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e INTRODUCTION

 Smart Energy Grids (SEG) to
become essential by 2030
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learning for power system disturbance and cyber-attack discrimination." In 2014 7th International symposium on resilient control
systems (ISRCS), pp. 1-8. IEEE, 2014.

O HoTSsC
& MOTIVATION
« Quality requirements for power systems
« Monitoring and analysis of disturbances and faults
 Difficulty of human recognition for abnormal events for large
systems
« Exploration of machine learning (ML) for discriminating power
system disturbances [1]
« Failure of ML for discrimination in high-dimensional inputs
[1] Hink, Raymond C. Borges, Justin M. Beaver, Mark A. Buckner, Tommy Morris, Uttam Adhikari, and Shengyi Pan. "Machine VANDERBILT
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~ 7 HYPOTHESIS & OBJECTIVE

« Denial-of-Service Attacks
« Attack on sensors (features)
« Delay of data = Del/etion of feature

* Hypothesis
Deletion of targeted features may cause misclassification [2]

* Objective
/) Development of a DoS attack model to deceive neural network
(NN) classifiers

/) Development a defense model against such DoS attacks
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[2] Globerson, Amir, Choon-Hui Teo, Alexander Smola, and Sam Roweis. "An adversarial view of covariate shift and a minimax

approach.” In Dataset shift in machine learning. MIT Press, 2009. >




©=
& ASSUMPTIONS

 White-box attack: Access to the control system/sensor readings

« Adversary resources: attack on limited number of sensors

« RELU activated neural network

« Guided adversary: attack on abnormal events

« Neither data nor attack is time-correlated




METHODOLOGY
ATTACK MODEL

* Find features to delete to maximize prediction error
If the adversary does not

lmaX = arg max [1- yi Qi]+ < cause any misp_rediction,
then the error is zero

a
=argmax [1-y; F(x;o(1—a;))],

s.t. «a; € {0, 1}d

d <K
Zj=1 =

F(x): discriminator neural network
x; € R4: input y; € {—1,+1}: true label y; € {—1,+1}: predicted label

a; = |aj, -, a;;]: features to be deleted K: attacker budget
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O HoTSsC
~ = SOLVING FOR ATTACK MODEL

« For linear classifiers, the optimization problem presented is a convex
mixed-integer LP (MILP) A~ are max (1= 1 dil,

1

 NP-Hard, solved heuristically =argmax [1-y; F(xjo(1-a))l,

 For NN with RELU activation, the solution space is not convex MILP

 Still solvable by computationally exhaustive nonlinear programming
(NILP) approaches

« Relaxation: NN with RELU holds piece-wise linearity characteristics
« Reconstruction of NN as a set of logic formulas

« Utilization of Disjunctive Normal Form (DNF) [3]
* NN can be written as a MILP using DNF
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[3] Katz, Guy, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. "Reluplex: An efficient SMT solver for verifying 8
deep neural networks." In International Conference on Computer Aided Verification, pp. 97-117. Springer, Cham, 2017.



DNF RELAKATION

Example for single layer NN:
aj1 =argmax [1-y; gi],

y = RELU(w x)
A — s.t. aj € {0,1}d
N > d MILP for the
(==wx A y>0) ZFIQ’USK first DNF
o §i == wx; o (1-a;)

Vg==0 A wx <0)
gl‘>0

For all clauses:
a; ™ = argmax [1-1y; F(xjo(1-a;))], Ideal Optimal Solution

Limitation: 2% clauses for k neurons

Further relaxation: No need to maximize error among all clauses
« We only need one clause that will cause mislabeling
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r\HDTSC

Input: (x;, i), w, F(x)

« Worse-case scenario:

Output: ¢;

1 Generate DNF clauses for the given weights of the network « Go through all clauses
2 foreach DNF clause set do ) :

3 Assign clause components as constraints to Equation 2 * Find no solution

4 Solve Equation 2 with new constraints e O (2 k) vs O(K(d — K)!)
5 if Problem is infeasible then

6 |_ continue with the next clause set

7 else ]

s | | Obtaina  Further relaxation:

o | Predict the label — §; = F(x; o (1 - a;)) « Limit number of clauses
10 if §; == normal then

/* there is a successfully attack! */
11 L continue with the next input (xj+1, yi+1) —

a; = arg max [1 —Yi Qi]+

=argmax [1-y; F(x;o(1—-a;))],
s.t. a; € {0,1}¢ Eqg. 2

12 if ¢; == normal for all DNF clause sets then
L /* there is no successfully attack! *x/

13 0[1':0

14 continue with the next input (xj+1, yi+1) Zj (% <K VANDERBILT
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& METHODOLOGY
DEFENSE MODEL

« MiniMax Problem

« Minimization of average maximum prediction error over the

entire dataset
n

min max — ) [1—-y; F(x; o(1—-a;))],
W O1,...,0p nizl

 One-shot training strategy [4]:
« Train baseline NN with a dataset
 Generate adversarial example dataset using baseline
 Train @ new NN with adversarial example dataset

[4] Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint
arXiv:1412.6572 (2014).
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g HoTsOo
= EVALUATION
Bus 1 Bus 2 Bus 3 °

Two categories
« Normal event
« Abnormal events

Generator 1 Generator 2

Switch

128 features

~4000 events for training

Substation Switch

~1000 events for testing

Ratio of normal events to

Ol
<Ol
Ol

— | — — . 0
FEETEER TR FEEEER abnormal events is ~28%

Control Room

Hink, Raymond C. Borges, Justin M. Beaver, Mark A. Buckner, Tommy Morris, Uttam Adhikari, and Shengyi Pan. "Machine learning VANDERBILT

for power system disturbance and cyber-attack discrimination." In 2014 7th International symposium on resilient control systems
(ISRCS), pp. 1-8. IEEE, 2014.
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~ EFFEGTIVENESS OF ATTACK

« Baseline NN model

« Single hidden layer (5 neurons)
« RELU for hidden layers

« Number of clauses, 2° = 32
e Clause modeled with CVXPY and Gurobi

« Attack model
 Budget (K = {1,3,6}) corresponding to {1%, 2.5%, 5%} of all features

Dataset Accuracy in Percentage
Original Training Dataset 87.47
Original Testing Dataset 83.23

VANDERBILT
UNIVERSITY

Modified Testing Dataset  31.08 16.29  12.77 13




(8=
" EFFECTIVENESS OF DEFENSE

« Adversarial data generation with budget (K = {1,3,6}) for training

« Generalization over original training and testing data

« Attack on the defense model

Accuracy in Percentage

Dataset K=1 K=3 K=6

Adversarial Training Dataset 86.12 86.70  88.06

Original Training Dataset 85.14 85.32  86.58
Original Testing Dataset 81.89 82.69  80.78
IModiﬁed Testing Dataset 39.23 26.05 19.51 I

Some

Baseline Model: 31p8 16j29 12p7  Improvements ‘7
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SUMMARY & CONGLUSION

« DoS attack model is very powerful
 Faults and attacks could be obscured

« NN with RELU can be modeled as piece-wise MILP
- Features-to-delete can be found effectively

 Minimax approach as a defense mechanism

 One-shot training improves the robustness against attacks to
some degree




FUTURE RESEARCH

More reliable defense models
Multiple categories
Black-box models

MILP for more complex networks (convolutional)
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