
Obsidian: a Safer Blockchain Programming Language

Michael Coblenz, Tyler Etzel, Joshua Sunshine, Jonathan Aldrich,
Brad Myers, Eli Kanal, and Mark Sherman

•We will write proofs of
safety theorems for
Obsidian.

•In addition, we will do user
studies in which we
evaluate whether:
•Users can effectively use

Obsidian to write correct
blockchain programs

•Programs written in
Obsidian tend to have
fewer vulnerabilities
than equivalent
programs written in
existing languages

Evaluation

•Blockchain applications are typically
correctness-critical; suppose a banking
application tracked money incorrectly!

•Ethereum is programmed using domain-
specific languages, the most popular being
Solidity; HyperLedger currently supports
programming in Java and Go.

•Recently, someone stole over $40M-worth of
virtual currency from an organization on
Ethereum due to a security vulnerability in
the organization’s contract [2].

•We are designing a new language, Obsidian,
for HyperLedger, to prevent many common
bugs and security flaws.

•Many of the existing and proposed
applications implement state machines.
However, users must implement state
machines in an ad hoc manner, making it
harder to reason about the states.

•Invocations on contracts that are in
undefined states have led to security
breaches [2].

•A bond might be offered, sold, or expired.
Available operations depend on the state:
once a bond is sold, it cannot be sold again.

•Obsidian programs represent states
explicitly, including expressing checkable
invariants on states.

•Typestate-based documentation has been
shown to aid in correct understanding of
API preconditions [1].

•Domain-specific languages
offer a promising approach
to programming
blockchains.

•We are working on the
language design and
implementation.
Evaluation work will
follow.

•We plan to collaborate with
the HyperLedger
community in the hope of
having our language
adopted by a real
blockchain platform.

•You can partner with us to
evaluate your favorite
applications!

Typestate-oriented programming

Programming blockchains

Conclusions/Future Work

•Centralized systems require trusted
computing resources

•Decentralized systems support safe
application development on untrusted,
shared computing resources.

•Blockchains systems:
•have shared global state
•are robust to failures
•enable verifying correctness of state
•support interoperation among diverse

organizations
•Proposed applications include: financial

transactions; supply chain; health records;
organizational management (e.g. voting);
renewable energy trading

•Existing platforms include Ethereum, a public
platform, and HyperLedger, designed for
government and corporate use.

•Programs for blockchain platforms are called
smart contracts.

So, you want to build an application?

contract Bond {
 account seller;
 state Offered {
 transaction buy() {…}
 }

 state Sold {
 account buyer;
 }

}

buy() unavailable on Sold bonds

•

•In existing languages, money is (internally)
tracked traditionally, e.g. as integers in
state variables.
•There can be accounting bugs in which

money is created, destroyed, or trapped
inside the contract forever!

•Obsidian will prevent this with linear
types: values must be used exactly once.

Linear resources

currency balance = withdrawFunds();
depositFunds(balance);
depositFunds(balance);

COMPILE ERROR: cannot
spend balance twice!

[1] Structuring Documentation to Support State Search: A Laboratory
Experiment about Protocol Programming. Joshua Sunshine, James D.
Herbsleb, and Jonathan Aldrich. ECOOP 2014
[2] E. Gün Sirer, “Thoughts on the DAO hack,” 2016. http://
hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/

