Overcoming Markets for Lemons in ICT Products and Services: Metrics, Labelling, and Policy

John C. Mallery (jcma@mit.edu) WFA Group, LLC

Invited presentation at the 2021 C3E Conference on Supply Chain Cyber Defense, October 27-28, 2021.

Version: 10/28/21 4:36 PM

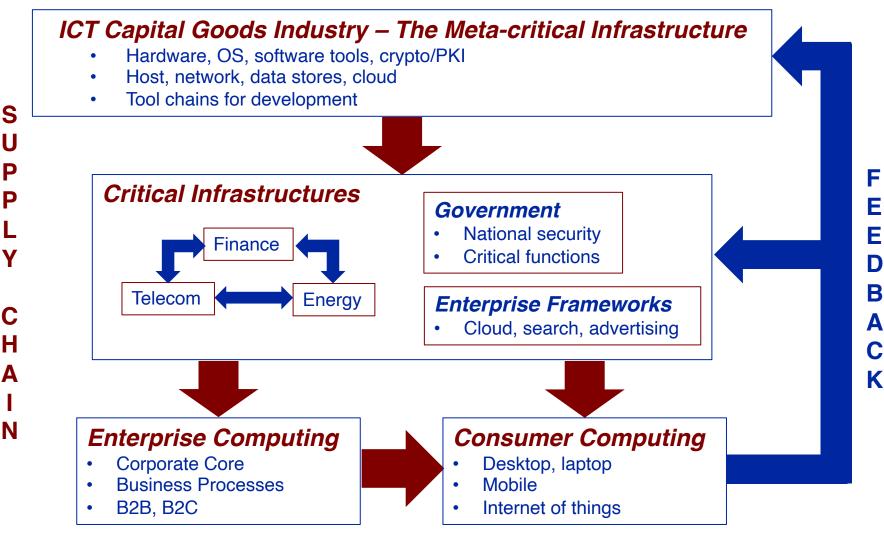
- Problem: Market Failures for Cyber Security and Resilience
- Solution: Enable Market Scaling by Monetizing Cyber Security & Resilience
- Multipliers In ICT Production
- Strategy Informed by Work Factor Analysis (WFA)
- Work Factor Engineering (WFE)
- Dimensions of Work Factor Analysis
- Metrics For Cyber Security And Resilience
- 15 Policy Levers for Incentivizing Better Assurance and Resilience
- Policy: Prioritize Efforts to Achieve Work Factor Impact on Adversaries

Problem: Market Failures for Cyber Security and Resilience

Economic Issues

- Risk transfer downstream
 - Customers bear costs but are not able to reengineer flawed architectures
 - Producer business models based on risk transfer
- Market for lemons buyers will not pay for better security
 - Asymmetric information about information assurance
- Rigid industrial ecosystems with widespread lock-in
 - Outdated architectures
- Difficulties calculating ROI for security and resilience
 - Makes investment decisions difficult

Technical Shortcomings

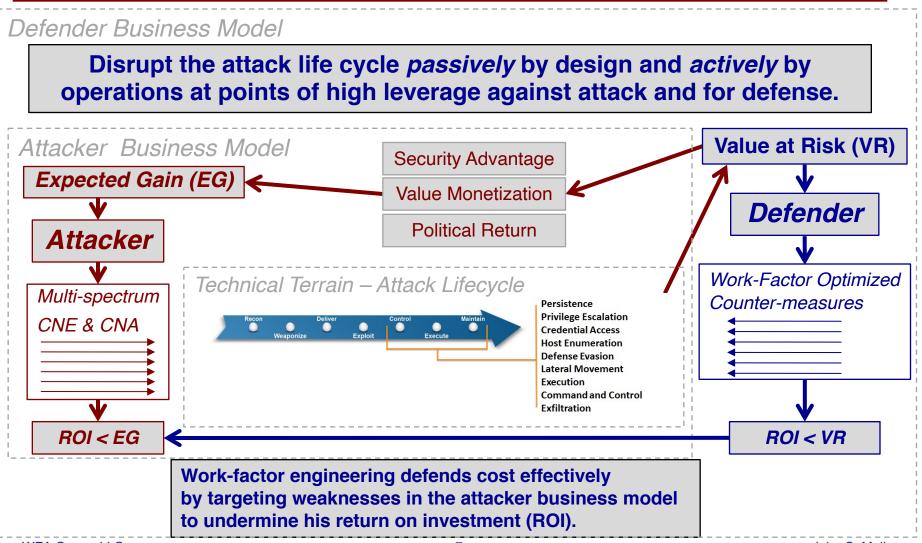

- Lack of memory safety
 - But, some progress by industry
- Unmanageable complexity
 - Poor architectures fail to optimize locality
- Lack of total system security framework
 - Multi-spectrum attacker
 - Remote access
 - Insiders witting or unwitting
 - Supply chain
 - Crypto/authorization subversion of authorization, identity, PKI, side channels, etc.
 - Conservation of threat
 - Enumeration of attack surfaces
- Lack of information flow control enforcement
- Insecure business processes

Solution: Enable Market Scaling by Monetizing Cyber Security & Resilience

- Success:
 - Market forces spread reasonably high assurance and resilience throughout society and drive continuous innovation (Precedent: 1990s build out of civilian Internet)
- Requirements:
 - *Metrics:* Ability to accurately measure and compare security and resilience properties
 - Retrodictive metrics
 - Predictive metrics
 - Return on Investment (ROI): Ability of buyers of IT to reliably understand & measure risk
 - Anticipate, assess, and measure threat levels against the enterprise
 - Estimate losses due to potential cyber attacks
 - Determine commensurate levels of investment in security & resilience
 - Technology Injection: Transformation of the IT technology plane for security and resilience
 - Strongly bias work factors in favor of defender against attacker
 - Dramatically harden systems to prevent intrusions
 - Architect for adaptive resilience and rapid recovery
 - Align security with functionality by making it inherent and largely transparent
 - Radically increase productivity of secure system development, certification, accreditation, and operation
 - Deliver faster development cycles and superior total ownership cost than current generation COTS
 - Realign Incentives: Alignment of market incentives for uptake ultimately next gen COTS
 - Stratify markets according to assurance needs to provide a learning curve and a path to scale for new transformational technologies
 - Phased introduction of safety regulations, liability and meaningful cyber insurance as industry is genuinely able to adopt transformational technologies
 - Catalyze ecosystem re-equilibration at higher assurance level
 - * Attenuate rigidities in IT capital goods ecosystem that impede technical evolution

Multipliers In ICT Production:

From Engines of Vulnerability to Engines of Trust


Strategy Informed by Work Factor Analysis (WFA)

- Goal: Make technical, operational, or organizational moves that cumulatively:
 - Impose hard problems on attackers (prefer geometric impact)
 - Facilitate coordinated defense (eliminate adverse multipliers)
 - Increase mission risk for attacker
- Work Factor Analysis (WFA) characterizes the difficulty of executing tasks
 - Analogous to computational complexity for cryptography
 - Security meta-metric that focuses on difficulty plan elements for attack and defense
 - Extends beyond technical designs to domain embeddings and cyber operations research
 - Relevant for force multiplier estimations
- Distinguish static vs. dynamic defense
 - Security Engineering: System, platform, enterprise
 - Defense in Depth:
 - Early Warning Threat intel; anticipation
 - Monitoring Active checking; detect & track attacker
 - Intervention Correct misconfigurations; Channel & expulse attacker
 - Learning Iterative refinement of system defenses
- Cyber resilience engineering requires work factor analysis to compare attack/defense difficulty across modes of recovery, reconstitution
 - Intelligent adversaries move to the weakest attack surface
 - Minimize structure/resource sharing across attacker plans

Work Factor Engineering

Integrates Technical, Organizational, and Economic Perspectives:

The Defender Wins When The Attacker's Expected Gain Is Less Than Attacker's Investment

Dimensions of Work Factor Analysis

• Resources

- Computational complexity (mathematical leverage)
- Cost (often related to complexity)
- Expertise and Knowledge (technical specialties, domain knowledge, human capital)

• Planning, Execution, and Information Management

- Cognitive difficulty (model as formulation of non-linear plans and counter plans)
- Learning difficulty (reversing obfuscation, devising new tactics or approaches)
- Organizational effectiveness/dysfunction (seams, integration, culture, psychology)

• Risk

- Uncertainty (confidence, incomplete information, bounded rationality)
- Information differential gain/loss (innovation, leakage by insider, espionage, diffusion)
- Motivation (cadre, personal or referent group risk)
- Culture (risk acceptance or aversion)

Metrics For Cyber Security And Resilience

Retrodictive Metrics

- Only recently taken seriously
- Cyber Solarium Commission Recommendation
 - National Cybersecurity Certification and Labeling Authority (Recommendation. 4.1)
 - Product certification and attestation
 - Accredited certifying agents
 - Comparative scoring
- NIST Cybersecurity Labeling Program
 - May 2021 Executive Order 14028 requires consumer labeling for:
 - Internet of Things (IoT) products
 - Secure software development practices
- Retrodiction Paradigm:
 - Identify flaws in technical architectures underlying vulnerabilities in the National Vulnerability Database (NVD)
 - Sequence architectural flaws for correction based on frequency and severity of exploitation
 - Problem: The attacker moves onto new attack surfaces
 - But, likely experiences a higher attack work factor

Predictive Metrics

- Predictive metrics measure a system's ability to resist cyber-attacks, defend against them, or continue to function
 - Basis: Formal proofs, computational complexity, statistical likelihoods
- Measurement Tradeoffs:
 - Cost (easy) vs. security (hard)
 - Efficiency (easy) vs. resilience (hard)
- Missing predictive paradigms for:
 - Cyber security
 - Cyber resilience
- Use work factor analysis for cyber security and defense
 - Static resistance
 - Dynamic defense
- Extend work factor analysis for resilience
 - Reconstitution
 - Adaptive range
- Both are infosec grand challenge problems

"I cannot scale my investment in security [and resilience] without meaningful predictive metrics." – Dr. Steven King, Associate Director for Information Assurance, Office of the Deputy Under Secretary of Defense for Science & Technology, December 15, 2015.

15 Policy Levers for

Incentivizing Better Assurance and Resilience

National

- 1. Federal R&D and Procurement
 - Invest in high-leverage security and resilience research and catalyze uptake via procurement
- 2. Name and Shame
 - Bad publicity around serious cyber breaches
 - Share pressure and CEO firings motivate Csuite responses (e.g., Heartland Payments)
- 3. Indirect Incentives via Best Practices
 - Industry best practices
 - NIST Cyber Security Framework
 - Certification of conformance to security standards (e.g., Common Criteria, ISO)
- 4. Insurance Markets
 - Partition market segments based on risk
 - Allocate risk where it can be managed
- 5. Tax Policy
 - Tax credits for security R&D
 - Tax credits for enterprise defense improvements
 - Accelerated depreciation rates for security modernization
- 6. Legal Responsibility
 - Criminal actions for egregious negligence
 - Civil actions (Based on phased reduction in liability exemptions)
- 7. Direct Regulation
 - Telecom, energy, finance, and more

International

- 8. Trade Incentives National
 - Block trade in substandard products
 - Penalties for "cyber security pollution"
- 9. Major Vendor Unilateral Action
 - Intel, Arm, Microsoft, Google, Apple, Cisco
- 10. Industry Standards for Products and Services
 - TCG Trusted Computing Model (TPM)
- 11. Voluntary Accords for Sectors
 - Core banks (later Basel Accord?)
 - International Cyber Stability Board?
- 12. Technology Norms
 - Industry best practices,
 - NIST Cybersecurity Framework
 - NIST Cybersecurity labeling
- 13. National Regulation based on Standards
 - Nuclear reactor operators, i.e., IAEA
- 14. Policies of Supranational Entities and Alliances
 - EU, NATO critical infrastructure
- 15. World Trade Organization (WTO)
 - Information Technology Agreement
 - Digital Trade Agenda

Policy: Prioritize Efforts to Achieve Work Factor Impact on Adversaries

- 1. Cyber Blitz: Orchestrate strategies that define actual paths to success (Adm. (ret) William O. Studeman)
 - Identify objectives and formulate strategy
 - Socialize the strategy and objectives
 - Organize for success and prioritize effort for impact
 - Gain leverage use work factor analysis
 - Run fast realize speed in implementation and exploration of options;
 - Provide effective leadership and governance to drive results across public and private spheres
- 2. Research: Fund Federal R&D programs to develop transformational ICT
 - Work Factor Engineering
 - Predictive Metrics: Inform transformational technologies and strategy
 - * Retrodictive Metrics: Prioritize correction of architectural flaws in deployed systems
 - * Better Information: Enable market mechanisms to price security & resilience accurately
 - Depends on accurate buyer ROI for security & resilience
 - Security: Information Flow Control in the enterprise
 - Ground in Security Tagged Architecture (STA) processors
 - Encapsulate legacy systems and mediate communication on the network and in the host
 - Resilience: Self-adaptive computation & networking
- 3. Realignment: Deploy incentives to drive up information assurance & resilience in the current technology plane
 - Prioritize effort based on retrodictive metrics and red teaming
 - Apply Work Factor Engineering across the stack from hardware to business processes
- 4. Deployment: Inject transformational technologies into ICT sectors
 - Examples: Memory safety, zero-trust architectures, and information flow control
 - Drive uptake and scaling of new architectures
 - Federal Procurement: \$20B in DoD & NSA Cloud contracts to scale STA processor production
 - * Regulation: Critical infrastructure sectors for energy, telecommunications, finance
 - Whole-of-Nation: Private-public partnership
 - Drive down costs through high-productivity secure software engineering
- 5. Scale: Rapidly transition through pilots that can be cloned, tailored, and scaled into other sectors

Recommendations

• Launch a Cyber Blitz

- Create Cyber Strategic Depth for the nation and strong, resilient, defensible cyber infrastructures for the US military and civilian sectors
- realize military cyber resilience to dramatically enhance the ability of the US to deter adversaries across all conflict levels and defeat them when necessary.
- Bring about radical improvements in productivity for software engineering and other ICT design activities will assure US technology leadership

Technology

- Metrics: Initiate a high-speed research program on work factor analysis and enterprise security engineering
 - Program: Planning for Asymmetric Cyber Advantage (PACA) 2015
 - Develop multi-spectrum metrics for security and resilience engineering
- Systems: Initiate programs for work-factor informed clean-slate stacks for computing and networking
- Handling the Legacy: Initiate programs to retrofit the legacy with moves that raise adversary work-factor
- Uptake Transformational Technologies: Protect legacy systems via routers, bodyguards, emulators, recompilation, software rewrites

Industrial Strategy

- Start: Initiate a planning process to move key ICT components, systems, and sectors to higher levels of assurance and resilience
- Strategize: Develop an incentive strategy to catalyze update security and resilience best practices
- Modernize: Deploy transformational technologies in the defense sector to rapidly gain military cyber resilience
- Survive: Apply legacy hardening and resilience moves in the civilian sector to improve their posture
- Succeed: Transition transformational systems to critical infrastructure and the civilian sector

Strategic Context

- Risks: Adversaries exploit vast societal vulnerabilities exposed via pervasive insecure ICT
 - Vast intelligence losses for US and allies
 - \$3T in cyber-enabled IP theft against the US
 - Major weapons systems stolen (e.g., F35)
 - Deficit (crisis?) in military cyber resilience
 - Deterrence weakened
 - Warfighting capacities undermined
 - Destabilization of international security architectures
 - Crisis instability
 - Insecurity dilemmas
 - Misperception and miscalculation
- Strategic Impact: Adversaries are changing the distribution of technology, wealth, and power
 - Interaction Framework: action possibilities and payoffs for actors
 - Meta-power: Actions that change the distribution of action possibilities and payoffs
- Solution: USG must undertake a Cyber Blitz (Studeman) necessary to improve the US position at scale with speed
 - USG must implement an industrial strategy (long-, medium-, and short-term)
 - Overcome public goods dilemmas in security arising from market failures
 - Identify and exploit high-leverage technologies and frameworks
 - USG must catalyze a transformation of the ICT technology plane
 - The private sector must raise security and resilience on a prioritized basis
 - The security research community must fuel the blitz with new technical architectures and supporting metrics (retrodictive and predictive) that are work-factor aware

Dimensions of Multi-level Cyber Conflict: Information operations target societal systems by reaching through the cyber substrate

Dimension	No	Layers	Below LOAC	Description		
Ideation	9	Socio- cultural	Yes	Ideation, value systems, cultural dynamics, Internet ecumene.		
	8	Political	Yes	Political dynamics; ideology; political systems; legal systems; international governance; human rights; information control.		
Policing	5	Criminality	Yes	International law enforcement cooperation, domestic law enforcement, criminal investigations, anti-crime efforts.		
Security	7	Intelligence	Yes	Espionage, counter-intelligence, cyber defense; counter- terrorism; counter-influence.		
	6	Military	Yes (Gray Zone); No	Inter-state cooperation & competition; balance of power; alliances; sovereignty; domains of land, sea, air, space, cyber; cyber defense & offense; information operations; defense industrial base.		
Economics	4	Critical Infrastructure	No (at scale)	Finance, telecom, energy.		
	3	Economic	Yes	Systemic stability, exchange rates, finance, trade, portfolio & direct investment, globalization.		
	2	Technology	Yes	Operational technologies; standards and practices in communications, computation and cryptography.		
	1	Science & Engineering	Yes	Research and development, especially ICT.		

Multi-spectrum Adversaries (MSA) Orchestrate a Range of Capabilities Against a Target

Modes of Multi-spectrum Cyber Operations

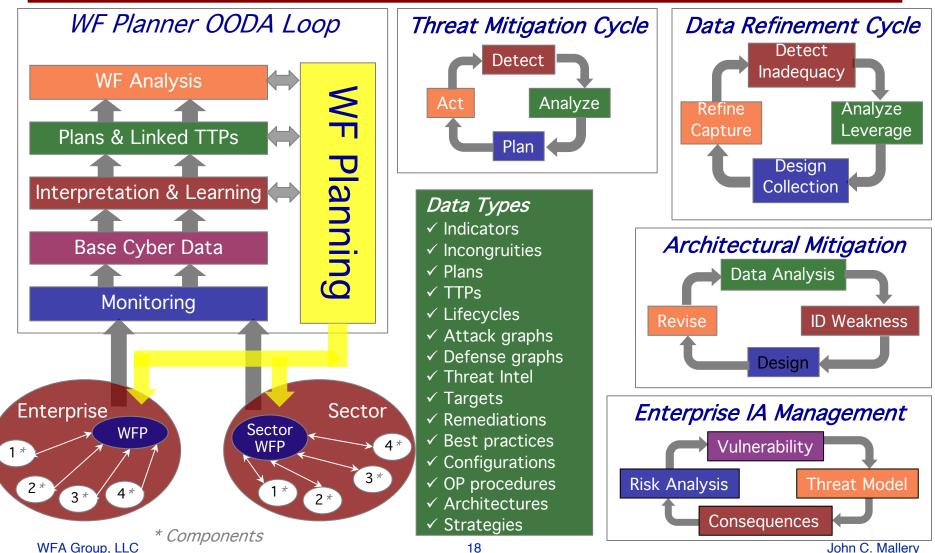
- 1. Remote Access CNE, CNA 'hacking'
 - Penetration via network (moving from OS to apps)
 - Accessing backups
- 2. Insiders Traditional agents, social engineering
 - Disgruntled, ideological, or compromised employees
 - Unwitting violation of security practices (compromised credentials)
 - Digital media insertion
- Supply Chain Technology influence, including crypto and PKI
 - Design of HW, SW, environments
 - Manufacturing
 - Delivery and installation
 - Operation and managed services
 - Upgrade and maintenance
- Leakage, Crypto attacks Signal processing, machine learning, big data
 - Side channels (e.g., differential power analysis) and covert channels
 - Cloud co-tenancy
 - RF/EM Wireless
 - Digital wake outside IA defended zone

Principles of Information Assurance

- Gosler's Law: Adversarial threat is conserved across attack surfaces
 - Architectural change displaces preferred attack points
 - Move attack points to where they can be best defended
- Markowitz's Law: A minimal complexity system has fewer attack surfaces.
 - Eliminate unnecessary functionality
- Architectural Leverage: Effective security can be achieved through synergistic architectural moves targeting attacker work factor
 - Success is achieved by raising attacker work factor across attack surfaces beyond the resources available to the attacker, or worthy of the target
- Low Diversity Risk: Concentration of value attracts better resourced attackers whenever attacker work factors do not increase faster than the value at risk
 - Attackers can gain economies of scale through common mode vulnerability
 - Multiplexing functionality on a platform aggregates the separate threat models
- Giorgio's Law: Information sharing and preserving confidentiality are inversely correlated
 - Sharing (and mobility) multiplies attack surfaces!
 - Eliminate unnecessary sharing, use fine-grained control (e.g., security tagged architectures)

Cyber Risk Reduction

Risk = f	(Threat		Vulnerability		Consequences)	
Attacker	Intent	Capabilities	Inherent	Introduced	Fixable	Fatal
Defender	Deter	Disrupt	Defend	Detect	Restore	Discard
Strategy*	Shape Interactions		Increase Assurance		Increase Resilience	
Deterrence*	Punishment		Denial		Denial/Entanglement	
Norms*	Stability Measures		Architectural Change		Duty to Assist	
Trade*	Shape Interactions		Industrial Policy		Industrial Policy	
Visibility*	Illuminating Sources & Methods		Map To Societal Functions		Map Critical Dependencies	


DSB Layered approach for managing cyber risk:

- When properly executed, defensive strategies can defend against Tier 1 and 2 threats.
- Defending against known vulnerabilities is an insufficient strategy against Tier 3-4 threats.
- Since it will be impossible to fully defend our systems against Tier 5-6 threats, deterrence must be an element of an overall risk reduction strategy. Additional measures are required, such as consequence management.

* Mallery addition

Source: Defense Science Board, Resilient Military Systems and The Advanced Cyber Threat, January 2013: 6. WFA Group, LLC 17 John C. Mallery

Cyber Defense Work Factor Planner (WFP): **Operational Monitoring, Analysis, and Mitigation Planning** Improves through Epistemic Refinement Loops

Raise The Information Assurance Across Globalized ICT To Obsolesce Offensive Techniques and Moderate Cyber Insecurity Dilemmas

- Technology Norm: Raise the assurance level to implement, ergo deterrence by denial
 - Arms control = foregoing offensive capabilities
 - Cyber arms control = Shift the balance in favor of defense
 - Constrains opportunities for offensive cyber operations
- Problem: State restraint is imperfect
 - Cyber weapons are "covert capability"
 - Inspection and verification are unlikely
 - Enforcement is impractical
 - Law-following states are penalized
- Approach:
 - Enhance security & resilience for military & civilian systems
 - Increase survivability -> increase predictability for military cyber stability
 - Prioritize based on criticality and downstream market scope
 - Phased implementation
 - Target architectural changes to retire broad spectrum vulnerabilities
- Benefits:
 - Verifiable and enforceable raising of the costs to cyber operations
 - Move from reactive incident response towards proactive architectural change
 - Address public goods dilemma (macro-micro problem)
 - Gain leverage to impact ~\$4.3T annual sales of ICT products
 - Moderate cyber insecurity dilemmas (Mallery, 2018a).

International Vulnerabilities Equities Process (IVEP)

Precedents

- US Vulnerabilities Equities Process
 - Published 2008, revised 2014, 2017
- Decision to disclose vs. retain vulnerabilities

What is IVEP?

- Identify high risk flaws:
 - Report significant cyber vulnerabilities and architectural flaws
 - Perform security analysis
- Short-term:
 - Enable rapid patching of critical vulnerabilities
 - Undermine attacker TTPs
- Medium-term:
 - Incentivize industry to fix flawed architectures
- Who implements security fixes?
 - Private sector
- What are the targets:
 - Critical vulnerabilities
 - Broad spectrum vulnerabilities
 - Key enablers for cyber arsenals

What actors execute IVEP?

- 1. **Report:** Governments, industry, academia report high risk flaws
- 2. **Analyze:** Technical experts perform security analyses
- 3. Incentivize: Industry, governments, and international organizations implement policies to incentivize fixes

What are the organizational modes?

- 1. **Distributed:** Entities operate independently and interact with each other as appropriate
- 2. **Coordinated:** Central institution(s) coordinate archiving, analysis, and/or implementation
- Group Options: Small group, collective defense organization, trade groups (e.g., WTO), or UN
- 4. *Membership:* Governments, industry sectors, open source communities