On One-way Functions and Kolmogorov Complexity

Yanyi Liu and Rafael Pass Cornell Tech and Cornell University

One-way Functions (OWF) [Diffie-Hellman'76]

A function **f** that is

- Easy to compute: can be computed in poly time
- Hard to invert: no PPT can invert it, even with "small" probability

Ex [Factoring]: use x to pick 2 random "large" primes p,q, and output $y = p^* q$

One-way Functions (OWF) [Diffie-Hellman'76]

A function **f** that is

- Easy to compute: can be computed in poly time
- Hard to invert: no PPT can invert it

OWF both necessary [IL'89] and sufficient for:

- Private-key encryption [GM84,HILL99]
- Digital signatures [Rompel90]
- Authentication schemes [FS90]
- Pseudorandom functions [GGM84]
- Commitment schemes [Naor90]
- Coin-tossing [Blum'84]
- ZK proofs [GMW89]

...

Pseudorandom generators [HILL99]

Not included: public-key encryption, OT, obfuscation

Whether OWF exists is the most important problem in Cryptography

OWF v.s NP Hardness

Observation: OWF => NP ∉ BPP

"Holy grail" [DH'76]

Prove: NP \notin BPP => OWF

In the absence of the holy-grail...

Lattice Problems [Ajtai'96]

DES, SHA, AES...

So far, not broken...but for how long? "Cryptographers seldom sleep well" - Micali'88

Have we really escaped from the "crypto cycle"?

QUANTUM COMPUTERS

In the absence of the holy-grail...

Discrete Logarithm Problem [DH'76]

Factoring [RSA'83]

Lattice Problems [Ajtai'96]

DES, SHA, AES...

Central question: Does there exist some **natural average-case hard problem** (a "master problem") that **characterizes existence of OWF?**

For every polynomial t(n)>1.1n:

OWFs exist iff **t-bounded Kolmogorov-complexity** is mildly hard-on-average

Deep Connection between Cryptography and Kolmogorov Complexity; the **central problems in these fields are connected!**

Kolmogorov Complexity [Sol'64,Kol'68,Cha'69]

Which of the following strings is more "random":

- 1231231231231231231
- 1730544459347394037

K(x) = length of the shortest program that outputs **x**

Formally, we fix a universal TM U, and are looking for the length of the shortest program $\Pi = (M,w)$ s.t. U(M,w) = x

Lots of amazing applications (e.g., Godel's incompleteness theorem) But **uncomputable**.

Time-Bounded Kolmogorov Complexity

Which of the following strings is more "random":

- 1231231231231231231
- 1730544459347394037

K(x) = length of the shortest program that outputs X $K^{t}(x) = \text{length of the shortest program that outputs } X$ within time t(|x|)

Can **K**^t be **efficiently computed** when **t** is a polynomial?

- Studied in the Soviet Union since 60s [Kol'68,T'84]
- Independently by Hartmanis [83], Sipser [83], Ko [86]
- Closely related to MCSP (Minimum Circuit Size Problem) [T'84,KC'00]

Average-case Hardness of K^t

Frequential version [60's, T'84]

Does \exists algorithm that computes $K^{t}(x)$ for a "large" fraction of x's?

Observation [60's, T'84]: **K**^t can be approximated within d log n w.p 1-1/n^d Proof: simply output n.

Average-case Hardness of K^t

Frequential version [60's, T'84] Does ∃ algorithm that computes K^t(x) for a "large" fraction of x's?

Observation [60's, T'84]: **K**^t can be approximated within d log n w.p 1-1/n^d Proof: simply output n.

Def: K^t is **mildly-HOA** if there exists a polynomial p, such that no PPT heuristic H can compute K^t w.p 1-1/p(n) over random strings x for inf many n.

Def: **K**^t is **mildly-HOA to c-approximate** if there exists a polynomial p, such that no PPT heuristic H can c-approximate **K**^t w.p 1-1/p(n) over random strings x for inf many n.

The following are equivalent:

- 1. **OWFs** exist
- 2. **3** poly t(n)>0, s.t. **K**^t **is mildly-HOA**.
- ∀ c>0, ε>0, poly t(n)>(1+ε) n,
 K^t is mildly-HOA to (clog n)-approx.

The following are equivalent:

- 1. **OWFs** exist
- 2. **3** poly t(n)>0, s.t. **K**^t **is mildly-HOA**.
- ∀ c>0, ε>0, poly t(n)>(1+ε) n,
 K^t is mildly-HOA to (clog n)-approx.

Corr [Crypto v.s. K-complexity]: For all poly t(n)>(1+ε)n, OWFs exist iff K^t is mildly hard-on-average

Corr [New insight into K-complexity]: For all c>0, ε >0, poly t(n)>(1+ ε) n, K^t is mildly hard-on-average to (clog n)-approx iff K^t is mildly hard-on-average.

The following are equivalent:

- 1. **OWFs** exist
- 2. \exists poly t(n)>0, s.t. K^t is mildly-HOA.
- ∀ c>0, ε>0, poly t(n)>(1+ε) n,
 K^t is mildly-HOA to (clog n)-approx.

Proof: (2) => (1) => (3)

Today: just sketch idea behing (2) => (1) (1) => (3) is the harder direction (in the paper)

Theorem 1

Assume there exists some poly t(n)>0, s.t. K^t is mildly-HOA. Then OWFs exist.

Weak OWF: "mild-HOA version" of a OWF: efficient function f s.t. no PPT can invert f w.p. **1-1/p(n)** for inf many n, for some poly p(n)>0.

Lemma [Yao'82]. If a Weak OWF exists, then a OWF exists.

So, we just need to construct a weak OWF.

The OWF Construction:

Let **t** be a (polynomial) time-bound (the time-bound from the K-complexity problem) Let **c** be a constant so that $K^{T}(x) < |x|+c$ for all x

Define $f(\Pi',i)$ where $|\Pi'| = n+c$, |i| = log (n+c) as follows:

- Let $\Pi = [\Pi']_{1->i} =$ first i bits of Π' .
- Run Π for at most t(n) steps;
 let y denote its output
- Output i||y.

Reduction idea: if an PPT attacker A inverts f w.h.p, then we can compute the K^T-complexity of random strings y, by feeding (1,y), (2,y), .. (n+c,y) to A and see which work.

Proving this works is a bit non-trivial since we feed A the wrong distribution!

i ← U_{log(n+c)}
 y ← output of a random program of length i

In the emulation by H in K^t experiment (where we need to *prove* that A works):

 $i \leftarrow K^{t}(y)$ $y \leftarrow U_{n}$

No reason to believe that the output of a random program will be close to uniform!

But: using a counting argument, we can show that they are not too far in **relative distance** (details in the paper)

For all $\varepsilon > 0$, all poly $t(n) > (1+\varepsilon)n$ **OWFs** exist iff K^t is mildly-HOA.

First natural avg-case problem characterizing the feasibility of the basic tasks in Crypto (i.e., private-key encryption, digital sigs, PRGs, PRFs, commitments, authentication, ZK...)

Identified a natural "master-problem" for Cryptography:

Non-trivial crypto is possible iff Kt is hard.

Golden time for Crypto and K-complexity

- Sublinear time average-case hardness of K-complexity problems suffice to characterize subexponential/qpoly OWF [LP'21]
- Characterize **OWF in logspace, NC0** [RS'21,LP'21]
- Characterize OWF [LP'21], resp. NCO-OWFs [Allender et al' 21], though NPcomplete problems
- Unbounded K-complexity sometimes suffices [llango-Ren-Santhanam'21], and even just sparse languages [LP'21]
- [LP'21] argued a potential approach of basing **OWF** on **EXP** \neq **BPP**

Thank You