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Approach

Learning graph structure (offline and runtime) Learning graph parameters (offline)
The goal of learning graph parameters is to automatically define parameters 8}

The goal of learning graph structure, i.e., factor graph, is to automatically establish dependencies
of factor functions in tabular forms.

among observed events and hidden attack stages by using an X independence test on training data
D.The dependencies are used to construct a set of model candidates m; € M, e.g., simple model

using only strongest dependencies or complex model using all dependencies. Expectation Maximization algorithm is used for learning parameters of each
scoreqyapy(m;|D) = maxglog P(x,z,m;,D,0) + log(6P(8Im;)) — dim(m;)In|D] factor function because it can handle missing or incomplete training data, which
A model candidate m; is scored based on three terms in respective order: is the case for most multi-stage attacks.

- Goodness of fit with training data (maxglog P(x, z, m;, D, 0))

- Entropy of 6 to avoid overfitting and favor model stability (log (HP(Hlmi)) Input. Training dataset D of past attacks

- Complexity of model and availability of training data (dim(m;)In|D|) Init. Start with a random initialization of 6°

Repeat each iteration until converge:
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Graph structure consist of edges
specify link among variables
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Inference of ongoing attack stages (runtime)

Given a factor graph of an ongoing attack at runtime, inference is to determine
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the most likely unknown attack stage and output a confidence level for each stage.
z" = argmaxy, P(x,z,0)
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convergence rate, i.e., 3 iterations, of marginal probability
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