
Outside the Closed World:

On Using Machine Learning For Network Intrusion Detection

Robin Sommer
International Computer Science Institute, and

Lawrence Berkeley National Laboratory

Vern Paxson
International Computer Science Institute, and

University of California, Berkeley

Abstract—In network intrusion detection research, one pop-
ular strategy for finding attacks is monitoring a network’s
activity for anomalies: deviations from profiles of normality
previously learned from benign traffic, typically identified
using tools borrowed from the machine learning community.
However, despite extensive academic research one finds a
striking gap in terms of actual deployments of such systems:
compared with other intrusion detection approaches, machine
learning is rarely employed in operational “real world” settings.
We examine the differences between the network intrusion
detection problem and other areas where machine learning
regularly finds much more success. Our main claim is that
the task of finding attacks is fundamentally different from
these other applications, making it significantly harder for the
intrusion detection community to employ machine learning
effectively. We support this claim by identifying challenges
particular to network intrusion detection, and provide a set
of guidelines meant to strengthen future research on anomaly
detection.

Keywords-anomaly detection; machine learning; intrusion
detection; network security.

I. INTRODUCTION

Traditionally, network intrusion detection systems (NIDS)
are broadly classified based on the style of detection they are
using: systems relying on misuse-detection monitor activity
with precise descriptions of known malicious behavior, while
anomaly-detection systems have a notion of normal activity
and flag deviations from that profile.1 Both approaches have
been extensively studied by the research community for
many years. However, in terms of actual deployments, we
observe a striking imbalance: in operational settings, of
these two main classes we find almost exclusively only
misuse detectors in use—most commonly in the form of
signature systems that scan network traffic for characteristic
byte sequences.

This situation is somewhat striking when considering
the success that machine-learning—which frequently forms
the basis for anomaly-detection—sees in many other areas
of computer science, where it often results in large-scale

1Other styles include specification-based [1] and behavioral detec-
tion [2]. These approaches focus respectively on defining allowed types
of activity in order to flag any other activity as forbidden, and analyzing
patterns of activity and surrounding context to find secondary evidence of
attacks.

deployments in the commercial world. Examples from other
domains include product recommendations systems such
as used by Amazon [3] and Netflix [4]; optical character
recognition systems (e.g., [5], [6]); natural language trans-
lation [7]; and also spam detection, as an example closer to
home [8].

In this paper we set out to examine the differences
between the intrusion detection domain and other areas
where machine learning is used with more success. Our main
claim is that the task of finding attacks is fundamentally
different from other applications, making it significantly
harder for the intrusion detection community to employ
machine learning effectively. We believe that a significant
part of the problem already originates in the premise, found
in virtually any relevant textbook, that anomaly detection is
suitable for finding novel attacks; we argue that this premise
does not hold with the generality commonly implied. Rather,
the strength of machine-learning tools is finding activity
that is similar to something previously seen, without the
need however to precisely describe that activity up front (as
misuse detection must).

In addition, we identify further characteristics that our do-
main exhibits that are not well aligned with the requirements
of machine-learning. These include: (i) a very high cost of
errors; (ii) lack of training data; (iii) a semantic gap between
results and their operational interpretation; (iv) enormous
variability in input data; and (v) fundamental difficulties
for conducting sound evaluation. While these challenges
may not be surprising for those who have been working
in the domain for some time, they can be easily lost on
newcomers. To address them, we deem it crucial for any
effective deployment to acquire deep, semantic insight into
a system’s capabilities and limitations, rather than treating
the system as a black box as unfortunately often seen.

We stress that we do not consider machine-learning an
inappropriate tool for intrusion detection. Its use requires
care, however: the more crisply one can define the context
in which it operates, the better promise the results may hold.
Likewise, the better we understand the semantics of the
detection process, the more operationally relevant the system
will be. Consequently, we also present a set of guidelines
meant to strengthen future intrusion detection research.
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Throughout the discussion, we frame our mindset around
on the goal of using an anomaly detection system effec-
tively in the “real world”, i.e., in large-scale, operational
environments. We focus on network intrusion detection as
that is our main area of expertise, though we believe that
similar arguments hold for host-based systems. For ease of
exposition we will use the term anomaly detection somewhat
narrowly to refer to detection approaches that rely primarily
on machine-learning. By “machine-learning” we mean algo-
rithms that are first trained with reference input to “learn”
its specifics (either supervised or unsupervised), to then be
deployed on previously unseen input for the actual detection
process. While our terminology is deliberately a bit vague,
we believe it captures what many in the field intuitively
associate with the term “anomaly detection”.

We structure the remainder of the paper as follows. In Sec-
tion II, we begin with a brief discussion of machine learning
as it has been applied to intrusion detection in the past. We
then in Section III identify the specific challenges machine
learning faces in our domain. In Section IV we present
recommendations that we hope will help to strengthen future
research, and we briefly summarize in Section V.

II. MACHINE LEARNING IN INTRUSION DETECTION

Anomaly detection systems find deviations from expected
behavior. Based on a notion of normal activity, they report
deviations from that profile as alerts. The basic assumption
underlying any anomaly detection system—malicious activ-
ity exhibits characteristics not observed for normal usage—
was first introduced by Denning in her seminal work on
the host-based IDES system [9] in 1987. To capture normal
activity, IDES (and its successor NIDES [10]) used a com-
bination of statistical metrics and profiles. Since then, many
more approaches have been pursued. Often, they borrow
schemes from the machine learning community, such as
information theory [11], neural networks [12], support vector
machines [13], genetic algorithms [14], artificial immune-
systems [15], and many more. In our discussion, we focus on
anomaly detection systems that utilize such machine learning
approaches.

Chandola et al. provide a survey of anomaly detection
in [16], including other areas where similar approaches
are used, such as monitoring credit card spending patterns
for fraudulent activity. While in such applications one is
also looking for outliers, the data tends to be much more
structured. For example, the space for representing credit
card transactions is of relatively low dimensionality and se-
mantically much more well-defined than network traffic [17].

Anomaly detection approaches must grapple with a set of
well-recognized problems [18]: the detectors tend to gener-
ate numerous false positives; attack-free data for training is
hard to find; and attackers can evade detection by gradually
teaching a system to accept malicious activity as benign. Our
discussion in this paper aims to develop a different general

point: that much of the difficulty with anomaly detection
systems stems from using tools borrowed from the machine
learning community in inappropriate ways.

Compared to the extensive body of research, anomaly
detection has not obtained much traction in the “real world”.
Those systems found in operational deployment are most
commonly based on statistical profiles of heavily aggre-
gated traffic, such as Arbor’s Peakflow [19] and Lanscope’s
StealthWatch [20]. While highly helpful, such devices oper-
ate with a much more specific focus than with the generality
that research papers often envision.2 We see this situation
as suggestive that many anomaly detection systems from
the academic world do not live up to the requirements of
operational settings.

III. CHALLENGES OF USING MACHINE LEARNING

It can be surprising at first to realize that despite extensive
academic research efforts on anomaly detection, the success
of such systems in operational environments has been very
limited. In other domains, the very same machine learning
tools that form the basis of anomaly detection systems have
proven to work with great success, and are regularly used
in commercial settings where large quantities of data render
manual inspection infeasible. We believe that this “success
discrepancy” arises because the intrusion detection domain
exhibits particular characteristics that make the effective
deployment of machine learning approaches fundamentally

harder than in many other contexts.
In the following we identify these differences, with an aim

of raising the community’s awareness of the unique chal-
lenges anomaly detection faces when operating on network
traffic. We note that our examples from other domains are
primarily for illustration, as there is of course a continuous
spectrum for many of the properties discussed (e.g., spam
detection faces a similarly adversarial environment as in-
trusion detection does). We also note that we are network
security researchers, not experts on machine-learning, and
thus we argue mostly at an intuitive level rather than attempt-
ing to frame our statements in the formalisms employed
for machine learning. However, based on discussions with
colleagues who work with machine learning on a daily basis,
we believe these intuitive arguments match well with what
a more formal analysis would yield.

A. Outlier Detection

Fundamentally, machine-learning algorithms excel much
better at finding similarities than at identifying activity that
does not belong there: the classic machine learning appli-
cation is a classification problem, rather than discovering
meaningful outliers as required by an anomaly detection
system [21]. Consider product recommendation systems
such as that used by Amazon [3]: it employs collaborative

2We note that for commercial solutions it is always hard to say what
they do exactly, as specifics of their internals are rarely publicly available.
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filtering, matching each of a user’s purchased (or positively
rated) items with other similar products, where similarity is
determined by products that tend be bought together. If the
system instead operated like an anomaly detection system, it
would look for items that are typically not bought together—
a different kind of question with a much less clear answer,
as according to [3], many product pairs have no common
customers.

In some sense, outlier detection is also a classification
problem: there are two classes, “normal” and “not normal”,
and the objective is determining which of the two more
likely matches an observation. However, a basic rule of
machine-learning is that one needs to train a system with
specimens of all classes, and, crucially, the number of
representatives found in the training set for each class should
be large [22]. Yet for anomaly detection aiming to find novel

attacks, by definition one cannot train on the attacks of
interest, but only on normal traffic, and thus having only
one category to compare new activity against.

In other words, one often winds up training an anomaly
detection system with the opposite of what it is supposed
to find—a setting certainly not ideal, as it requires having
a perfect model of normality for any reliable decision. If,
on the other hand, one had a classification problem with
multiple alternatives to choose from, then it would suffice
to have a model just crisp enough to separate the classes. To
quote from Witten et al. [21]: The idea of specifying only

positive examples and adopting a standing assumption that
the rest are negative is called the closed world assumption.

. . . [The assumption] is not of much practical use in real-

life problems because they rarely involve “closed” worlds
in which you can be certain that all cases are covered.

Spam detection is an example from the security domain
of successfully applying machine learning to a classification
problem. Originally proposed by Graham [8], Bayesian
frameworks trained with large corpora of both spam and
ham have evolved into a standard tool for reliably identifying
unsolicited mail.

The observation that machine learning works much better
for such true classification problems then leads to the
conclusion that anomaly detection is likely in fact better
suited for finding variations of known attacks, rather than
previously unknown malicious activity. In such settings, one
can train the system with specimens of the attacks as they
are known and with normal background traffic, and thus
achieve a much more reliable decision process.

B. High Cost of Errors

In intrusion detection, the relative cost of any misclassi-
fication is extremely high compared to many other machine
learning applications. A false positive requires spending
expensive analyst time examining the reported incident only
to eventually determine that it reflects benign underlying
activity. As argued by Axelsson, even a very small rate of

false positives can quickly render an NIDS unusable [23].
False negatives, on the other hand, have the potential to
cause serious damage to an organization: even a single
compromised system can seriously undermine the integrity
of the IT infrastructure. It is illuminating to compare such
high costs with the impact of misclassifications in other
domains:

• Product recommendation systems can readily tolerate
errors as these do not have a direct negative impact.
While for the seller a good recommendation has the
potential to increase sales, a bad choice rarely hurts
beyond a lost opportunity to have made a more enticing
recommendation. (In fact, one might imagine such
systems deliberately making more unlikely guesses
on occasion, with the hope of pointing customers to
products they would not have otherwise considered.) If
recommendations do not align well with the customers’
interest, they will most likely just continue shopping,
rather than take a damaging step such as switching
to different seller. As Greg Linden said (author of the
recommendation engine behind Amazon): “Recommen-
dations involve a lot of guesswork. Our error rate will
always be high.” [24]

• OCR technology can likewise tolerate errors much more
readily than an anomaly detection system. Spelling and
grammar checkers are commonly employed to clean up
results, weeding out the obvious mistakes. More gener-
ally, statistical language models associate probabilities
with results, allowing for postprocessing of a system’s
initial output [25]. In addition, users have been trained
not to expected perfect documents but to proofread
where accuracy is important. While this corresponds to
verifying NIDS alerts manually, it is much quicker for a
human eye to check spelling of a word than to validate
a report of, say, a web server compromise. Similar
to OCR, contemporary automated language translation
operates at relatively large errors rates [7], and while
recent progress has been impressive, nobody would
expect more than a rough translation.

• Spam detection faces a highly unbalanced cost model:
false positives (i.e., ham declared as spam) can prove
very expensive, but false negatives (spam not identi-
fied as such) do not have a significant impact. This
discrepancy can allow for “lopsided” tuning, leading
to systems that emphasize finding obvious spam fairly
reliably, yet exhibiting less reliability for new variations
hitherto unseen. For an anomaly detection system that
primarily aims to find novel attacks, such performance
on new variations rarely constitutes an appropriate
trade-off.

Overall, an anomaly detection system faces a much more
stringent limit on the number of errors that it can tolerate.
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However, the intrusion detection-specific challenges that we
discuss here all tend to increase error rates—even above
the levels for other domains. We deem this unfortunate
combination as the primary reason for the lack of success
in operational settings.

C. Semantic Gap

Anomaly detection systems face a key challenge of trans-
ferring their results into actionable reports for the network
operator. In many studies, we observe a lack of this crucial
final step, which we term the semantic gap. Unfortunately,
in the intrusion detection community we find a tendency
to limit the evaluation of anomaly detection systems to
an assessment of a system’s capability to reliably identify

deviations from the normal profile. While doing so indeed
comprises an important ingredient for a sound study, the next
step then needs to interpret the results from an operator’s
point of view—“What does it mean?”

Answering this question goes to the heart of the difference
between finding “abnormal activity” and “attacks”. Those
familiar with anomaly detection are usually the first to
acknowledge that such systems are not targeting to identify
malicious behavior but just report what has not been seen
before, whether benign or not. We argue however that
one cannot stop at that point. After all, the objective of
deploying an intrusion detection system is to find attacks,
and thus a detector that does not allow for bridging this gap
is unlikely to meet operational expectations. The common
experience with anomaly detection systems producing too
many false positives supports this view: by definition, a
machine learning algorithm does not make any mistakes
within its model of normality; yet for the operator it is the
results’ interpretation that matters.

When addressing the semantic gap, one consideration is
the incorporation of local security policies. While often
neglected in academic research, a fundamental observation
about operational networks is the degree to which they
differ: many security constraints are a site-specific property.
Activity that is fine in an academic setting can be banned in
an enterprise network; and even inside a single organization,
department policies can differ widely. Thus, it is crucial for
a NIDS to accommodate such differences.

For an anomaly detection system, the natural strategy
to address site-specifics is having the system “learn” them
during training with normal traffic. However, one cannot
simply assert this as the solution to the question of adapting
to different sites; one needs to explicitly demonstrate it, since
the core issue concerns that such variations can prove diverse
and easy to overlook.

Unfortunately, more often than not security policies are
not defined crisply on a technical level. For example, an
environment might tolerate peer-to-peer traffic as long as
it is not used for distributing inappropriate content, and
that it remains “below the radar” in terms of volume. To

report a violation of such a policy, the anomaly detection
system would need to have a notion of what is deemed
“appropriate” or “egregiously large” in that particular envi-

ronment; a decision out of reach for any of today’s systems.
Reporting just the usage of P2P applications is likely not
particularly useful, unless the environment flat-out bans such
usage. In our experience, such vague guidelines are actually
common in many environments, and sometimes originate in
the imprecise legal language found in the “terms of service”
to which users must agree [26].

The basic challenge with regard to the semantic gap
is understanding how the features the anomaly detection
system operates on relate to the semantics of the network
environment. In particular, for any given choice of features
there will be a fundamental limit to the kind of determina-
tions a NIDS can develop from them. Returning to the P2P
example, when examining only NetFlow records, it is hard
to imagine how one might spot inappropriate content.3 As
another example, consider exfiltration of personally identi-
fying information (PII). In many threat models, loss of PII
ranks quite high, as it has the potential for causing major
damage (either directly, in financial terms, or due to publicity
or political fallout). On a technical level, some forms of PII
are not that hard to describe; e.g., social security numbers as
well bank account numbers follow specific schemes that one
can verify automatically.4 But an anomaly detection system
developed in the absence of such descriptions has little hope
of finding PII, and even given examples of PII and non-
PII will likely have difficulty distilling rules for accurately
distinguishing one from the other.

D. Diversity of Network Traffic

Network traffic often exhibits much more diversity than
people intuitively expect, which leads to misconceptions
about what anomaly detection technology can realistically
achieve in operational environments. Even within a single
network, the network’s most basic characteristics—such as
bandwidth, duration of connections, and application mix—
can exhibit immense variability, rendering them unpre-
dictable over short time intervals (seconds to hours). The

3We note that in fact the literature holds some fairly amazing demon-
strations of how much more information a dataset can provide than what
we might intuitively expect: Wright et al. [27] infer the language spoken
on encrypted VOIP sessions; Yen et al. [28] identify the particular web
browser a client uses from flow-level data; Narayanan et al. [29] identify
users in the anonymized Netflix datasets via correlation with their public
reviews in a separate database; and Kumar et al. [30] determine from lossy
and remote packet traces the number of disks attached to systems infected
by the “Witty” worm, as well as their uptime to millisecond precision.
However these examples all demonstrate the power of exploiting structural
knowledge informed by very careful examination of the particular domain
of study—results not obtainable by simply expecting an anomaly detection
system to develop inferences about “peculiar” activity.

4With limitations of course. As it turns out, Japanese phone numbers look
a lot like US social security numbers, as the Lawrence Berkeley National
Laboratory noticed when monitoring for them in email [31].
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widespread prevalence of strong correlations and “heavy-
tailed” data transfers [32], [33] regularly leads to large bursts
of activity. It is crucial to acknowledge that in networking
such variability occurs regularly; it does not represent any-
thing unusual. For an anomaly detection system, however,
such variability can prove hard to deal with, as it makes it
difficult to find a stable notion of “normality”.

One way to reduce the diversity of Internet traffic is
to employ aggregation. While highly variable over small-
to-medium time intervals, traffic properties tend to greater
stability when observed over longer time periods (hours to
days, sometimes weeks). For example, in most networks
time-of-day and day-of-week effects exhibit reliable pat-
terns: if during today’s lunch break, the traffic volume is
twice as large as during the corresponding time slots last
week, that likely reflects something unusual occurring. Not
coincidentally, one form of anomaly detection system we
do find in operation deployment is those that operate on
highly aggregated information, such as “volume per hour” or
“connections per source”. On the other hand, incidents found
by these systems tend to be rather noisy anyway—and often
straight-forward to find with other approaches (e.g., simple
threshold schemes). This last observation goes to the heart
of what can often undermine anomaly detection research
efforts: a failure to examine whether simpler, non-machine
learning approaches might work equally well.

Finally, we note that traffic diversity is not restricted
to packet-level features, but extends to application-layer
information as well, both in terms of syntactic and semantic
variability. Syntactically, protocol specifications often pur-
posefully leave room for interpretation, and in heterogeneous
traffic streams there is ample opportunity for corner-case
situations to manifest (see the discussion of “crud” in [34]).
Semantically, features derived from application protocols
can be just as fluctuating as network-layer packets (see, e.g.,
[35], [36]).

E. Difficulties with Evaluation

For an anomaly detection system, a thorough evaluation
is particularly crucial to perform, as experience shows that
many promising approaches turn out in practice to fall short
of one’s expectations. That said, devising sound evaluation
schemes is not easy, and in fact turns out to be more difficult

than building the detector itself. Due to the opacity of
the detection process, the results of an anomaly detection
system are harder to predict than for a misuse detector. We
discuss evaluation challenges in terms of the difficulties for
(i) finding the right data, and then (ii) interpreting results.

1) Difficulties of Data: Arguably the most significant
challenge an evaluation faces is the lack of appropriate
public datasets for assessing anomaly detection systems. In
other domains, we often find either standardized test suites
available, or the possibility to collect an appropriate corpus,
or both. For example, for automatic language translation

“a large training set of the input-output behavior that we
seek to automate is available to us in the wild” [37]. For
spam detectors, dedicated “spam feeds” [38] provide large
collections of spam free of privacy concerns. Getting suitable
collections of “ham” is more difficult, however even a small
number of private mail archives can already yield a large
corpus [39]. For OCR, sophisticated methods have been
devised to generate ground-truth automatically [40]. In our
domain, however, we often have neither standardized test
sets, nor any appropriate, readily available data.

The two publicly available datasets that have pro-
vided something of a standardized setting in the past—the
DARPA/Lincoln Labs packet traces [41], [42] and the KDD
Cup dataset derived from them [43]—are now a decade old,
and no longer adequate for any current study. The DARPA
dataset contains multiple weeks of network activity from a
simulated Air Force network, generated in 1998 and refined
in 1999. Not only is this data synthetic, and no longer even
close to reflecting contemporary attacks, but it also has been
so extensively studied over the years that most members of
the intrusion detection community deem it wholly uninter-
esting if a NIDS now reliably detects the attacks it contains.
(Indeed, the DARPA data faced pointed criticisms not long
after its release [44], particularly regarding the degree to
which simulated data can be appropriate for the evaluation
of a NIDS.) The KDD dataset represents a distillation of
the DARPA traces into features for machine learning. Not
only does it inherit the shortcomings of the DARPA data,
but the features have also turned out to exhibit unfortunate
artifacts [45].

Given the lack of publicly available data, it is natural to
ask why we find such a striking gap in our community.5 The
primary reason clearly arises from the data’s sensitive nature:
the inspection of network traffic can reveal highly sensitive
information, including confidential or personal communi-
cations, an organization’s business secrets, or its users’
network access patterns. Any breach of such information
can prove catastrophic not only for the organization itself,
but also for affected third parties. It is understandable that in
the face of such high risks, researchers frequently encounter
insurmountable organizational and legal barriers when they
attempt to provide datasets to the community.

Given this difficulty, researchers have pursued two al-
ternative routes in the past: simulation and anonymization.
As demonstrated by the DARPA dataset, network traffic
generated by simulation can have the major benefit of
being free of sensitivity concerns. However, Internet traffic

5We note that the lack of public network data is not limited to the
intrusion detection domain. We see effects similar to the overuse of the
DARPA dataset in empirical network research: the ClarkNet-HTTP [46]
dataset contains two weeks’ worth of HTTP requests to ClarkNet’s web
server, recorded in 1995. While researchers at ClarkNet stopped using these
logs for their own studies in 1997, in total researchers have used the traces
for evaluations in more than 90 papers published between 1995 and 2007—
13 of these in 2007 [47]!
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is already exceedingly difficult to simulate realistically by
itself [48]. Evaluating an anomaly detection system that
strives to find novel attacks using only simulated activity
will often lack any plausible degree of realism or relevance.

One can also sanitize captured data by, e.g., removing
or anonymizing potentially sensitive information [49], [50],
[51]. However, despite intensive efforts [52], [53], publishing
such datasets has garnered little traction to date, mostly one
suspects for the fear that information can still leak. (As
[54] demonstrates, this fear is well justified.) Furthermore,
even if a scrubbed dataset is available, its use with an
anomaly detection system can be quite problematic, since
by definition such systems look precisely for the kind of
artifacts that tend to be removed during the anonymization
process [55].

Due to the lack of public data, researchers are forced
to assemble their own datasets. However, in general this
is not an easy task, as most lack access to appropriately
sized networks. It is crucial to realize that activity found in
a small laboratory network differs fundamentally from the
aggregate traffic seen upstream where NIDSs are commonly
deployed [26]. Conclusions drawn from analyzing a small
environment cannot be generalized to settings of larger scale.

There is unfortunately no general answer to countering
the lack of data for evaluation purposes. For any study
it is thus crucial to (i) acknowledge shortcomings that
one’s evaluation dataset might impose, and (ii) consider
alternatives specific to the particular setting. We return to
these points in Section IV-D1.

2) Mind the Gap: The semantic gap requires any study
to perform an explicit final step that tends to be implicit
in other domains: changing perspective to that of a user
of the system. In addition to correctly identifying attacks,
an anomaly detection system also needs to support the
operator in understanding the activity and enabling a quick
assessment of its impact. Suppose a system correctly finds a
previously unknown web server exploit, yet only reports it
as “HTTP traffic of host did not match the normal profile”.
The operator will spend significant additional effort figuring
out what happened, even if already having sufficient trust in
the system to take its alerts seriously. In other applications of
machine learning, we do not see a comparable problem, as
results tend to be intuitive there. Returning to spam detection
again, if the detector reports a mail as spam, there is not
much room for interpretation left.

We argue that when evaluating an anomaly detection
system, understanding the system’s semantic properties—
the operationally relevant activity that it can detect, as well
as the blind spots every system will necessarily have—
is much more valuable than identifying a concrete set of
parameters for which the system happens to work best for
a particular input. The specifics of network environments
differ too widely to allow for predicting performance in
other settings based on just numbers. Yet, with insight

into the conceptual capabilities of a system, a network
operator can judge a detector’s potential to support different
operational concerns as required. That said, we note that
Tan et al. demonstrated the amount of effort it can require
to understand a single parameter’s impact, even with an
conceptually simple anomaly detection system [56] .

3) Adversarial Setting: A final characteristic unique to
the intrusion detection domain concerns the adversarial en-
vironment such systems operate in. In contrast, users of OCR
systems won’t try to conceal characters in the input, nor will
Amazon customers have much incentive (or opportunity) to
mislead the company’s recommendation system. Network
intrusion detection, however, must grapple with a classic
arms-race: attackers and defenders each improve their tools
in response to the other side devising new techniques. One
particular, serious concern in this regard is evasion: attackers
adjusting their activity to avoid detection. While evasion
poses a fundamentally hard problem for any NIDS [57],
anomaly detection faces further risks due to the nature
of underlying machine learning. In [58], Fogla and Lee
present an automated approach to mutate attacks so that they
match a system’s normal profile. More generally, in [59]
Barreno et al. present a taxonomy of attacks on machine-
learning systems.

From a research perspective, addressing evasion is a
stimulating topic to explore; on theoretical grounds it is
what separates intrusion detection most clearly from other
domains. However, we argue that from a practical perspec-
tive, the impact of the adversarial setting is not necessarily
as significant as one might initially believe. Exploiting the
specifics of a machine learning implementation requires
significant effort, time, and expertise on the attacker’s side.
Considering that most of today’s attacks are however not

deliberately targeting handpicked victims—yet simply ex-
ploit whatever sites they find vulnerable, indiscriminantly
seeking targets— the risk of an anomaly detector falling
victim to a sophisticated evasion attack is small in many
environments. Assuming such a threat model, it appears pru-
dent to focus first on addressing the many other challenges in
using machine learning effectively, as they affect a system’s
operational performance more severely.

IV. RECOMMENDATIONS FOR USING MACHINE

LEARNING

In light of the points developed above, we now formulate
guidelines that we hope will help to strengthen future
research on anomaly detection. We note that we view these
guidelines as touchstones rather than as firm rules; there
is certainly room for further discussion within the wider
intrusion detection community.

If we could give only one recommendation on how to
improve the state of anomaly detection research, it would be:
Understand what the system is doing. The intrusion detection
community does not benefit any further from yet another
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study measuring the performance of some previously untried
combination of a machine learning scheme with a particular
feature set, applied to something like the DARPA dataset.
The nature of our domain is such that one can always find
a variation that works slightly better than anything else in
a particular setting. Unfortunately, while obvious for those
working in the domain for some time, this fact can be easily
lost on newcomers. Intuitively, when achieving better results
on the same data than anybody else, one would expect this
to be a definite contribution to the progress of the field. The
point we wish to convey however is that we are working in
an area where insight matters much more than just numerical
results.

A. Understanding the Threat Model

Before starting to develop an anomaly detector, one needs
to consider the anticipated threat model, as that establishes
the framework for choosing trade-offs. Questions to address
include:

• What kind of environment does the system target?
Operation in a small network faces very different chal-
lenges than for a large enterprise or backbone network;
academic environments impose different requirements
than commercial enterprises.

• What do missed attacks cost? Possible answers ranges
from “very little” to “lethal.” A site’s determination will
depend on its security demands as well as on other
deployed attack detectors.

• What skills and resources will attackers have? If a site
deems itself at high risk for explicit targeting by an
attacker, it needs to anticipate much more sophisticated
attacks than those incurred by potential victims of
indiscriminant “background radiation” activity.

• What concern does evasion pose? The degree to which
attackers might analyze defense techniques and seek
to circumvent them determines the robustness require-
ments for any detector.

There are no perfect detectors in intrusion detection—
hence one always must settle for less-than-ideal solutions.
However, operators can make informed decisions only when
a system’s threat model is clearly stated.

B. Keeping The Scope Narrow

It is crucial to have a clear picture of what problem
a system targets: what specifically are the attacks to be
detected? The more narrowly one can define the target
activity, the better one can tailor a detector to its specifics
and reduce the potential for misclassifications.

Of course machine-learning is not a “silver bullet” guar-
anteed to appropriately match a particular detection task.
Thus, after identifying the activity to report, the next step is
a neutral assessment of what constitutes the right sort of tool

for the task; in some cases it will be an anomaly detector, but
in others a rule-based approach might hold more promise. A
common pitfall is starting with the premise to use machine-
learning (or, worse, a particular machine-learning approach)
and then looking for a problem to solve. We argue that such
a starting point is biased and thus rarely leads to the best
solution to a problem.

When settling on a specific machine-learning algorithm
as the appropriate tool, one should have an answer for
why the particular choice promises to perform well in the
intended setting—not only on strictly mathematical grounds,
but considering domain-specific properties. As discussed by
Duda et al. [22], there are “no context-independent [. . . ]
reasons to favor one learning [. . . ] method over another”
(emphasis added); they call this the “no free lunch theorem”.
Note that if existing systems target similar activity, it can be
illuminating to understand their shortcomings to motivate
how the proposed approach avoids similar problems.

A substantive part of answering the Why? question is
identifying the feature set the detector will work with: insight
into the features’ significance (in terms of the domain) and
capabilities (in terms of revealing the targeted activity) goes
a long way towards reliable detection. A common pitfall
here is the temptation to base the feature set on a dataset
that happens to be at hand for evaluation. However, if one
cannot make a solid argument for the relation of the features
to the attacks of interest, the resulting study risks foundering
on serious flaws.

A good example for the kind of mindset we deem vital for
sound anomaly detection studies is the work on web-based
attacks by Kruegel et al. [60]. From the outset, the authors
focus on a very specific class of attacks: exploiting web
servers with malformed query parameters. The discussion
convincingly argues for the need of anomaly detection
(such attacks share conceptual similarities, yet differ in their
specifics sufficiently to make writing signatures impractical);
and the authors clearly motivate the choice of features by
comparing characteristics of benign and malicious requests
(e.g., the typical length of a query’s parameters tends to
be short, while a successful buffer overflow attempt likely
requires long shellcode sequences and padding). Laying out
the land like this sets up the stage for a well-grounded study.

C. Reducing the Costs

Per the discussion in Section III-B, it follows that one
obtains enormous benefit from reducing the costs associated
with using an anomaly detection system. Anecdotally, the
number one complaint about anomaly detection systems
is the excessive number of false positives they commonly
report. As we have seen, an anomaly detection system
does not necessarily make more mistakes than machine
learning systems deployed in other domains—yet the high
cost associated with each error often conflicts with effective

311



operation. Thus, limiting false positives must be a top
priority for any anomaly detection system.

Likely the most important step towards fewer mistakes is
reducing the system’s scope, as discussed in Section IV-B.
Arguably, without a clear objective no anomaly detection
system can achieve a tolerable amount of false positives
without unacceptably compromising on its detection rate.
The setup of the underlying machine-learning problem also
has a direct impact on the number of false positives. Per
Section III-A, machine-learning works best when trained
using activity similar to that targeted for detection.

An anomaly detection system also requires a strategy
to deal with the natural diversity of network traffic (Sec-
tion III-D). Often, aggregating or averaging features over
suitable time intervals proves helpful, assuming the threat
model allows for coarser granularity. Another approach is to
carefully examine the features for their particular properties;
some will be more invariant than others. As a simple
flow-level example, the set of destination ports a particular
internal host contacts will likely fluctuate quite a bit for
typical client systems; but we might often find the set of
ports on which it accepts incoming connections to be stable
over extended periods of time.

Finally, we can reduce false positives by post-processing
them with the support of additional information. For ex-
ample, Gu et al.’s “BotHunter” system uses a “statistical
payload anomaly detection engine” as one tool among others
(Snort signatures, and a typical scan detector), and a final
stage correlates the output of all of them [61]. Likewise,
Anagnostakis et al.’s “Shadow Honeypots” validate the
results of anomaly detectors with an instrumented copy
of the protected system [62]. If we find automated post-
processing infeasible, we might still be able to reduce
costs by providing the analyst with additional information

designed to accelerate the manual inspection process.

D. Evaluation

When evaluating an anomaly detection system, the pri-
mary objective should be to develop insight into the system’s
capabilities: What can it detect, and why? What can it
not detect, and why not? How reliably does it operate?

Where does it break? In our experience, the #1 reason
that conference submissions on anomaly detection fail arises
from a failure to adequately explore these issues. We discuss
evaluation separately in terms of working with data, and
interpreting results.

1) Working with data: The single most important step
for sound evaluation concerns obtaining appropriate data to
work with. The “gold standard” here is obtaining access
to a dataset containing real network traffic from as large

an environment as possible6; and ideally multiple of these
from different networks. Work with actual traffic greatly
strengthens a study, as the evaluation can then demonstrate
how well the system should work in practice. In our experi-
ence, the best way to obtain such data is to provide a clear
benefit in return to the network’s operators; either, ideally,
by research that aims to directly help to improve operations,
or by exchanging the access for work on an unrelated area
of importance to the operators.

Note that the options for obtaining data differ with the
setting, and it often pays to consider potential data sources
early on when designing the detector. For example, hon-
eypots [63] can provide data (usually) free of sensitivity
concerns, though they cannot provide insight into how mali-
cious traffic manifests differently from benign “background”
traffic; or when working with companies that control large
quantities of the data of interest, one might need to plan
strategically by sending a student or staff member for an
extended stay. Alternatively, mediated trace access can be
a viable strategy [64]: rather than bringing the data to
the experimenter, bring the experiment to the data, i.e.,
researchers send their analysis programs to data providers
who then run them on their behalf and return the output.

Once acquired, the datasets require a careful assessment
of their characteristics. To interpret results correctly, one
must not only understand what the data contains, but also
how it is flawed. No dataset is perfect: often measurements
include artifacts that can impact the results (such as filtering
or unintended loss), or unrelated noise that one can safely
filter out if readily identified (e.g., an internal vulnerability
scan run by the security department). See [65] for further
discussion of issues relating to working with network data.

When evaluating an anomaly detection system, one al-

ways needs multiple datasets. First, one must train the
system with different data than used for ultimate evaluation.
(This is a basic requirement for sound science, yet over-
looked surprisingly often; see however [21] for a set of stan-
dard techniques one can apply when having only limited data
available). Perhaps less obviously, to demonstrate that the
system can adapt to different environments through learning
requires evaluation using data from multiple sources. We
stress that, as noted in Section III-E1, the DARPA and KDD
Cup traces cannot serve as viable datasets. Their only role
in contemporary research is for basic functionality tests and
cross-checking results (i.e., to test whether an approach is
hopelessly broken).

Subdividing is a standard approach for performing training
and detection on different traffic even when one has only a
single dataset from the examined environment. It works by
selecting subsets of the available data via random sampling.

6Results from large environments usually transfer directly to smaller net-
works, with the benefit that one can choose trade-offs more conservatively
in the latter. However, results collected in small environments rarely apply
directly to large ones.
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Subdividing can work well if it is performed in advance of
the actual study. Note however that the splitting must be
unbiased with regards to the features the anomaly detection
system examines. For example, when operating on a per-
flow basis, one should flow-sample the dataset rather than
packet-sample.

2) Understanding results: The most important aspect of
interpreting results is to understand their origins. A sound
evaluation frequently requires relating input and output on
a very low-level. Researchers need to manually examine

false positives. If when doing so one cannot determine
why the system incorrectly reported a particular instance,
this indicates a lack of insight into the anomaly detection
system’s operation. Note, one needs to relate such false
positives to the semantics of the traffic; it is hardly helpful to
frame them in the mathematical terms of the detection logic
(“activity exceeded the distance metric’s threshold”). If faced
with too many false positives to manually examine, then one
can employ random sampling to select an appropriately sized
subset for direct inspection.

False negatives often prove harder to investigate than
false positives because they require reliable ground-truth,
which can be notoriously hard to obtain for an anomaly
detection system that aims to spot previously unseen activity.
Nevertheless, such an assessment forms a crucial part of
the story and merits careful attention. It can be highly
beneficial to consider the question of ground-truth already
at the beginning of a study. If one cannot find a sound way
to obtain ground-truth for the evaluation, then it becomes
questionable to pursue the work at all, even if it otherwise
appears on a solid foundation. One must collect ground-truth
via a mechanism orthogonal (unrelated) to how the detector
works. One approach is to use a different mechanism to label
the input, with the obvious disadvantage that such input will
only be as good as this other technique. (Sometimes a subset

of the data can arguably be labeled in this fashion with high
accuracy. If so, then provided that the subset is formed in a
fashion independent from how the detector under develop-
ment functions, one can extrapolate from performance on the
subset to broader performance.) Another solution is manual
labeling—often however infeasible given the large amount
of data a NIDS operates on. A final compromise is to inject a
set of attacks deemed representative of the kind the anomaly
detection system should detect.

An important but often overlooked additional consider-
ation is to include in an evaluation inspection of the true
positives and negatives as well. This need arises from the
opacity of the decision process: with machine learning, it
is often not apparent what the system learned even when
it produces correct results. A classic illustration of this
problem comes from a Pentagon project from 1980s [66]:
a neural network was trained to detect tanks in photos,
and in the initial evaluation it was indeed able to correctly
separate photos depicting tanks from those which did not. It

turned out, however, that the datasets used for training and
evaluation shared a subtle property: photos of tanks were
taken on a cloudy day, while all others had a blue sky. As
later cross-checking revealed, the neural network had simply
learned to detect the color of the sky.

We can in fact turn around the notion of understanding the
origins of anomaly detection results, changing the emphasis
from gaining insight into how an anomaly detection system
achieves its results to instead illuminating the problem
space. That is, machine learning is often underappreciated
as potentially providing a means to an end, rather than an
end itself: one employs it not to ultimately detect malicious
activity, but rather to understand the significance of the
different features of benign and malicious activity, which
then eventually serve as the basis for a non-machine-learning

detector.
For example, consider spam classification. By examining

which phrases a Bayesian classifier employs most effectively
one might discover that certain parts of messages (e.g.,
subject lines, Received headers, MIME tags) provide
disproportionate detection power. In this contrived example,
one might then realize that a detector that directly exam-
ines those components—perhaps not employing any sort of
Bayesian-based analysis, but instead building on separate
domain knowledge—can provide more effective classifica-
tion by leveraging the structural properties of the domain.
Thus, machine learning can sometimes serve very effectively
to “point the way” to how to develop detectors that are
themselves based on different principles. (The idea here is
similar to that employed in Principle Component Analysis,
which aims to find which among a wide set of features
contribute the most to particular clusters of activity [22].)

We note that such an approach can also help overcome
potential performance bottlenecks. Many machine learning
algorithms are best suited for offline batch operation, and
less so for settings requiring low-latency real-time detection.
Non-machine-learning detectors often prove significantly
easier to implement in a streaming fashion even at high data
rates.

A separate consideration concerns how an evaluation
compares results with other systems found in the literature.
Doing so requires care to ensure fair treatment. The suc-
cessful operation of an anomaly detection system typically
requires significant experience with the particular system,
as it needs to be tuned to the local setting—experience that
can prove cumbersome to collect if the underlying objective
is instead to understand the new system. Nevertheless, as a
first step a comparative study needs to reproduce the results
reported in the literature for the “foreign” system.

Finally, the most convincing real-world test of any
anomaly detection system is to solicit feedback from opera-
tors who run the system in their network. If they genuinely
deem the system helpful in their daily routine, that provides
compelling support for the study.
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V. CONCLUSION

Our work examines the surprising imbalance between the
extensive amount of research on machine learning-based
anomaly detection pursued in the academic intrusion detec-
tion community, versus the lack of operational deployments
of such systems. We argue that this discrepancy stems in
large part from specifics of the problem domain that make
it significantly harder to apply machine learning effectively
than in many other areas of computer science where such
schemes are used with greater success. The domain-specific
challenges include: (i) the need for outlier detection, while
machine learning instead performs better at finding similari-

ties; (ii) very high costs of classification errors, which render
error rates as encountered in other domains unrealistic;
(iii) a semantic gap between detection results and their
operational interpretation; (iv) the enormous variability of
benign traffic, making it difficult to find stable notions of
normality; (v) significant challenges with performing sound
evaluation; and (vi) the need to operate in an adversarial
setting. While none of these render machine learning an
inappropriate tool for intrusion detection, we deem their
unfortunate combination in this domain as a primary reason
for its lack of success.

To overcome these challenges, we provide a set of guide-
lines for applying machine learning to network intrusion
detection. In particular, we argue for the importance of
obtaining insight into the operation of an anomaly detection
system in terms of its capabilities and limitations from

an operational point of view. It is crucial to acknowledge
that the nature of the domain is such that one can always

find schemes that yield marginally better ROC curves than
anything else has for a specific given setting. Such results
however do not contribute to the progress of the field without
any semantic understanding of the gain.

We hope for this discussion to contribute to strengthening
future research on anomaly detection by pinpointing the
fundamental challenges it faces. We stress that we do not
consider our discussion as final, and we look forward to
the intrusion detection community engaging in an ongoing
dialog on this topic.
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