Image:IBM_PC_5150.jpg

Recommended Windows

Configurations

14

1.0

10.0

100.0

1000.0

Windows 3.1 NT 3.51 Windows 95 Windows 98 Windows 2000 Windows XP Windows XP
SP2

Vista Premium

Processor (SPECInt)

Memory (MB)

Disk (MB)

Moore's Law

http://msrhelp/default.aspx

Legacy Compatibility

15

 Features monotonically increases

 Office user uses 10% of features

 Everyone uses a different 10% and 100% used

 Legacy compatibility sets floor

Relative to WinXP

Size Increase New Software Legacy Code

Files Lines New

Files

Lines

added

or

churned

Files

untouched

Edited

Files

Original

Lines

Win 2k3 1.43 1.42 1.11 1.13 0.73 0.93 0.78

Vista 1.80 1.46 1.07 1.03 0.80 1.00 0.94

http://msrhelp/default.aspx

Improvement Has Performance Cost

16

 Improvements are pervasive

 Abstract model for many needs becomes less efficient

 Generality precludes optimization

 Example: print spooling

 Security, notification – 1.5-4x

 Color management, better text handling – 2x

 Resolution

 300*300 dip @ 1bit  600*600 @ 24bits (1MB  96MB)

 Memory latency and bandwidth

http://msrhelp/default.aspx

Where Moore’s Dividend

Was Spent

17

 Processor performance consumed by changes in:

 Software size

 Software functionality

 Programming complexity

http://msrhelp/default.aspx

Increased Abstraction

18

 High-level programming languages

 Object-oriented (C++, Java, C#)

 Interpreted (VB, Perl, Python, Ruby, etc.)

 Rich, abstract libraries

 C++ Standard Template Library (STL)

 Java class libraries

 .NET platform

 Domain-specific language/systems

 Ruby on Rails

 RoR = 1/3 PHP < Java < C

http://msrhelp/default.aspx

Less Program Optimization

19

 Increased performance and memory size dulls programmers‟
edge

 Gates changed “READY” to “OK” in Altair Basic to save 5 bytes

 Little understanding of processor performance models

 Who really understands cache behavior?

 Increasing reliance on compiler optimization

 Uniformly “good” quality

 Sometimes 10-100x off hand-written code

 Performance is not an abstraction

 Cuts across software abstractions

 Think globally, act locally

http://msrhelp/default.aspx

This is not bad!

20

 Increased abstraction

improves productivity and

enables richer functionality

 Without abstraction,

modern software is beyond

human comprehension

 SAP Business Suite is 319

million LoC

OS MLoC

Red Hat Linux 7.1 30

Debian 3.0 104

Debian 4.0 283

Mac Os X 10.4 86

Windows XP 40

Windows Vista 50

Source: Wikipedia.org

http://msrhelp/default.aspx

Software Development,

c. 1950 – 2005

21

Increased
processor

performance

Larger, more
feature-full

software

Larger
development

teams

High-level
languages and
programming
abstractions

Slower
programs

http://msrhelp/default.aspx

Software Development,

RIP 2005?

22

Increased
processor

performance

Larger, more
feature-full

software

Larger
development

teams

High-level
languages and
programming
abstractions

Slower
programs

X

http://msrhelp/default.aspx

Outline

23

 Where Moore‟s Dividend was spent?

 Is parallel computing a plausible successor?

 New parallel computing models

 Impact on computing

http://msrhelp/default.aspx

Can Multicore Supplant

Moore’s Dividend?

24

 Double cores instead of increasing speed

 NO, at least without major innovation

 Sequential code

 Lack of parallel algorithms

 Difficult programming

 Few abstractions

http://msrhelp/default.aspx

Some Confusion Out There

25

http://msrhelp/default.aspx

Sequential Code

26

 Existing code is sequential
 Series of decisions/actions

 Difficult to change execution model

 Failed parallel compiler effort in „80s-‟90s
 Compiler cannot change fundamental programming model

 Failed instruction-level parallelism in 90‟s-00‟s
 Dynamic mechanisms cannot find more than 2–4x parallelism

 Artifact of problems & thinking
 Not language specific

0

0.5

1

1.5

2

P
ar

al
le

li
sm

1

2

3

4

H
ar

ri
s

&
 S

in
gh

 [
IC

FP
 0

7]

http://msrhelp/default.aspx

Parallel Algorithms

27

“In the context of sequential algorithms, it is standard practice to

design more complex algorithms that outperform simpler ones

(for example, by implementing a balanced tree instead of a list).

For non-blocking algorithms, however, implementing more

complex data structures has been prohibitively difficult.

[Herlihy, Luchangco, Moir, Scherer, PODC 2003]

Discussing a concurrent red-black tree

(data structures 101).

http://msrhelp/default.aspx

Sadistic Homework (c. Maurice Herlihy)

28

enq(x) enq(y)
Double-ended queue

No interference if ends

“far enough” apart

http://msrhelp/default.aspx

Sadistic Homework

29

enq(x) enq(y)
Double-ended queue

Interference OK if ends “close

enough” together

http://msrhelp/default.aspx

Sadistic Homework

30

deq() deq()
Double-ended queue

Make sure suspended

dequeuers awake as needed



http://msrhelp/default.aspx

You Try It …

31

 One lock?

 too conservative

 Locks at each end?

 deadlock, too complicated, etc

 Waking blocked dequeuers?

 harder that it looks

http://msrhelp/default.aspx

Solution

32

 Clean solution is a publishable result

 [Michael & Scott, PODC 96]

 What kind of world are we moving to when solutions to such

elementary problems are publishable?

http://msrhelp/default.aspx

Difficult Programming

33

 Parallel programming is as difficult as sequential

programming +

 Synchronization

 Data races

 Non-determinism

 Non-existent language and tools support

http://msrhelp/default.aspx

Few Parallel Abstractions

34

 Parallel programming models are low-level and machine-
specific

 Shared memory or message passing (~ hardware)

 Parallel programming constructs are “assembly language”

 Thread == processor

 Semaphore == atomic increment

 Lock == compare & swap

 Performance models are machine-specific

 Parallel programs are low-level and machine-specific
 Hard to port, reuse investments, develop market, or gain

economies of scale

http://msrhelp/default.aspx

Outline

35

 Where Moore‟s Dividend was spent?

 Is parallel computing a plausible successor?

 Parallel computing models

 Impact on computing

http://msrhelp/default.aspx

Parallelism Will Change Computing

36

 Last revolution was commodity multiprocessors

 Supplanted specialized processors and mainframes

 “Killer micros” improved at 50%/yr

 Software industry was born

 If existing applications and systems cannot use parallelism,

new applications and systems will

 Software + services

 Mobile computing

http://msrhelp/default.aspx

Cloud Computing

37

http://msrhelp/default.aspx
http://developer.amazonwebservices.com/connect/index.jspa

New Software Architecture

38

http://msrhelp/default.aspx

Embarrassingly Parallel

39

 Even sequential applications become parallel when hosted

 Few dependencies between users

 Moore‟s Benefits accrue to platform owner

 2x cores 

 ½ servers (+ ½ power, space, cooling, etc.)

 Or 2x service (same cost)

 Many implications for desktop platform, mobility, etc.

 Tradeoffs not entirely one-sided because of latency,

bandwidth, privacy, off-line considerations; as well as capital

investment, security, programming problems

http://msrhelp/default.aspx

Mobile is Parallel

40

http://msrhelp/default.aspx

Parallelism Reduces Energy

41

8-bit adder/compare

– 40MHz at 5V, area = 530 km
2

– Base power Pref

Two parallel interleaved adder/cmp units

– 20MHz at 2.9V, area = 1,800 km
2

(3.4x)

– Power = 0.36 Pref

One pipelined adder/cmp unit

– 40MHz at 2.9V, area = 690 km
2

(1.3x)

– Power = 0.39 Pref

Pipelined and parallel

– 20MHz at 2.0V, area = 1,961 km
2

(3.7x)

– Power = 0.2 Pref

Chandrakasan et. al, IEEE JSSC 27(4), April 1992. Slide from Krste Asanovic, “Clock and Power,” 6.375, March 07.

+

+ +

+

+

+

+

+

+

http://msrhelp/default.aspx

Heterogeneous Parallelism

Really Reduces Energy

42

B
et

te
r

Single, General Purpose
Processor

Multiple, Specialized
Processors

Mihai Budiu, “On The Energy Efficiency of Computation,” Talk,Feb 2004.

Pe
nt

iu
m

http://msrhelp/default.aspx

Opportunity to Rethink Computing

43

 Day-to-day challenges should not obscure opportunity for

major improvements in computing experience

 PC (Mac, Linux, etc.) is not epitome of computing (I hope)

 Focus on performance can eclipse more important qualities

(reliability, robustness)

 Wasteful to use half of processors to monitor other half?

 Disruptive changes are opportunity to introduce “impossible”

improvements

http://msrhelp/default.aspx

Singularity Project

44

 Large Microsoft Research project with
goal of more robust and reliable
software
 Galen Hunt, Jim Larus, and many others

 Started with firm architectural
principles
 Software will fail, system should not

 System should be self-describing

 Verify as many system aspects as
possible

 No single magic bullet
 Mutually reinforcing improvements to

languages and compilers, systems, and
tools

Safe

Languages

(C#)

Verification

Tools

Improved OS

Architecture

http://msrhelp/default.aspx

Key Tenets
1. Use safe programming languages everywhere

 Safe  type safe and memory safe (C# or Java)

 Everywhere  applications, extensions, OS services, device drivers,

kernel

2. Improve system resilience in the face of software errors

 Failure containment boundaries

 Explicit failure notification model

3. Facilitate modular verification

 Make system “self-describing,” so pieces can be examined in isolation

 Specify and check behavior at many levels of abstraction

 Facilitate automated analysis

45

http://msrhelp/default.aspx

Singularity OS Architecture

46

 Safe micro-kernel
 95% written in C#

 17% of files contain unsafe C#

 5% of files contain x86 asm or C++

 Services and device drivers in
processes

 Software isolated processes (SIPs)
 All user code is verifiably safe

 Some unsafe code in trusted runtime

 Processes and kernel sealed

 Communication via channels
 Channel behavior is specified and

checked

 Fast and efficient communication

 Working research prototype
 Not Windows replacement

channels

kernel

runtime

kernel
class
library

p
ro

ce
ss

e
s

kernel API

HAL

page mgr
scheduler
chan mgr
proc mgr
i/o mgr

network
driver

web
server

TCP/IP
stack

content
extension

ext.
class
library

server
class
library

tcp
class
library

driver
class
library

runtimeruntimeruntimeruntime

http://msrhelp/default.aspx

Challenge 1: Pervasive Safe Languages
 Modern, safe programming languages
 Prevent entire classes of (serious) defects
 Easier to analyze

 Singularity is written in extended C#
 Spec# (C# + pre/post-conditions and invariants)
 Sing# adds features to increase control over allocation, initialization, and

memory layout

 Evolve language to support Singularity abstractions
 Channel communications
 Factor libraries into composable pieces
 Compile-time reflection

 Native compiler and runtime
 No bytecodes or MSIL
 No JVM or CLR

47

http://msrhelp/default.aspx

Challenge 2: Improve Resilience

 Cannot build software without defects

 Verification is a chimera

 (But we could still do a lot better)

 Software defects should not cause system failure

 A resilient system architecture should

 Isolate system components to prevent data corruption

 Provide clear failure notification

 Implement policy for restarting failed component

 Existing system architectures lack isolation and resilience

48

http://msrhelp/default.aspx

Open Process Architecture

 Ubiquitous architecture (Windows, Unix,
Java, etc.)
 DLLs, classes, plug-ins, device drivers,

etc.

 Processes are not sealed
 Dynamic code loading and runtime code

generation

 Shared memory

 System API allow process to alter
another‟s state

 Low dependability
 85% of Windows crashes caused by third

party code in kernel

 Interface between host and extension
often poorly documented and understood

 Maintenance nightmare

49

Process

http://msrhelp/default.aspx

Sealed Processes

 Singularity processes are sealed
 No dynamic code loading or

run-time code generation
 All code present when process

starts execution
 Extensions execute in distinct

processes
 Separate closed environments with

well-defined interfaces

 No shared memory

 Fundamental unit of failure
isolation

 Improved optimization,
verification, security

50

Extension

Process

Kernel

Extension

http://msrhelp/default.aspx

Isolation Requires

Lightweight Processes

 Existing processes rely on virtual memory and protection domains

 VM prevents reference into other address spaces

 Protection prevents unprivileged code from access system resources

 Processes are expensive to create and schedule

 High cost to cross protection domains (rings), handle TLB misses, and

manipulate address spaces

 Cost encourages monolithic architecture

 Expensive process creation and inter-process communication

 Large, undifferentiated applications

 Dynamically loaded extensions

51

http://msrhelp/default.aspx

Software Isolated Processes (SIPs)

 Protection and isolation enforced by language safety and kernel API design
 Process owns a set of pages
 All of process‟s objects reside on its pages (object space, not address space)
 Language safety ensures process can‟t create or mutate reference to other

pages

 Global invariants:
 No process contains a pointer to another process‟s object space
 No pointers from exchange heap into process

52

P2 P3P1

http://msrhelp/default.aspx

Interprocess Communications

 Channels are strongly typed (value & behavior), bidirectional communications ports
 Messages passing with extensive language support

 Messages live outside processes, in exchange heap
 Only a single reference to a message

 “Mailbox” semantics enforced by linear types
 Copying and pointer passing are semantically indistinguishable

 Channel buffers pre-allocated according to contract

53

P2 P3P1

exchange heap

http://msrhelp/default.aspx

Hardware is Costly

54

Webfiles Macrobenchmark

-4.7%

+6.3%

+18.9%

+33.0%
+37.7%

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

No runtime

checks

Physical

Memory

Add VM Add Separate

Address Space

Add Ring 3 Full Microkernel

Unsafe Code Tax

Safe Code Tax

http://msrhelp/default.aspx

Challenge 3: Verify More

 Process internals (code):
 Type safety
 Object invariants
 Method pre- & post- conditions
 Component interfaces

 Process externals:
 Channel contracts
 Resource access & dependencies

 System:
 Communication safety
 Hardware resource conflict free
 Namespace conflict free

 Static verification: before code runs

55

channels

kernel

runtime

kernel
class
library

p
ro

ce
ss

e
s

kernel API

HAL

page mgr
scheduler
chan mgr
proc mgr
i/o mgr

network
driver

web
server

TCP/IP
stack

content
extension

ext.
class
library

server
class
library

tcp
class
library

driver
class
library

runtimeruntimeruntimeruntime

http://msrhelp/default.aspx

Cloud Computing

Challenges

56

 Software stack (client and server) that is robust and reliable

 Fail and recover, not fail and restart

 Build on best language, tool, and software development
practices

 Security from the beginning

 Software behaves in understandable and predictable manner

 Users have no idea what is “behind the curtain” (and don‟t want
to)

 Natural interfaces

 New, compelling uses for computing

 Personal assistant

http://msrhelp/default.aspx

Research Community

Challenges

57

 Rethink assumptions behind software stack

 Multics was an amazing project, 40 years ago

 The world has changed, so should our assumptions

 People develop software

 Social/organization issues are huge factor

 Tools are secondary

 Huge gap between research and practice

 Researchers are unaware of practical issues, problems, and

trends

 Practitioners‟ formal education ends when they graduate

http://msrhelp/default.aspx

Software

58

Well this place is old

It feels just like a beat up truck

I turn the engine, but the engine doesn't turn

Well it smells of cheap wine & cigarettes

This place is always such a mess

Sometimes I think I'd like to watch it burn

I'm so alone, and I feel just like somebody else

Man, I ain't changed, but I know I ain't the same

– One Headlight, Jakob Dylan (Wallflowers)

http://msrhelp/default.aspx

