
New	Perspec*ves	on	Automated	
Vulnerability	Discovery	

Artem	Dinaburg	
Trail	of	Bits	

About	Me	

About	This	Talk	
•  Why	are	automated	vulnerability	discovery	tools	
rarely	used?	

	

About	This	Talk	
•  Why	are	automated	vulnerability	discovery	tools	
rarely	used?	

•  Changing	development	methodology	to	make	these	
tools	more	accessible.	

	

About	This	Talk	
•  Why	are	automated	vulnerability	discovery	tools	
rarely	used?	

•  Changing	development	methodology	to	make	these	
tools	more	accessible.	

•  Our	experience	using	this	methodology	to	compete	
in	DARPA’s	Cyber	Grand	Challenge.	

	
	

About	This	Talk	
•  Why	are	automated	vulnerability	discovery	tools	
rarely	used?	

•  Changing	development	methodology	to	make	these	
tools	more	accessible.	

•  Our	experience	using	this	methodology	to	compete	
in	DARPA’s	Cyber	Grand	Challenge.	

•  Future	research	

	

Bug	Finding	Tool	Disparity	

SAGE	

AFL	

Valgrind	
Compiler	
Errors	

/dev/random	

Mayhem	

KLEE	

Joern	

PEX	 libLLVMFuzzer	

Angr	

Great	Research	 Secures	Shipping	SoSware	

S2E	

Automated	Vulnerability	Discovery	
(now)	

•  It	works!	

Automated	Vulnerability	Discovery	
(now)	

•  It	works!	
•  ...	If	you	are	a	part	of	the	team	that	
developed	it.	

Automated	Vulnerability	Discovery	
(now)	

•  It	works!	
•  ...	If	you	are	a	part	of	the	team	that	
developed	it.	

•  ...	And	can	firmly	grasp	the	concepts	

Automated	Vulnerability	Discovery	
(now)	

•  It	works!	
•  ...	If	you	are	a	part	of	the	team	that	
developed	it.	

•  ...	And	can	firmly	grasp	the	concepts	
•  ...	For	the	select	few	(<0.01%?)	

Automated	Vulnerability	Discovery	
(goals)	

•  Lets	expand	tool	use	to	the	1%		
– Popular	open	source	projects	
– Commercial	consumer	facing	soSware	

• Make	your	research	more	impac_ul!	

Why	the	1%?	
•  Rough	es*mate	of	
how	many	developers	
care.	
•  99%	use	the	“ostrich”	
approach	to	security.		
– This	is	fine.	Really.	

Barriers	to	Adop*on	
•  Security	Tool	Adop*on	Barriers	
– Popularity	(e.g.	other	people	use	them)	
– Solves	real	problems	
– Exposure	(e.g.	blogs,	media)	

•  Not	Barriers	
– Easy	to	use	(just	can’t	be	absurdly	hard!)	

An	Analogy…	
•  Automated	
Vulnerability	
Discovery	
Today	

An	Analogy…	
•  What	
Automated	
Vulnerability	
Discovery	
Should	be	

Beeer	Development	Methodology	
•  Simple	re-usable	parts	
– Why	are	we	re-wri*ng	all	the	things?	

•  Do	one	thing	well	
•  Communicate	
– Common	data	interchange	format!	

Successful	Models	
•  LLVM!	
•  Many	(simple)	tools	
•  Common	interchange	
format	(bitcode)	

•  Not	easy,	but	not	
absurdly	hard.	

Case	Study:	Cyberdyne	
•  Our	entry	into	the	Cyber	
Grand	Challenge.	

•  Composed	of	mul*ple	
communica*ng	
analyses.	

•  Evil	corpora*on	from	
the	Terminator	
franchise.		

What	is	CGC?	
•  Compe**on	to	automate	vulnerability	
discovery	and	patching	

•  In	binary-only	soSware	
•  Simplified	OS	
•  Realis*c	example	binaries	
•  Qualifica*on	Round,	Final	Round	

How	Cyberdyne	Fared	

How	Cyberdyne	Fared	

77	

65	

57	

57	

44	

39	

23	

12	

12	

9	

0	 10	 20	 30	 40	 50	 60	 70	 80	

Team	A	
Cyberdyne	

Team	B	
Team	C	
Team	D	
Team	E	
Team	F	
Team	G	
Team	H	
Team	I	

Confirmed	Bugs	Found	

Vulnerability	Discovery	Theory	
•  No	tool	will	find	all	the	bugs.	
•  Provably	impossible.	
	

Vulnerability	Discovery	Theory	
•  Over	Approximate	Analyses	
– Points	To	
– Alias	Analysis	

Vulnerability	Discovery	Theory	
•  Under	Approximate	Analyses	
– Fuzzing,	Symbolic	Execu*on	

Under-Approximate	Analyses:	
Roadblocks	

	
Hard	For	Fuzzing,	Easy	for	Symbolic	Execu*on	

if(input[0]	==	0xBADFOOD)	

Under-Approximate	Analyses:	
Roadblocks	

	
Hard	for	Symbolic	Execu*on,	Easy	for	Fuzzing	

if(hash(input[0])		
				==	hash(input[1]))	

Under-Approximate	Analyses:	Theory	

•  All	tools	operate	over	
the	same	domain	

•  All	discoveries	are	
equally	true	

•  What	if	tools	could	share	
discoveries?	

©	flickr	user	Jean-Pierre	Dalbéra	

Analysis	Boos*ng	
•  Sharing	discoveries	across	tools	creates	a	
virtuous	cycle	that	removes	roadblocks	

	
if(input[0]	==	0xBADFOOD)	
		if(hash(input[0])		
				==	hash(input[1]))	
						BUG();	
	
	

Analysis	Boos*ng	
•  Sharing	discoveries	across	tools	creates	a	
virtuous	cycle	that	removes	roadblocks	

	
if(input[0]	==	0xBADFOOD)	
		if(hash(input[0])		
				==	hash(input[1]))	
						BUG();	
	
	

Analysis	Boos*ng	
•  Sharing	discoveries	across	tools	creates	a	
virtuous	cycle	that	removes	roadblocks	

	
if(input[0]	==	0xBADFOOD)	
		if(hash(input[0])		
				==	hash(input[1]))	
						BUG();	
	
	

Analysis	Boos*ng:	Communica*on	

• Program	Inputs!?	
– Convenient	
– Universal	
– Lame	

• We	can,	and	should,	do	beeer!		

Analysis	Boos*ng:	Implementa*on	
•  Mul*ple	tools	
communica*ng	
via	program	
inputs	

Inputs

Analysis	Boos*ng:	Implementa*on	
•  Mul*ple	tools	
communica*ng	
via	program	
inputs	

Inputs

Analyses

Analysis	Boos*ng:	Implementa*on	
•  Mul*ple	tools	
communica*ng	
via	program	
inputs	

Inputs

Analyses New Inputs

Analysis	Boos*ng:	Implementa*on	
•  Mul*ple	tools	
communica*ng	
via	program	
inputs	

Inputs

Analyses New Inputs

Merge
Knowledge

Analysis	Boos*ng:	It	Works!	
•  Tools	will	cooperate	to	find	bugs.	
•  A	real	crash	history	track:	
klee/1/testcase_262069…	=>	
pysymemu/1/testcase_11f2b1…'	=>	
grr/1/crashing_testcase_1231f9…	
	

How	Cyberdyne	Fared	(reminder)	

77	

65	

57	

57	

44	

39	

23	

12	

12	

9	

0	 10	 20	 30	 40	 50	 60	 70	 80	

Team	A	
Cyberdyne	

Team	B	
Team	C	
Team	D	
Team	E	
Team	F	
Team	G	
Team	H	
Team	I	

Confirmed	Bugs	Found	

Analysis	Boos*ng:	It	Scaled	
•  This	is	~15x	overprovisioned,	but	we	were	
paranoid.	
–  10,692	Cores	
–  17,820	GiB	of	RAM	
–  3	EC2	availability	zones	
–  232	TiB	of	disk	
–  2.5	hours	on	phone	with	Amazon	Support	to	set	it	all	
up	

Analysis	Boos*ng:	Extensible	
•  New	tools	=	new	capability	
•  Linux	libraries	
–  libotr	
–  libharyuzz	
–  libarchive	
–  libwebp	

Analysis	Boos*ng:	Future	

•  Sharing	only	program	inputs	is	stupid	
– Throws	away	informa*on	

• We	need	beeer	a	data	interchange	
method	
– Graph	Database?	

Conclusion	
•  Latest	research	developments	aren’t	
used	to	secure	real	soSware.	
– Complex	
– Monolithic	
– Briele	

• We	can,	and	should,	change	that.	

Conclusion	

•  Simple,	communica*ng	tools	work	
– More	accessible	
– Equivalent	effec*veness	
– Easier	to	distribute	
– Easier	to	maintain	and	debug	

Conclusion	

•  Lets	build	beeer	analysis	tools.	
•  Stop	reinven*ng	the	wheel.	
•  Lets	create	a	good	analysis	
informa*on	interchange	format.	

	

Ques*ons?	
•  Contact	Informa*on:	
– artem@trailoyits.com	
– hep://blog.trailoyits.com	

