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The “Dark Ages” Crypto Cycle
(the last 2000 years)



A function f that is
• Easy to compute: can be computed in poly time
• Hard to invert: no PPT can invert it, 

even with “small” probability 

One-way Functions (OWF) [Diffie-Hellman’76]

x y=f(x)

easy

hard

Ex [Factoring]: use x to pick 2 random “large” primes p,q, and output y = p* q



A function f that is
• Easy to compute: can be computed in poly time
• Hard to invert: no PPT can invert it

OWF both necessary [IL’89] and sufficient for:
• Private-key encryption [GM84,HILL99]
• Pseudorandom generators [HILL99]
• Digital signatures [Rompel90]
• Authentication schemes [FS90]
• Pseudorandom functions [GGM84]
• Commitment schemes [Naor90]
• Coin-tossing [Blum’84]
• ZK proofs [GMW89]
• …

One-way Functions (OWF) [Diffie-Hellman’76]

Whether OWF exists is the most important problem in Cryptography

Not included:
public-key encryption, OT, obfuscation 



Observation: OWF => NP ∉ BPP

OWF v.s NP Hardness

“Holy grail” [DH’76] 

Prove: NP ∉ BPP => OWF



In the absence of the holy-grail…

Factoring [RSA’83]

Discrete Logarithm Problem [DH’76]

Lattice Problems [Ajtai’96]

DES,

SHA,

AES…

So far, not broken…but for how long?
“Cryptographers seldom sleep well” - Micali’88

Have we really escaped from the “crypto cycle”?

QUANTUM COMPUTERS



Discrete Logarithm Problem [DH’76]

Lattice Problems [Ajtai’96]

Central question: Does there exist some natural average-case hard 
problem (a “master problem”) that characterizes existence of OWF?

Factoring [RSA’83]

DES,

SHA,

AES…

In the absence of the holy-grail…



Main Theorem

For every polynomial t(n)>1.1n:

OWFs exist iff t-bounded Kolmogorov-complexity is mildly hard-on-average

Deep Connection between Cryptography and Kolmogorov Complexity;

the central problems in these fields are connected!



Which of the following strings is more “random”:
• 1231231231231231231
• 1730544459347394037

Kolmogorov Complexity [Sol’64,Kol’68,Cha’69]

K(x) = length of the shortest program that outputs x

Formally, we fix a universal TM U, and are looking for the length of the 
shortest program 𝚷 = (M,w) s.t. U(M,w) = x

Lots of amazing applications (e.g., Godel’s incompleteness theorem)
But uncomputable.



Which of the following strings is more “random”:
• 1231231231231231231
• 1730544459347394037

Time-Bounded Kolmogorov Complexity

K(x) = length of the shortest program that outputs x
Kt(x) = length of the shortest program that outputs x within time t(|x|)

Can Kt  be efficiently computed when t is a polynomial?
• Studied in the Soviet Union since 60s [Kol’68,T’84]
• Independently by Hartmanis [83], Sipser [83], Ko [86]
• Closely related to MCSP (Minimum Circuit Size Problem) [T’84,KC’00]



Average-case Hardness of Kt

Frequential version [60’s, T’84]
Does ∃ algorithm that computes Kt(x) for a “large” fraction of x’s?

Observation [60’s, T’84]: Kt can be approximated within d log n w.p 1-1/nd

Proof: simply output n.



Average-case Hardness of Kt

Frequential version [60’s, T’84]
Does ∃ algorithm that computes Kt(x) for a “large” fraction of x’s?

Observation [60’s, T’84]: Kt can be approximated within d log n w.p 1-1/nd

Proof: simply output n.

Def: Kt is mildly-HOA if there exists a polynomial p, such that no PPT heuristic H
can compute Kt w.p 1-1/p(n) over random strings x for inf many n.

Def: Kt is mildly-HOA to c-approximate if there exists a polynomial p, such that 
no PPT heuristic H can c-approximate Kt w.p 1-1/p(n) over random strings x for 
inf many n.



Main Theorem
The following are equivalent:
1. OWFs exist
2. ∃ poly t(n)>0, s.t. Kt is mildly-HOA.
3. ∀ c>0, ε>0, poly t(n)>(1+ε) n, 

Kt is mildly-HOA to (clog n)-approx.



Main Theorem
The following are equivalent:
1. OWFs exist
2. ∃ poly t(n)>0, s.t. Kt is mildly-HOA.
3. ∀ c>0, ε>0, poly t(n)>(1+ε) n, 

Kt is mildly-HOA to (clog n)-approx.

Corr [Crypto v.s. K-complexity]: For all poly t(n)>(1+ε)n, 
OWFs exist iff Kt is mildly hard-on-average

Corr [New insight into K-complexity]: For all c>0, ε>0, poly t(n)>(1+ε) n, 
Kt is mildly hard-on-average to (clog n)-approx iff Kt is mildly hard-on-average.



Proof: (2) => (1) => (3)

Today: just sketch idea behing (2) => (1)
(1) => (3) is the harder direction (in the paper)

Main Theorem
The following are equivalent:
1. OWFs exist
2. ∃ poly t(n)>0, s.t. Kt is mildly-HOA.
3. ∀ c>0, ε>0, poly t(n)>(1+ε) n, 

Kt is mildly-HOA to (clog n)-approx.



Theorem 1
Assume there exists some poly t(n)>0, s.t. Kt is mildly-HOA.
Then OWFs exist.

Weak OWF: “mild-HOA version” of a OWF:
efficient function f s.t. no PPT can invert f w.p. 1-1/p(n)
for inf many n, for some poly p(n)>0.

Lemma [Yao’82]. If a Weak OWF exists, then a OWF exists.

So, we just need to construct a weak OWF.



Let t be a (polynomial) time-bound (the time-bound from the K-complexity problem)
Let c be a constant so that KT(x) < |x|+c for all x

Define f(𝚷’,i) where |𝚷’| = n+c, |i| = log (n+c) as follows:
• Let 𝚷 = [𝚷’]1->i = first i bits of 𝚷’.
• Run 𝚷 for at most t(n) steps; 

let y denote its output
• Output i||y.

Reduction idea: if an PPT attacker A inverts f w.h.p, then we can compute the KT-
complexity of random strings y, by feeding (1,y), (2,y), .. (n+c,y) to A and see which 
work. 
Proving this works is a bit non-trivial since we feed A the wrong distribution!

The OWF Construction:



In OWF experiment 
(where A works):

i  ← Ulog(n+c)

y ← output of a random program 
of length i

In the emulation by H in Kt experiment
(where we need to prove that A works):

i  ← Kt(y)
y ← Un

No reason to believe that the output of a random program will be close to uniform!

But: using a counting argument, we can show that they are not too far in relative distance

(details in the paper)



Main Theorem
For all ε>0, all poly t(n)>(1+ε)n
OWFs exist iff Kt is mildly-HOA.

First natural avg-case problem characterizing the feasibility of the basic tasks in Crypto

(i.e., private-key encryption, digital sigs, PRGs, PRFs, commitments, authentication, ZK…)

Identified a natural “master-problem” for Cryptography:

Non-trivial crypto is possible iff Kt is hard.



Golden time for Crypto and K-complexity

• Sublinear time average-case hardness of K-complexity problems suffice to 
characterize subexponential/qpoly OWF [LP’21]

• Characterize OWF in logspace, NC0 [RS’21,LP’21]

• Characterize OWF [LP’21], resp. NC0-OWFs [Allender et al’ 21], though NP-
complete problems

• Unbounded K-complexity sometimes suffices [Ilango-Ren-Santhanam’21], 
and even just sparse languages [LP’21]

• [LP’21]  argued a potential approach of basing OWF on EXP ≠ BPP



Thank You


