
Jan Vitek

Orthodoxy

Static is Better

how dynamic is dynamic?

Richards, Lesbrene, Burg, Vitek. An Analysis fo the Dynamic Behavior of JavaScript Programs. PLDI’10

1. Call-site Dynamism is Low
2. Properties are Added at Object Initialization
3. Properties are Rarely Deleted
4. eval is Infrequent and Harmless
5. …

assumptions

Call-site Dynamism is Low

#of different function body called from a call site

1 call site
dispatches >1K

functions

1 100 10000

1
10
0

10
00
0

~100K call sites
monomorphic

Properties are Added at Object Initialization

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

Google

benchmarks for free

Richards, Gal, Eich, Vitek. JSBench: Automating the Construction of JavaScript Benchmarks. OOPSLA’11

Prototype, appearing on 21 and 9 sites, respectively. Such libraries
provide simplified and well-tested coding patterns for problems in-
cluding UI widgets, animation, DOM manipulation, serialization,
asynchronous page loading, and class-based workarounds built on
top of JavaScript’s prototype-based system. In general, the presence
of a particular library does not imply a major change in the pro-
gram’s dynamic behavior. This is in part due to the large feature sets
of most libraries. Prototype offers all of the functionality mentioned
above (besides UI widgets and animation), and jQuery similarly of-
fers all of the above (except an implementation of “classes”). Be-
cause there are many use cases for each library, there are few char-
acteristic runtime behaviors exhibited. Exceptions to this tend to be
artifacts of implementation techniques specific to a library (such as
Prototype’s dynamic construction of prototype objects, or the dis-
proportionate allocation of Date objects by animation libraries).

7. Measuring the Behavior of Benchmarks
There are several popular benchmark suites used to determine the
quality and speed of JavaScript implementations. However, using
these benchmarks as metrics assumes that they are representative
of JavaScript programs at large. We looked at three suites in partic-
ular to determine their relevance: SunSpider: (SUNS) A wide range
of compute-intensive benchmarks. Includes deserialization, a ray-
tracer, and many other primarily mathematical tasks. V8: (V8BM)
The benchmarks associated with Google’s Chrome browser. Again
they include computationally-intensive benchmarks., such as cryp-
tography and another raytracer. Dromaeo: (DROM) Unlike the other
suites, these benchmarks are intended to test the browser’s DOM,
as opposed to the JavaScript engine itself. In several ways, these
benchmarks have proven to be inconsistent with the real-world
JavaScript code we tested. We discuss our main observations:

7.1 Object Kinds
Benchmarks tend to heavily stress a few types of objects, which
have little similarity to the object types used by real-world sites.
Figure 17 shows the benchmarks’ disproportionate number of in-
stances and arrays. Comparing the benchmarks to the All Sites
bar, one can clearly observe that constructed objects (instances) are
overrepresented in V8BM and SUNS, whereas DROM is almost ex-
clusively preoccupied with arrays.

The extensive use of constructed objects in benchmarks is no-
table. In SUNS, 39% of objects are instances, and in V8BM, 63%
are. In the real-world sites, only GMAP and LIVE produced more
than 10% instance objects (with GMAP and LIVE producing 35%
and 24%, respectively). It seems likely therefore that a JavaScript
implementation that favored other object types would be poorly
represented by SUNS and V8BM.

7.2 Uses of eval
While SUNS has benchmarks which use eval, performing 2785
evals in our trace with only 33 deserializing JSON data, V8BM
performs no evals. DROM performed 32 evals, with only 1 deseri-
alizing JSON data. This suggests that SUNS is more representative

DROM

SUNS

V8BM

All Sites

anonymous
dom

arrays
dates

regexps
functions

instances
errors

prototypes

Figure 17. Kinds of allocated objects.

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

Figure 18. Object timelines. SUNS (above) and V8BM (below).
The dashed line indicates the end of object construction.

of real-world workloads, the others less so. The latter is not surpris-
ing given the nature of the benchmarks (there is a lot of mathemat-
ical computation which is not typical of most JavaScript programs
in the wild).

7.3 Object Protocol Dynamism
Although many sites have relatively sane and stable use of ob-
jects, with object initialization occurring mostly during construc-
tion, several do not. Figure 18 shows the object timelines of SUNS
and V8BM. The behavior of most sites at construction time is mod-
eled by SUNS, with a post-construction hump as seen in several
real-world sites. However, the lifetime of objects in SUNS is atyp-
ical, with most objects fairly long-lived. V8BM’s object dynamism
is completely dissimilar to any real-world site, to the benefit of
Google’s V8 JavaScript engine. The lifetimes of objects in V8BM
is similar to object lifetimes of real-world JavaScript, with the ex-
ception that objects have fairly constant lifetimes, as shown by the
steep dropoffs in living objects in Figure 18. This peculiarity was
not seen in any real-world sites. DROM uses no constructed ob-
jects, as its intention is primarily to test the implementation of the
DOM API, and is thus not very useful as general purpose JavaScript
benchmark.

7.4 Function Variadicity and Polymorphism
Variadicity in the benchmarks was not dissimilar to real-world pro-
grams. DROM and SUNS each had about 5% of functions used vari-
adically (close to the 6% seen accross all sites), and V8BM had
about 2% variadic. Polymorphism was rarer in the benchmarks,
with 3%, 2% and 1% of call sites being polymorphic in DROM,
SUNS and V8BM (respectively). As 19% of call sites were polymor-
phic across all sites, implementations which do not handle poly-
morphic call sites well will perform better with benchmarks than
real-world JavaScript.

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

Sunspider

Google

1.5.0.9 2.0.0.20 3.0.9 3.5.19 3.6.17 4.0.1 5.0.1 6.0.2

0

10

20

30

40

50

60

Firefox Speedup SunSpider vs JSBench

SunSpider JSBench

Version

S
p

e
e

d
u

p
 r

e
la

ti
ve

 t
o

 1
.5

.0
.9

49x

4x

JavaScript
code

Native API’s__

Sources of nondeterminism
(Browser, web, cookies, etc)

JSBench Log

Math.abs XMLHttpRequest

Record

JavaScript
code

Native API’s__

JSBench Log

Math.abs

Replay

Google Facebook Yahoo Twitter Amazon

0

50

100

150

200

250

300

350

JSBench Results

Chrome 15 Firefox 6 Opera 11 Safari 5

Browser

T
im

e
 (

m
s
)

Browser wars

looking for the mythical eval

Richards, Hammer, Burg, Vitek. The Eval that Men Do: A Large-scale Study of the Use of
Eval in JavaScript Applications. ECOOP 2011

A Flash of Eval
var flashVersion = parse();

flash2Installed = flashVersion == 2;
flash3Installed = flashVersion == 3;
flash4Installed = flashVersion == 4;
flash5Installed = flashVersion == 5;
flash6Installed = flashVersion == 6;
flash7Installed = flashVersion == 7;
flash8Installed = flashVersion == 8;
flash9Installed = flashVersion == 9;
flash10Installed = flashVersion == 10;
flash11Installed = flashVersion == 11;
for (var i = 2; i <= maxVersion; i++)
 if(eval(”flash”+i+”Installed”)==true)
 actualVersion = i;

Corpus

• Top 10,000 web sites (from Alexa.com)

3,346MB JavaScript, 337MB of eval strings, 550,358 calls

Eval Usage
100% of top 100 sites use JavaScript

82% use eval!

Interactive PageLoad Random

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
10

20
30

40 77 127 1331

Call Sites

Interactive PageLoad Random

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

3491 9114 111535

Calls

Interactive PageLoad Random

0B
12
8B

25
6B

38
4B

51
2B

230387 470871 527529

String Size

The Shape of Eval

JSON
JSONP
Library
Read
Assign
Typeof
Try
Call
Empty
(Other)

Identified common patterns:

eval(‘{“x”: 2}’)
eval(“f({x: 2})”)

eval(“obj . f ”)
eval(“id = x”)

eval(‘typeof(’+x+’)!=”undefined”’)
eval(‘try{throw v=14}catch(e){}’)

eval(‘get(”menu”)’)

(a) INTERACTIVE (b) PAGELOAD (c) RANDOM

Fig. 8. Patterns by websites. Number of web sites in each data set with at least one eval argument
in each category (a single web site can appear in multiple categories).

J
S
O
N
P

A
s
s
ig
n

O
th
e
r

J
S
O
N

R
e
a
d

T
y
p
e
o
f

C
a
ll

L
ib
ra
ry

E
m
p
ty

0%

5%

10%

15%

20%

25%

30%

35%

(a) INTERACTIVE (b) PAGELOAD (c) RANDOM

Fig. 9. Patterns. Ratio of evals in each category.

Both JSON and JSONP are quite common. In each data set, JSONP is at worst the
third most common category in both Fig. 8 and Fig. 9, and JSON and JSONP strings
accounted for between 22% (RANDOM) and 37% (INTERACTIVE) of all strings eval’d.
Since most call sites do not change categories (discussed later in Section 5.5) these
numbers indicate that analyses could make optimistic assumptions about the use of eval
for JSON, but will need to accomodate the common pattern of JSON being assigned to
a single, often easily-determinable, variable.

Most of the remaining evals are in the categories of simple accesses. Property and
variable accesses, both simple accesses which generally have no side-effects, are in all
data sets amongst the second to fifth most common categories for sites to use. They
account for 8%, 27% and 24% of eval calls in INTERACTIVE, PAGELOAD and RAN-
DOM, respectively. The most problematic categories7 appear in fewer sites, but seem to
be used frequently in those sites where they do appear. However, this does not include
uncategorized evals, which also have problematic and unpredictable behavior.
Impact on analysis. Most eval call sites in categories other than Library, Other and
Call are replaceable by less dynamic features such as JSON.parse, hashmap access,
and proper use of JavaScript arrays. On INTERACTIVE, these categories account for

7 By problematic categories, we include evals with complex side effects such as assignments
and declarations, and those categories with unconstrained behavior such as calls.

eval(“x”)
eval(x+“y”)

eval(“eval(‘”+x+“’)”)
eval(document.getById(“x”).text)

eval(xmlhttprequest.responseText)
eval(document.cookie.substr(...))

eval(document.getById(“username”).value)

The Root of Eval

Constant

Composite

Synthetic

DOM

AJAX

Cookies

Input

Provenance of eval strings:

The INTERACTIVE data set had a much higher appearance rate for all provenance
types, which is not surprising. Fig. 10 shows the number of sites that pass strings of a
given provenance to eval for our 3 data sets. The percentages of the PAGELOAD and
RANDOM sets differ only slightly, and both had fewer strings of AJAX provenance.

Provenance data tells a more interesting story when aggregated by the provenance of
each call to eval; Fig. 11 presents this view. For the INTERACTIVE data set, the dominant
provenance of strings was Composite. More than 3,000 strings were constructed from
composites of only constants and around 600 strings were just a constant in the source.
The distribution of provenance is significantly different for the PAGELOAD and RAN-
DOM data sets. For these, DOM and Constant are used in equal proportion, while
AJAX is virtually nonexistent.

Interactive PageLoad Random

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Input

Cookie

AJAX

DOM

Synthetic

Composite

Constant

Fig. 11. Provenance. Proportion of strings with given
provenance in eval’d strings for the three data sets.

Provenance vs. Patterns The eval
pattern categories from Section 5.3
help to explain some of the sur-
prising provenance data. Fig. 12 re-
lates the patterns we found with
provenance information. We had
expected most JSON to originate
from AJAX, as this is the standard
way of dynamically loading data
from a server. However, the DOM
provenance outnumbers all others.
The same holds for Empty and Li-
brary patterns. Upon further inves-
tigation into the low proportion of
AJAX provenance, we found that,
for example, google.com retrieves most of its JSON as constant values by means of
a dynamically-created <script> tag. This script contains code of the form f(’{”x”:3}’),
where the parameter is a string containing a JSON object. However, instead of using
the JSON string directly as a parameter (f({”x”:3})), they parse the string in the func-
tion f using eval. Our provenance tracking will categorize this string as a compile time
constant, as it is a constant in the dynamically created script tag. Because google.com
stores its JavaScript on a separate subdomain, this convoluted pattern is necessary to
circumvent the same-origin policy (under which the straightforward AJAX approach
would be forbidden). Many major web sites have a similar separation of content.

In general, the simpler eval string patterns come from Constant and Composite
sources. Looking at Empty, Typeof, Read, Call, Assign and Try as a group, 85% of these
eval’d strings are constant or composite in RANDOM, with similar proportions in the
other data sets. Many of these are often misused as replacements for arrays or hashmap
syntax, so it is unsurprising that they are generated from constant strings.

Provenance v Patterns

JSON JSONP Empty Library Typeof Read Call Assign Try Other

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Input

Storage

AJAX

DOM

Synthetic

Composite

Constant

(a) INTERACTIVE

(b) PAGELOAD

(c) RANDOM
Fig. 12. Provenance by Pattern. Distribution of string provenances across eval categories in
each data set. X axis is the pattern that string falls into, Y axis is proportion of provenance in that
category.

Cookie

This is scary!

Provenance v Patterns

JSON JSONP Empty Library Typeof Read Call Assign Try Other

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Input

Storage

AJAX

DOM

Synthetic

Composite

Constant

(a) INTERACTIVE

(b) PAGELOAD

(c) RANDOM
Fig. 12. Provenance by Pattern. Distribution of string provenances across eval categories in
each data set. X axis is the pattern that string falls into, Y axis is proportion of provenance in that
category.

Cookie

Mundane
patterns,
mundane

provenances

eval begone!

Meawad, Richards, Morandat, Vitek. Eval Begone! : Semi-Automated Removal of Eval from JavaScript Programs OOPSLA ’12

1

2

3

4

5

0 5000 10000 15000 20000 25000 30000

Call sites

P
a

tt
e

rn
s

98.5%

Example classifier
window.width = 10;
window.height = 20;

function getDimension(x){
	 d = eval("window." + x);
}

getDimension("width");
getDimension("height");

d = (x == "width"
	 ? window.width
	 : window.height);

+
 



 



=


 





Validation

Once we’ve generated a classifier, can it accept
new input?

• Evals from interactive use of top 100 web pages

• Train on k strings, test on remainder

• With k≥3, 95% of sites with no misprediction

Planet Dynamic
or: How I Learned to Stop

Worrying and Love Reflection

