New Perspectives on Automated
Vulnerability Discovery

Artem Dinaburg
Trail of Bits

About Me

About This Talk

 Why are automated vulnerability discovery tools
rarely used?

About This Talk

 Why are automated vulnerability discovery tools
rarely used?

* Changing development methodology to make these
tools more accessible.

About This Talk

 Why are automated vulnerability discovery tools
rarely used?

* Changing development methodology to make these
tools more accessible.

* Our experience using this methodology to compete
in DARPA’s Cyber Grand Challenge.

About This Talk

Why are automated vulnerability discovery tools
rarely used?

Changing development methodology to make these
tools more accessible.

Our experience using this methodology to compete
in DARPA’s Cyber Grand Challenge.

Future research

Bug Finding Tool Disparity

Great Research Secures Shipping Software

Automated Vulnerability Discovery
(now)
* |t works!

Automated Vulnerability Discovery
(now)
* |t works!

e ...If you are a part of the team that
developed it.

Automated Vulnerability Discovery
(now)
* |t works!

e ...If you are a part of the team that
developed it.

e ... And can firmly grasp the concepts

Automated Vulnerability Discovery
(now)
* |t works!

e ...If you are a part of the team that
developed it.

* ... And can firmly grasp the concepts
e ... For the select few (<0.01%7?)

Automated Vulnerability Discovery
(goals)
* Lets expand tool use to the 1%

—Popular open source projects
—Commercial consumer facing software

* Make your research more impactful!

Why the 1%?

* Rough estimate of
how many developers
care.

* 99% use the “ostrich”
approach to security.

—This is fine. Really.

Barriers to Adoption

e Security Tool Adoption Barriers
— Popularity (e.g. other people use them)
— Solves real problems
— Exposure (e.g. blogs, media)
* Not Barriers
— Easy to use (just can’t be absurdly hard!)

An Analogy...

* Automated
Vulnerability
Discovery
Today

An Analogy...

e What
Automated
Vulnerability

Discovery
Should be

Better Development Methodology

* Simple re-usable parts
—Why are we re-writing all the things?

* Do one thing well

* Communicate
— Common data interchange format!

Successful Models

LLVM!
Many (simple) tools

Common interchange
format (bitcode)

Not easy, but not
absurdly hard.

Case Study: Cyberdyne

* QOur entry into the Cyber
Grand Challenge.

 Composed of multiple
communicating

analyses.

* Evil corporation from
the Terminator
franchise.

What is CGC?

Competition to automate vulnerability
discovery and patching

In binary-only software
Simplified OS

Realistic example binaries
Qualification Round, Final Round

How Cyberdyne Fared

e TR

How Cyberdyne Fared

Team A
Cyberdyne
Team B
Team C
Team D
Team E
Team F
Team G
Team H
Team |

L o

10

Confirmed Bugs Found

20 30 40 50

60

70

80

Vulnerability Discovery Theory

* No tool will find all the bugs.
* Provably impossible. @

Vulnerability Discovery Theory

* Over Approximate Analyses
— Points To
— Alias Analysis

Vulnerability Discovery Theory

* Under Approximate Analyses
— Fuzzing, Symbolic Execution

Under-Approximate Analyses:
Roadblocks

Hard For Fuzzing, Easy for Symbolic Execution

if(input[©@] == ©xBADFOOD)

Under-Approximate Analyses:
Roadblocks

Hard for Symbolic Execution, Easy for Fuzzing

if(hash(input[@])
== hash(input[1]))

Under-Approximate Analyses: Theory

* All tools operate over
the same domain

 All discoveries are
equally true

e What if tools could shar
discoveries?

Analysis Boosting

* Sharing discoveries across tools creates a
virtuous cycle that removes roadblocks

if(input[@] == OxBADFOOD)
if(hash(input[@])
== hash(input[1]))
BUG() ;

Analysis Boosting

* Sharing discoveries across tools creates a
virtuous cycle that removes roadblocks

ot e——exBABF e —
if(hash(input[0])
== hash(input[1]))
BUG() ;

Analysis Boosting

* Sharing discoveries across tools creates a
virtuous cycle that removes roadblocks

Analysis Boosting: Communication

* Program Inputs!?
—Convenient
—Universal
—Lame

* We can, and should, do better!

Analysis Boosting: Implementation

 Multiple tools
communicating

Inputs

via program
Inputs Ej

Analysis Boosting: Implementation

 Multiple tools

communicating O
via program Inputs O
inputs A”ac'y;es

O

Analysis Boosting: Implementation

 Multiple tools

communicating O—™
via program Inputs o—

. Analyses New Inputs
inputs Y P

O—
O—

Analysis Boosting: Implementation

Multiple tools
communicating
via program
Inputs

Inputs

O/——s
O’——u

Analyses New Inputs

O—
O—

Merge
Knowledge

Analysis Boosting: It Works!

* Tools will cooperate to find bugs.
* Areal crash history track:

klee/1/testcase 262069... =>
pysymemu/1/testcase 11f2b1l...' =>
grr/1/crashing_testcase 1231f9...

How Cyberdyne Fared (reminder)

Confirmed Bugs Found
0 10 20 30 40 50 60 70 80
TeamA I | | 77I | | |
Cyberdyne _#
TeamB i i 57l | |
TeamC | i | 57l |
TeamD i l44 |
TeamE i 3?
TeamF | l23
TeamG 12 |
TeamH 12
Teaml |9 ‘

Analysis Boosting: It Scaled

* This is “15x overprovisioned, but we were
paranoid.

— 10,692 Cores

— 17,820 GiB of RAM

— 3 EC2 availability zones
— 232 TiB of disk

— 2.5 hours on phone with Amazon Support to set it all
up

Analysis Boosting: Extensible

* New tools = new capability

 Linux libraries
— libotr
— libharfbuzz

— libarchive

— libwebp

Analysis Boosting: Future

* Sharing only program inputs is stupid
—Throws away information

* We need better a data interchange
method

—Graph Database?

Conclusion

* Latest research developments aren’t
used to secure real software.

— Complex
— Monolithic
— Brittle

* We can, and should, change that.

Conclusion

* Simple, communicating tools work
—More accessible
—Equivalent effectiveness
—Easier to distribute
—Easier to maintain and debug

Conclusion

* Lets build better analysis tools.
* Stop reinventing the wheel.

* Lets create a good analysis
information interchange format.

Questions?

e Contact Information:

— artem@trailofbits.com
— http://blog.trailofbits.com

