

@PAD: ADVERSARIAL TRAINING OF POWER SYSTEMS AGAINST DENIAL OF SERVICE ATTACKS

Ali I Ozdagli, Carlos Barreto, and Xenofon Koutsoukos Department of Electrical Engineering and Computer Science Vanderbilt University

> HotSoS 2020 Virtual Symposium: Sept. 22-24, 2020 Session 1

LAYOUT

- Introduction
- Methodology
- Evaluation
- Conclusion and Future Research
- Acknowledgements

INTRODUCTION

- Smart Energy Grids (SEG) to become essential by 2030
- Control, monitoring, and telecommunication networks.
- Power systems: Previously isolated, currently accessible to general public.
- Open to cyber-physical threats

MOTIVATION

- Quality requirements for power systems
 - Monitoring and analysis of disturbances and faults
- Difficulty of human recognition for abnormal events for large systems
- Exploration of machine learning (ML) for discriminating power system disturbances [1]
- Failure of ML for discrimination in high-dimensional inputs

[1] Hink, Raymond C. Borges, Justin M. Beaver, Mark A. Buckner, Tommy Morris, Uttam Adhikari, and Shengyi Pan. "Machine learning for power system disturbance and cyber-attack discrimination." In 2014 7th International symposium on resilient control systems (ISRCS), pp. 1-8. IEEE, 2014.

HYPOTHESIS & OBJECTIVE

- Denial-of-Service Attacks
 - Attack on sensors (features)
 - Delay of data → Deletion of feature
- Hypothesis

Deletion of targeted features may cause misclassification [2]

Objective

i) Development of a DoS attack model to deceive neural network (NN) classifiers

ii) Development a defense model against such DoS attacks

[2] Globerson, Amir, Choon-Hui Teo, Alexander Smola, and Sam Roweis. "An adversarial view of covariate shift and a minimax approach." In *Dataset shift in machine learning*. MIT Press, 2009.

ASSUMPTIONS

- White-box attack: Access to the control system/sensor readings
- Adversary resources: attack on limited number of sensors
- RELU activated neural network
- Guided adversary: attack on *abnormal* events
- Neither data nor attack is time-correlated

METHODOLOGY Attack model

Find features to delete to maximize prediction error

$$\alpha_i^{\max} = \arg \max [1 - y_i \ \hat{y}_i]_+$$

$$= \arg \max [1 - y_i \ F(x_i \circ (1 - \alpha_i))]_+$$

$$s.t. \ \alpha_i \in \{0, 1\}^d$$

$$\sum_{j=1}^d \alpha_{ij} \le K$$

If the adversary does not cause any misprediction, then the error is zero

F(x): discriminator neural network $x_i \in \mathbb{R}^d$: input $y_i \in \{-1, +1\}$: true label $\alpha_i = [\alpha_{i1}, \cdots, \alpha_{ij}]$: features to be deleted

 $\hat{y}_i \in \{-1, +1\}$: predicted label K: attacker budget

SOLVING FOR ATTACK MODEL

- For linear classifiers, the optimization problem presented is a convex mixed-integer LP (MILP) $\alpha_i^{\max} = \arg \max [1 y_i \hat{y}_i]_+$
 - NP-Hard, solved heuristically

 $\begin{aligned} z_i^{\max} &= \arg \max \left[1 - y_i \ \hat{y}_i \right]_+ \\ &= \arg \max \left[1 - y_i \ F(x_i \circ (1 - \alpha_i)) \right]_+ \end{aligned}$

- For NN with RELU activation, the solution space is not convex MILP
 - Still solvable by computationally exhaustive nonlinear programming (NILP) approaches
- Relaxation: NN with RELU holds piece-wise linearity characteristics
 - Reconstruction of NN as a set of logic formulas
 - Utilization of Disjunctive Normal Form (DNF) [3]
 - NN can be written as a MILP using DNF

[3] Katz, Guy, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. "Reluplex: An efficient SMT solver for verifying deep neural networks." In International Conference on Computer Aided Verification, pp. 97-117. Springer, Cham, 2017.

DNF RELAXATION

• Example for single layer NN:

• For all clauses:

 $\alpha_i^{\max} = \underset{\alpha_{i,1},...,\alpha_{i,k}}{\arg \max} \left[1 - y_i \ F(x_i \circ (1 - \alpha_i)) \right]_+ \quad \text{Ideal Optimal Solution}$

- Limitation: 2^k clauses for k neurons
- Further relaxation: No need to maximize error among all clauses
 - We only need one clause that will cause mislabeling

FINAL ATTACK MODEL

*/

*/

Input: (x_i, y_i) , w, F(x)

Output: α_i

1 Generate DNF clauses for the given weights of the network

² foreach DNF clause set do

- 3 Assign clause components as constraints to Equation 2
- 4 Solve Equation 2 with new constraints

5 **if** *Problem is infeasible* **then**

continue with the next clause set

```
7 else
```

6

8

```
\Box Obtain \alpha_i
```

9 Predict the label
$$\rightarrow \hat{y}_i = F(x_i \circ (1 - \alpha_i))$$

10 **if** $\hat{y}_i == normal$ **then** 11 /* there is a successfully attack! 11 **continue** with the next input (x_{i+1}, y_{i+1})

12 **if**
$$\hat{y}_i == normal for all DNF clause sets then/* there is no successfully attack! $\alpha_i = 0$$$

14 **continue** with the next input (x_{i+1}, y_{i+1})

- Worse-case scenario:
 - Go through all clauses
 - Find no solution
 - $0(2^k)$ vs 0(K(d-K)!)
- Further relaxation:
 - Limit number of clauses

$$\alpha_i^{\max} = \arg \max [1 - y_i \ \hat{y}_i]_+$$

$$= \arg \max [1 - y_i \ F(x_i \circ (1 - \alpha_i))]_+$$
s.t. $\alpha_i \in \{0, 1\}^d$

$$\sum_{j=1}^d \alpha_{ij} \le K$$
Eq. 2

METHODOLOGY DEFENSE MODEL

- MiniMax Problem
 - Minimization of average maximum prediction error over the entire dataset

$$\min_{w} \max_{\alpha_{1},...,\alpha_{n}} \frac{1}{n} \sum_{i=1}^{n} [1 - y_{i} F(x_{i} \circ (1 - \alpha_{i}))]_{+}$$

- One-shot training strategy [4]:
 - Train baseline NN with a dataset
 - Generate adversarial example dataset using baseline
 - Train a new NN with adversarial example dataset

EVALUATION

- Two categories
 - Normal event
 - Abnormal events
- 128 features
- ~4000 events for training
- ~1000 events for testing
- Ratio of normal events to abnormal events is ~28%

Hink, Raymond C. Borges, Justin M. Beaver, Mark A. Buckner, Tommy Morris, Uttam Adhikari, and Shengyi Pan. "Machine learning for power system disturbance and cyber-attack discrimination." In 2014 7th International symposium on resilient control systems (ISRCS), pp. 1-8. IEEE, 2014.

EFFECTIVENESS OF ATTACK

- Baseline NN model
 - Single hidden layer (5 neurons)
 - RELU for hidden layers
- Number of clauses, $2^5 = 32$
 - Clause modeled with CVXPY and Gurobi
- Attack model
 - Budget ($K = \{1,3,6\}$) corresponding to $\{1\%, 2.5\%, 5\%\}$ of all features

Dataset	Accuracy in Percentage				
Original Training Dataset	87.47				
Original Testing Dataset	83.23				
	K = 1	K = 3	K = 6		
Modified Testing Dataset	31.08	16.29	12.77		

EFFECTIVENESS OF DEFENSE

- Adversarial data generation with budget ($K = \{1,3,6\}$) for training
- Generalization over original training and testing data
- Attack on the defense model

Dataset	K = 1	K = 3	K = 6	
Adversarial Training Dataset	86.12	86.70	88.06	-
Original Training Dataset	85.14	85.32	86.58	
Original Testing Dataset	81.89	82.69	80.78	
Modified Testing Dataset	39.23	26.05	19.51	
Baseline Model:	31.08	16.29	12.77	Some impro

Accuracy in Percentage

Some improvements

SUMMARY & CONCLUSION

- DoS attack model is very powerful
 - Faults and attacks could be obscured
- NN with RELU can be modeled as piece-wise MILP
 - Features-to-delete can be found effectively
- Minimax approach as a defense mechanism
 - One-shot training improves the robustness against attacks to some degree

FUTURE RESEARCH

- More reliable defense models
- Multiple categories
- Black-box models
- MILP for more complex networks (convolutional)

ACKNOWLEDGEMENT

- Science of Security Program
- IBM Graduate Fellowship

THANK YOU!

For follow-up questions: Ali.I.Ozdagli@vanderbilt.edu

Xenofon.Koutsoukos@vanderbilt.edu

