

@PAD: ADVERSARIAL TRAINING OF POWER SYSTEMS AGAINST DENIAL OF SERVICE ATTACKS

Ali I Ozdagli, Carlos Barreto, and Xenofon Koutsoukos Department of Electrical Engineering and Computer Science Vanderbilt University

> HotSoS 2020 Virtual Symposium: Sept. 22-24, 2020 Session 1

LAYOUT

- Introduction
- Methodology
- Evaluation
- Conclusion and Future Research
- Acknowledgements

INTRODUCTION

- Smart Energy Grids (SEG) to become essential by 2030
- Control, monitoring, and telecommunication networks.
- Power systems: Previously isolated, currently accessible to general public.
- **Open to cyber-physical threats**

MOTIVATION

- Quality requirements for power systems
	- Monitoring and analysis of disturbances and faults
- Difficulty of human recognition for abnormal events for large systems
- Exploration of machine learning (ML) for discriminating power system disturbances [1]
- Failure of ML for discrimination in high-dimensional inputs

[1] Hink, Raymond C. Borges, Justin M. Beaver, Mark A. Buckner, Tommy Morris, Uttam Adhikari, and Shengyi Pan. "Machine learning for power system disturbance and cyber-attack discrimination." In *2014 7th International symposium on resilient control systems (ISRCS)*, pp. 1-8. IEEE, 2014.

HYPOTHESIS & OBJECTIVE

- Denial-of-Service Attacks
	- Attack on sensors (features)
	- Delay of data \rightarrow *Deletion* of feature
- Hypothesis

Deletion of targeted features may cause misclassification [2]

• Objective

i) Development of a DoS attack model to deceive neural network (NN) classifiers

ii) Development a defense model against such DoS attacks

ASSUMPTIONS

- White-box attack: Access to the control system/sensor readings
- Adversary resources: attack on limited number of sensors
- RELU activated neural network
- Guided adversary: attack on *abnormal* events
- Neither data nor attack is time-correlated

METHODOLOGY ATTACK MODEL

• Find features to delete to maximize prediction error

$$
\alpha_i^{\max} = \arg \max \left[1 - y_i \hat{y}_i \right]_+ \n= \arg \max \left[1 - y_i F(x_i \circ (1 - \alpha_i)) \right]_+ \ns.t. \quad \alpha_i \in \{0, 1\}^d \n\sum_{j=1}^d \alpha_{ij} \le K
$$

If the adversary does not cause any misprediction, then the error is zero

 $F(x)$: discriminator neural network $x_i \in \mathbb{R}^d$: input $y_i \in \{-1, +1\}$: true label $\qquad \widehat{y}_i \in \{-1, +1\}$: predicted label $\alpha_{\,i}~=~\left[\alpha_{\,i\,1}\,,\, \cdots\,,\, \alpha_{\,i\,j}\,\right]$: features to be deleted $\qquad \qquad K\colon$ attacker budget

SOLVING FOR ATTACK MODEL

- For linear classifiers, the optimization problem presented is a convex mixed-integer LP (MILP) $\alpha_i^{\text{max}} = \arg \max \left[1 - y_i \hat{y}_i\right]_+$
	- NP-Hard, solved heuristically

= arg max $[1 - y_i F(x_i \circ (1 - \alpha_i))]$

- For NN with RELU activation, the solution space is not convex MILP
	- Still solvable by computationally exhaustive nonlinear programming (NILP) approaches
- Relaxation: NN with RELU holds piece-wise linearity characteristics
	- Reconstruction of NN as a set of logic formulas
	- Utilization of Disjunctive Normal Form (DNF) [3]
	- NN can be written as a MILP using DNF

[3] Katz, Guy, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. "Reluplex: An efficient SMT solver for verifying deep neural networks." In International Conference on Computer Aided Verification, pp. 97-117. Springer, Cham, 2017.

DNF RELAXATION

• Example for single layer NN:

\n $\hat{y} = \text{RELU}(w \, x)$ \n	\n $\alpha_{i,1} = \arg \max \left[1 - y_i \, \hat{y}_i \right]_+$ \n	
\n $\text{NN} = \max(0, w \, x)$ \n	\n $\text{s.t. } \alpha_i \in \{0, 1\}^d$ \n	\n $\text{MLP for the first DNF}$ \n
\n $(\hat{y} == w \, x \land y > 0)$ \n	\n $\hat{y}_i == w \, x_i \circ (1 - \alpha_i)$ \n	
\n $\text{NNF} = \sum_{j=1}^d \alpha_{ij} \leq K$ \n	\n $\text{NILP for the first DNF}$ \n	
\n $\hat{y}_i = w \, x_i \circ (1 - \alpha_i)$ \n		

• For all clauses:

 $\alpha_i^{\text{max}} = \arg \max \left[1 - y_i F(x_i \circ (1 - \alpha_i))\right]_+$ Ideal Optimal Solution $\alpha_{i,1},\ldots,\alpha_{i,k}$

- Limitation: 2^k clauses for k neurons
- Further relaxation: No need to maximize error among all clauses
	- We only need one clause that will cause mislabeling

FINAL ATTACK MODEL

 $\star/$

 $\star/$

Input: (x_i, y_i) , w, $F(x)$

Output: α_i

1 Generate DNF clauses for the given weights of the network

2 foreach DNF clause set do

- Assign clause components as constraints to Equation 2 3
- Solve Equation 2 with new constraints $\overline{\mathbf{4}}$
- if Problem is infeasible then 5

continue with the next clause set

else $\overline{7}$

6

8

```
Obtain \alpha_i
```

$$
\varphi \quad \text{Predict the label} \rightarrow \hat{y}_i = F(x_i \circ (1 - \alpha_i))
$$

if $\hat{y}_i == normal$ then 10 /* there is a successfully attack!
continue with the next input (x_{i+1}, y_{i+1}) 11

12 if
$$
\hat{y}_i == normal
$$
 for all DNF clause sets **then**
\n/* there is no successfully attack!
\n13 $\alpha_i = 0$

14 **continue** with the next input (x_{i+1}, y_{i+1})

- Worse-case scenario:
	- Go through all clauses
	- Find no solution
	- O(2^k) vs O($K(d K)!$
- Further relaxation:
	- Limit number of clauses

$$
\alpha_i^{\max} = \arg \max \left[1 - y_i \hat{y}_i\right]_+
$$

= arg max $\left[1 - y_i F(x_i \circ (1 - \alpha_i))\right]_+$
s.t. $\alpha_i \in \{0, 1\}^d$

$$
\sum_{j=1}^d \alpha_{ij} \leq K
$$
 Eq. 2

METHODOLOGY DEFENSE MODEL

- MiniMax Problem
	- Minimization of average maximum prediction error over the entire dataset

$$
\min_{w} \max_{\alpha_1, ..., \alpha_n} \frac{1}{n} \sum_{i=1}^{n} [1 - y_i \ F(x_i \circ (1 - \alpha_i))]_{+}
$$

- One-shot training strategy [4]:
	- Train baseline NN with a dataset
	- Generate adversarial example dataset using baseline
	- Train a new NN with adversarial example dataset

EVALUATION

- Two categories
	- Normal event
	- Abnormal events
- 128 features
- \sim 4000 events for training
- \cdot ~1000 events for testing
- Ratio of normal events to abnormal events is \sim 28%

Hink, Raymond C. Borges, Justin M. Beaver, Mark A. Buckner, Tommy Morris, Uttam Adhikari, and Shengyi Pan. "Machine learning for power system disturbance and cyber-attack discrimination." In *2014 7th International symposium on resilient control systems (ISRCS)*, pp. 1-8. IEEE, 2014.

EFFECTIVENESS OF ATTACK

- Baseline NN model
	- Single hidden layer (5 neurons)
	- RELU for hidden layers
- Number of clauses, $2^5 = 32$
	- Clause modeled with CVXPY and Gurobi
- Attack model
	- Budget $(K = \{1,3,6\})$ corresponding to $\{1\%, 2.5\%, 5\%\}$ of all features

EFFECTIVENESS OF DEFENSE

- Adversarial data generation with budget ($K = \{1,3,6\}$) for training
- Generalization over original training and testing data
- Attack on the defense model

Accuracy in Percentage

SUMMARY & CONCLUSION

- DoS attack model is very powerful
	- Faults and attacks could be obscured
- NN with RELU can be modeled as piece-wise MILP
	- Features-to-delete can be found effectively
- Minimax approach as a defense mechanism
	- One-shot training improves the robustness against attacks to some degree

FUTURE RESEARCH

- More reliable defense models
- Multiple categories
- Black-box models
- MILP for more complex networks (convolutional)

ACKNOWLEDGEMENT

- Science of Security Program
- IBM Graduate Fellowship

THANK YOU!

For follow-up questions: Ali.I.Ozdagli@vanderbilt.edu

Xenofon.Koutsoukos@vanderbilt.edu

UNIVERSITY