

Massachusetts Institute of Technology

Analytics for Cybersecurity of Cyber-Physical Systems Policy-based Methods for Risk Analysis

Nazli Choucri

Professor of Political Science Faculty Affiliate, Institute for Data, Systems, & Society (IDSS)

January 15, 2020

Prepared for:

2020 Winter Science of Security and Privacy Quarterly Meeting; January 15-16, 2020; Raleigh, North Carolina.

Introduction: Project in Brief

Problem

- Cybersecurity policies & guidelines are in stand-alone text form.
- Text encourages "passive" compliance rather than "active" performance.
- Obscures knowledge of risk & creates opportunity costs.

Purpose

- Extend analytics for CPS cybersecurity to enhance value of guidelines.
- Develop & demonstrate with *Analytics for Cybersecurity of Smart Grid.*
- Create test-bed for risk analysis of policy-based assessments.

Approach

- Multi-methods for cybersecurity analytics & risk analysis.
- Expected product is *platform* of tools for analytics of cybersecurity.
- Test application to NIST data for smart grid of electric power systems.

Policy-based Risk Analysis

Outline & Agenda

1. Introduction – Problem & Methods

2. Create Linked Policy Database (Y1)

3. Construct System Dependency Framework (Y2)

4. Generate Network Model of As-Is System (Y3 Preview)

5. Risk Analysis – Multiple Tasks & Integration (Y4-5 Preview)

6. Contributions to NSA Science of Security and Privacy Program

Policy-based Risk Analysis

Outline & Agenda

1. Introduction – Problem & Methods

2. Create Linked Policy Database (Y1)

3. Construct System Dependency Framework (Y2)

4. Generate Network Model of As-Is System (Y3 Preview)

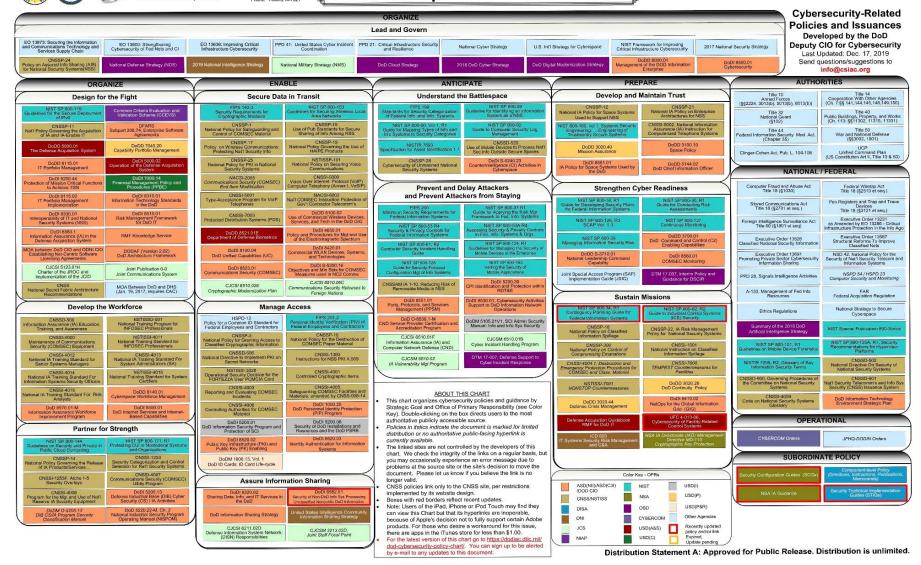
5. Risk Analysis – Multiple Tasks & Integration (Y4-5 Preview)

6. Contributions to NSA Science of Security and Privacy Program

Problem Defined

Policy guidelines & directives are transmitted in stand-alone text

- Difficult to aggregate or fully understand policy-technology complexities.
- User tends to treat text as if it were a checklist
- Much knowledge is generated in process of establishing guidelines.
- Text impedes locating interactions, feedback, specialized views, etc..
- Knowledge of key cybersecurity factors is "lost".
- Loss of embedded knowledge creates major opportunity costs.
- It is lost to managers, security experts, & policy analysts who deal with text
- It is lost to all others seeking to increase cybersecurity & reduce risk.


Result:

- Creates undue & unexpected barriers to implementation.
- Impedes operational & pragmatic action.

Cybersecurity Related Policies & Issuances

Cyber Security & Information Systems Information Analysis Center Usea, NY 13502 Phone: 1.800-214-7921

Build and Operate a Trusted DoDIN

Analytics for Cyber-Physical System Cybersecurity: Policy-based Methods for Risk Analysis • Prepared for: 2020 Winter Science of Security and Privacy Quarterly Meeting; January 15-

Massachusetts Institute of Technology 16, 2020; Raleigh, North Carolina • Nazli Choucri • January 15, 2020 • © MIT, 2020.

Page 6

Support 2020 NDAA* Requirements

Sec. 1648 on Framework to enhance cybersecurity of the United States defense industrial base.

The framework developed pursuant to subsection (a) shall include the following:

(1) Identification of unified cybersecurity standards, regulations, metrics, ratings, thirdparty certifications, or requirements to be imposed on the defense industrial base for the purpose of assessing the cybersecurity of individual contractors.

(2) Roles and responsibilities of the Under Secretary of Defense for Acquisition and Sustainment, the Under Secretary of Defense for Intelligence and Security, the Chief Information Officer, the Director of the Protecting Critical Technologies Task Force, and the Secretaries of the military departments relating to the following:

(A) Establishing and ensuring compliance with cybersecurity standards, regulations, and policies.

(B) Deconflicting existing cybersecurity standards, regulations, and policies.

(6) **A plan to provide implementation guidance, education, manuals,** and, as necessary, direct technical support or assistance, to contractors **on matters relating to cybersecurity.** ⁷Public Law No: 116-92.

NDAA on Protection of Critical Infrastructure

2019 John S. McCain National Defense Authorization Act*.

"Pilot program on modeling & simulation in support of military homeland defense operations in connection with cyber-attacks on critical infrastructure." (Sec. 1649)

"(A) to assess defense critical infrastructure vulnerabilities & interdependencies to improve military resiliency;

(B) To determine the likely effectiveness of attacks described in subsection (a)(1), & countermeasures, tactics, & tools supporting responsive military homeland defense operations....";

2018 National Defense Authorization Act**

"Assessment of Defense Critical Electric Infrastructure." (Sec. 1643)

"...assess the strategic benefits derived from, & the challenges associated with, isolating military infrastructure from the **national electric grid** & the use of microgrids."

* Public Law No: 115-232; ** Public Law No: 115-91.

On Importance of Analytics & Metrics

2019 US National Intelligence Strategy*.

"...develop quantitative methods & data analysis techniques & tradecraft to improve the IC's ability to identify, analyze, & forecast changing conditions & emerging trends across multiple portfolios."

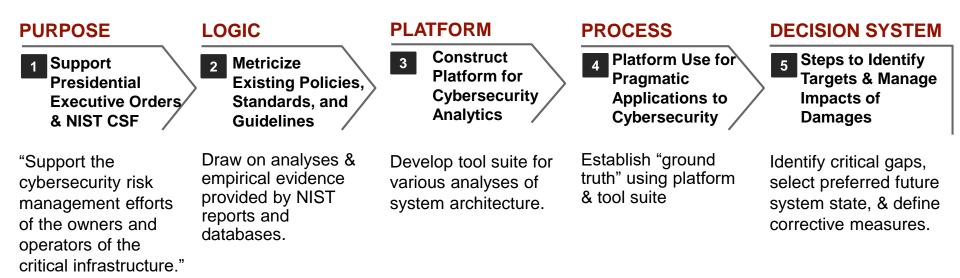
2018 US DoD Cyber Strategy**.

"...The Department will work ... to reduce the risk that malicious cyber activity targeting U.S. critical infrastructure We will streamline our **public-private information-sharing mechanisms** & strengthen the resilience & cybersecurity of critical infrastructure networks & systems."

* https://www.dni.gov/files/ODNI/documents/National_Intelligence_Strategy_2019.pdf;

* https://media.defense.gov/2018/Sep/18/2002041658/-1/-1/1/CYBER_STRATEGY_SUMMARY_FINAL.PDF

What is Needed?


Methods to capture full-value of policy texts end-to-end.

1	Problem	Recognize that policies & guidelines texts obscure dynamics, feedback, delays, obscure risk & other critical policy features.
2	Challenge	Construct "text-to-data" for cybersecurity analyses based on logic & evidence in <i>sector-specific</i> & <i>sector-independent</i> policy reports
3	Research Design	Create "data-to-metrics functions & capabilities to capture "as is" system, vulnerabilities, risks, & manage capability maturity gap.
4	Expected Products	Platform for cybersecurity analytics with customized tools to support user needs
5	Mission Specific	Provide a generic approach with linked data & method to manage cybersecurity risks for mission-specific requirements

Policy-Focused Approach

High level view.

Research Design – Operational View

1 Create Foundations for Cybersecurity Analytics	2 Establish Information Flows in System-wide Operations	3 Explore System Networks & Dependencies in Architecture	Apply Interactive Drill-Down Tools for in-Depth Analysis	5 Formalize SoS Policy Analytics & Applications Of Pragmatics
Identify policy relevant ecosystems.	Analyze system wide information flows.	Examine dependencies of information flows & system architecture.	Undertake targeted analysis of system cybersecurity.	Conduct & expand SoS for cyber- physical system cybersecurity
Base Period (Year 1)	Mid-term (Yea	r 2-3) Mid-Lo	ong term (Year 3-4)	Long-term (>Year 4)
 Formalize rules to extract data from text. Identify missing pieces for policy 	 Create dependency structure matrix (DSM) of CPS by first level information 	1. Generate visual representations of information flows with graph theory & network methods.	 Provide interactive tools for on-demand targeted analysis. Examine functions & security of 	1. Use Live-Virtual- Constructive environment for evaluation & validation.
 3. Design internally consistent structure to organize & metricize, critical texts 	dependencies. 2. Cluster & partition DSM to reveal "hidden features".	2. Use visuals to identify critical control points & distinguish human vs. technical functions.	 nodes & assess vulnerabilities. 3. Explore resilience of system whole and parts. 	2. Formalize properties of disturbances to assess potential system impacts.

Application for Risk Analysis

- Linked Database Text to Data (Y1)
- Dependency Framework
 Data to Metrics (ongoing Y2)
- Metrics to Model Network System (planned Y3)
- Risk Analysis
 Mapping Parameters (options Y4-5)

Policy-based Risk Analysis

Outline & Agenda

1. Introduction – Problem & Methods

2. Create Linked Policy Database (Y1)

3. Construct System Dependency Framework (Y2)

4. Generate Network Model of As-Is System (Y3 Preview)

5. Risk Analysis – Multiple Tasks & Integration (Y4-5 Preview)

6. Contributions to NSA Science of Security and Privacy Program

Cybersecurity Policy Ecosystem for Smart Grid CPS

1 NIST CSF*

Framework for Improving Critical Infrastructure Cybersecurity

- Functions
 - Categories & Sub-Categories
- Mapping of Security Requirements

2 NIST SP 800-37 Rev. 1*

Guide for Applying the Risk Management Framework to Federal Information Systems

• NIST Risk Management Framework

③ NIST SP 800-53 Rev. 4*

Security & Privacy Controls for Federal Information Systems & Organizations

- Data on 18 families of Security Controls,
 - Controls
 - Supplemental Guidance
 - Control Enhancements
 - Priority & Baseline Allocation

l'lii

④ NISTIR 7628r1#

Guidelines for Smart Grid Cybersecurity

- Smart Grid Conceptual Model
- Security Objectives
- Impact level for Security Objectives
- Security Requirements
- Vulnerability Classes

5 NIST SP 1108 Rev. 3*

NIST Framework & Roadmap for Smart Grid Interoperability Standards, Release 3.0

 "Smart grids are viewed from the perspective of cyber-physical systems (CPS)

6 NERC CIPs

North American Electric Reliability Corporation critical infrastructure protection

- Set of requirements designed to secure assets required for operating North America's bulk electric system.
- * Sector-All

Sector-specific (electricity smart grid)

7 NIST NVD*

National Vulnerability Database

 Standards based vulnerability management data represented using the Security Content Automation Protocol

8 DoE/DHS C2M2 Model#

Cybersecurity Capability Maturity Model

 Implementation & management of cybersecurity practices for information technology & operational technology assets & their environments

9 NIST CVSS*

Common Vulnerability Scoring System

- Open framework for communicating the characteristics & impacts of IT vulnerabilities
- Calculating the severity of vulnerabilities discovered on one's systems

Analytics for Cyber-Physical System Cybersecurity: Policy-based Methods for Risk Analysis • Prepared for: 2020 Winter Science of Security and Privacy Quarterly Meeting; January 15-

Massachusetts Institute of Technology 16, 2020; Raleigh, North Carolina • Nazli Choucri • January 15, 2020 • © MIT, 2020.

Function of Linked Data Base

- Linked Data base is a necessary condition for data-tometrics
- Data-to- metrics is foundation for framework
- Framework is the basis for system model

Linkage data base includes all the relevant elements of system "as is" as well as all variables reflecting system vulnerabilities and correctives

Multi-dimensional Linked Data Base: Scale & Scope

Over 15 interdependent dimensions – smart grid application

- Spread over multiple dimensions in over 600+ pages
- Current text burdens to reader to extract information.

Smart Grid CPS	Count	Smart Grid CPS	Count
Core Elements		Vulnerability	
Domain	7	Types of Logical Interface	53
Actor	47	Categories of Vulnerabilities	4
Logical Interface between Actors	122		
Logical Interface Categories	22	NIST Cybersecurity Framework	Count
Security Objectives for Smart Grid Types {Confidentiality, Integrity, Availability}	3	Core Data Functions Categories	5 23
Impact Level {Low, Moderate, High}	3	Sub-Categories	414
Security Requirements identified	180		
Families of Security Requirements	19		
Types of Security Requirements	3		

Analytics for Cyber-Physical System Cybersecurity: Policy-based Methods for Risk Analysis • Prepared for: 2020 Winter Science of Security and Privacy Quarterly Meeting; January 15-Massachusetts Institute of Technology 16, 2020; Raleigh, North Carolina • Nazli Choucri • January 15, 2020 • © MIT, 2020.

Distributed Linked Policy Database

Documents for text-to-data utuilized in different research phases

	1 Create Foundations for Cybersecurity Analytics	2 Establish Information Flows in System-wide Operations	3 Explore System Networks & Dependencies in Architecture	4 Apply Interactive Drill-Down Tools for in-Depth Analysis	5 Formalize SoS Policy Analytics & Applications Of Pragmatics
2017-2019 Executive Orders 2017-2019 NDAA 2018-2019 Security Strategie	Identify National Security Requirements & S Mandates				Revisit National Security Requirements & Mandates
1 NIST CSF*	Cybersecurity Framework	Framework Functions		Framework Functions Applicability	Enterprise Cybersecurity Profile
② NIST SP 800-37 Rev. 1*					Enterprise Risk Management
③ NIST SP 800-53 Rev. 4*				Security & Privacy Controls	
④ NISTIR 7628r1#		Logical Interface, Vu Impacts on Sec		Security Requirements	
(5) NIST SP 1108 Rev. 3#		Smart Grid Reference Model			
6 NERC CIPs#		Federal Compliance Requirements			
⑦ NIST NVD*		-		Vulnerability Identification	
(8) DoE/DHS C2M2 Model [#]					Smart Grid Cyber Capability Maturity
INIST CVSS*				Impact & Vulnerability Quantification	· · · · ·

* Sector-All # Sector-Specific (Electricity smart grid)

Note: Planned project phase-based uses of "Cybersecurity Document Ecosystem for Smart Grid CPS", slide 16. Circled numbers identify document.

Policy-based Risk Analysis

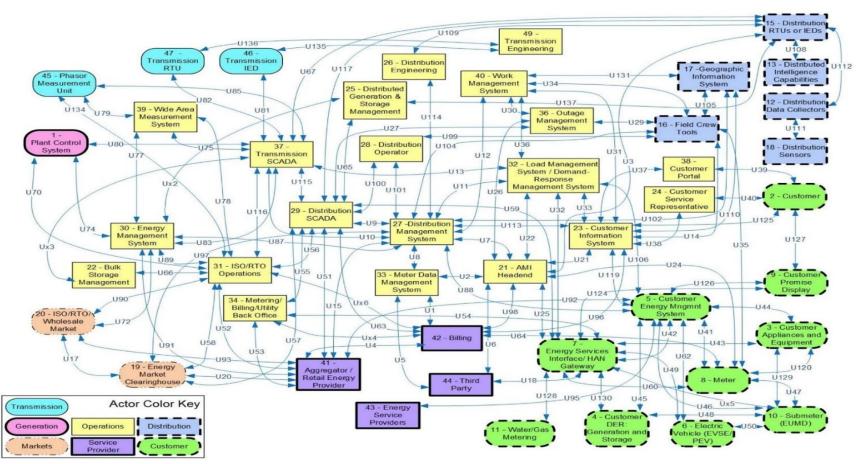
Outline & Agenda

1. Introduction – Problem & Methods

2. Create Linked Policy Database (Y1)

3. Construct System Dependency Framework (Y2)

4. Generate Network Model of As-Is System (Y3 Preview)


5. Risk Analysis – Multiple Tasks & Integration (Y4-5 Preview)

6. Contributions to NSA Science of Security and Privacy Program

Source of System Dependency Framework NIST Smart Grid Reference Model – "As-Is"

"Reflects the consensus-based process the Smart Grid Interoperability Panel (SGIP) uses to coordinate and accelerate the development of smart grid standards."*

*Source: NIST. "Guidelines for Smart Grid Cybersecurity-Volume 1," NISTIR 7628 Revision I, September, 2014. p. x. Image Source: NIST. "Guidelines for Smart Grid Cybersecurity-Volume 1," NISTIR 7628 Revision I, September, 2014; doi: NIST.IR.7628r1, p17.

Result: Base Framework of "As-Is" Smart Grid System.

Design Structure Matrix (DSM) for Actors, Domains, & Logical Interfaces.

	5	_			_								_		_																		_		_
Domain	Actor	Acto					6 7	8	9 10 1	1 12 1	3 15	16 17	18 19	20	21	22 2	23 24	25	26 27	28	29	30	31 3	2 33	34	36	37 38	3 39	40	48 4	49 4	1 42	43 4	44 45	46 47
Generation	Plant Control System – Distributed Control System	1	C	sene	eratio	'n																													
Customer	Customer	2						c	ustomer																						Т				
Customer	Customer Appliances and Equipment	3						Ī																											
Customer	Customer Distributed Energy Resources: Generation and Storage	4																																	
Customer	Customer Energy Management System	5		l	U44 U4	5											_											-			_				
Customer	Plugin Electric Vehicle/ Electric Vehicle Service Element	6				U62					_					_			_	-						_	_								
Customer	Home Area Network Gateway	7			U43 U13	0 U42	U49			_	_			-		_	_			-		-		-		-	_	-							
Customer	Motor	8		U	/120	U41	Ué	90		_								+-+		-		-				-						+++	_		_
Customer	Customer Premise Display			J127		U126	Ut	24		-										-		-	-			-					-	+-+			
	Sub-Mater Energy Usage Matering Device	10		U	J129 U4	8 U46	U50 Ux	c5 U47		-										-		-	-				_					+-+			
Customer	Water/Gas Metering	11	_				Ut							-						-		-				-		-	-						
Distribution	Distribution Data Collector	12		-	-	-	-													-			-			-				_					_
Distribution	Distributed Intelligence Capabilities	12	-	-							Dis	stributio	on							-		-		-		-									
Distribution	Distribution Remote Terminal Unit/Intelligent Electronic Device	13	+	-		+				U112 U	08			-	\mapsto		-	+		-	\mapsto	-	-	+		-		-	$ \rightarrow $			+	-		
Distribution	Field Crew Tools	15	\rightarrow	+		+		U35		0112 0					\vdash			+		-	\vdash	-		-		-			$ \rightarrow $			+	\rightarrow		-+
	Read Crew Tools Geographic Information System	16	\rightarrow	+	_	+		035				U105			\vdash			+		-	\vdash	-		-		-			\vdash	+	+	+	\rightarrow		+
Distribution	Geographic Intornation System Distribution Sensor	17	\rightarrow	+	_	+		+		U111		0105			\vdash	_	_			-	\vdash	-	-	-		_	_		\vdash	+	+	+	-		-+
Distribution		18		-	_		_			0111	-		_		Ma	irket	s		_	-				_			_		$ \rightarrow $	_	_	\rightarrow			
Markets	Energy Market Clearinghouse	19		-	_		_				_					_	_		_	-				_			_		$ \rightarrow $	_	_	\rightarrow			
Markets	Independent System Operator/Regional Transmission Organization Wholesale Market	20	-	_	_		_		_				UI	7		-	-		-	-		-	-	-	-	-	-	-		_	-	_			
Operations	Advanced Metering Infrastructure Headend	21	-	_	_		Us	25 U24	_		U3			_	_	-	_		_	-			_	_	_	_	_	0	pera	tions	_	_			
Operations	Bulk Storage Management	22	_	_	_		_		_		_					_	_		_	-		_	_	_	_	_		_			_				
Operations	Customer Information System	23		J125		U119					_	U14 U110			U21	_				_		_	_	_	_	_		_			_				
Operations	Customer Service Representative	24		U40	_		_							_	_	U	138		_	_		_	_	_		_		_			_				
Operations	Distributed Generation and Storage Management	25	_	_	_		_				U137			_		_	_		_	_		_	_	_		_	_	_			_				
Operations	Distribution Engineering	26		_			_				U109													_				_			_				
Operations	Distribution Management Systems	27				U88						U104 U102	US	7	U7	U	113	U	1114												_				
Operations	Distribution Operator	28										U99							U10	01															
Operations	Distribution Supervisory Control and Data Acquisition	29					U	59			U117		U	7				U65	US	9 U100															
Operations	Energy Management System	30	U74											U72				Ux2	Uß	7															
Operations	ISO/RTO Operations	31	U70										U	8 U90		Uee					U56	U89													
Operations	Load Management Systems/Demand Response Management System	32				U106	US	32							U22	U	133		U1	1															
Operations	Meter Data Management System	33													U2				UE	8															
Operations	Metering/Billing/Utility Back Office	34					U	54													U65														
Operations	Outage Management System	36										U29			U26						U27														
Operations	Transmission SCADA	37	U90								U67					Ux3			U1	0	U115	U83 (U116 U	13											
Operations	Customer Portal	38		U39												U	137																		
Operations	Wide Area Measurement System	39				+														1		U77	U78	1			U75			\neg	-	++			
Operations	Work Management System	40	\rightarrow	\uparrow		+					-	U34 U131				U	131		U1	2			U	36		U30						++	\neg		
Operations	Security/Network/System Management	48	+	+		+				U133	-	U133	Ut	33	U133	U	133 U13	13							U133		U1	33			-	+			
Operations	Transmission Engineering	49	+	+		+					-									-	\vdash	\rightarrow		+		-			\square			++			
Service Provider	Aggregator/Retail Energy Provider	41	\rightarrow	+		U92	-			++	-		U	0 U93					Ul	5	U51	U91	U52		U53					U133	T	Ser	vice C	Provid	ers
Service Provider	Billing	42	\rightarrow	+			-	U64			-				U98	U	196	++		-	U63		Ux6	U	Ux4			-		U133	V	J4			
	Energy Service Provider	43	\rightarrow	+		U95	-				-			-		_		+-+	-	-						-		-		U133	_				-
Service Provider	Third Party	44	\rightarrow	+			UI	18		++					U6			+-+		-	\vdash	-		U	5					U133	_	+			
Transmission	Phaser Measurement Unit	45	\rightarrow	+		++				++	-							+-+		-	\vdash	-	U134			-	U85	U79		-		+-+	Tra	ci em	ssion
Transmission	Transmission Intelligent Electronic Device (IED)	40	\rightarrow	+		+-+					-				\vdash			+-+		-	\vdash	-	_	-			U81		$ \rightarrow $		/135	+	IId	3131/1	331011
	Transmission Remote Terminal Unit (RTU)	40	\rightarrow	+		+-+								-	\vdash			+-+		-	\vdash	-		-			U82		$ \rightarrow $		/136	+	\rightarrow		
Transmission	nanamasa chamad humma unit (crito)	4/												1			_		_	1					1		o de		┢───	-		╧┻┻┥			

Analytics for Cyber-Physical System Cybersecurity: Policy-based Methods for Risk Analysis • Prepared for: 2020 Winter Science of Security and Privacy Quarterly Meeting; January 15-

Massachusetts Institute of Technology 16, 2020; Raleigh, North Carolina • Nazli Choucri • January 15, 2020 • © MIT, 2020.

Policy-based Risk Analysis

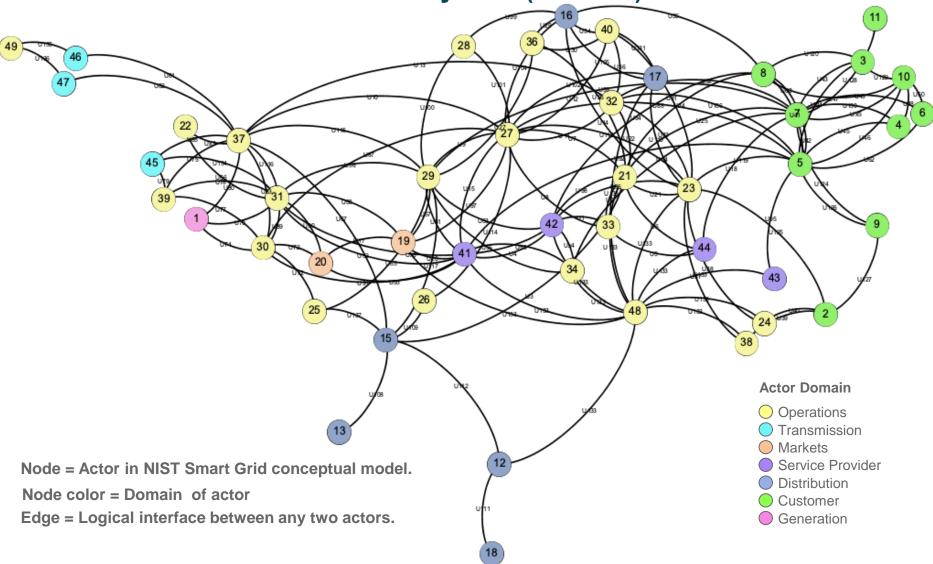
Outline & Agenda

1. Introduction – Problem & Methods

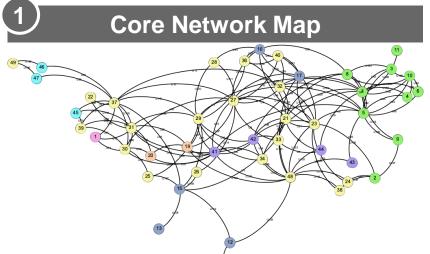
2. Create Linked Policy Database (Y1)

3. Construct System Dependency Framework (Y2)

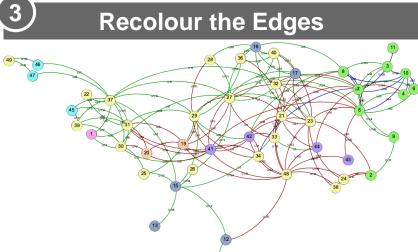
4. Generate Network Model of As-Is System (Y3 Preview)


5. Risk Analysis – Multiple Tasks & Integration (Y4-5 Preview)

6. Contributions to NSA Science of Security and Privacy Program

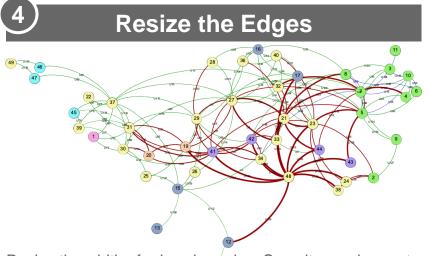

Model of As-Is Smart Grid System

Network view of DSM for "as-is" system (Preview).



Exploratory Analysis: User Defined Views (examples)

Location of Smart Grid nodes based on relative distance between nodes.



Recolor the edges based on the impact level (High, Moderate or Low) on the moderin case of compromise.

Resize the Smart Grid nodes based on their centrality and/or number of neighbors of the node in the network.

Resize the Nodes

Resize the width of edges based on Security requirements of Smart Grid for security objectives.

Policy-based Risk Analysis

Outline and Agenda

1. Introduction – Problem & Methods

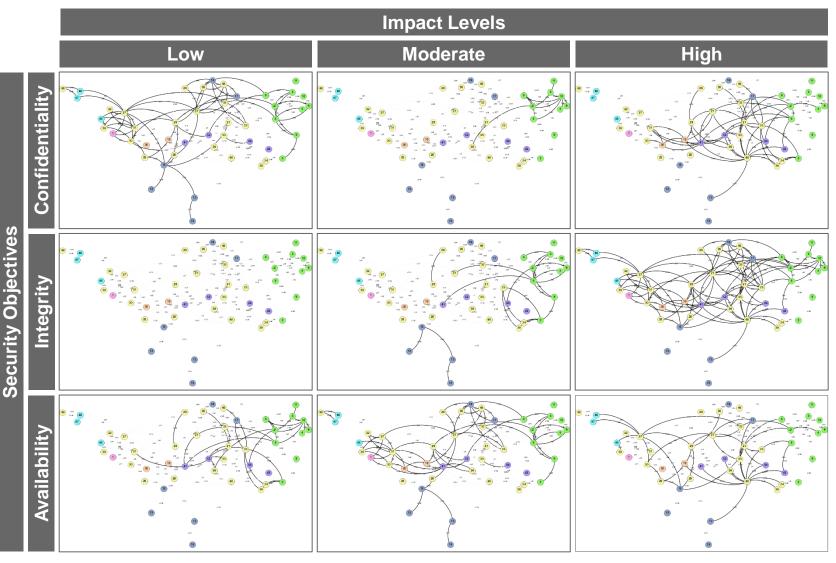
2. Create Linked Policy Database (Y1)

3. Construct System Dependency Framework (Y2)

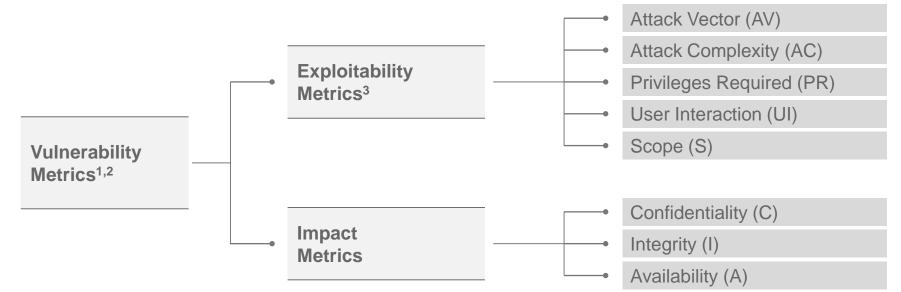
4. Generate Network Model of As-Is System (Y3 Preview)

5. Risk Analysis – Multiple Tasks & Integration (Y4-5 Preview)

6. Contributions to NSA Science of Security and Privacy Program


Steps for Risk Analysis Anchored in Network Model

- (1) Map Risk Properties, Impact Levels, & Vulnerabilities.
- (2) Apply NIST CVSS Logic for Risk Aggregation.
- (3) Integrate System-wide Results per NIST CVSS.
- (4) Assess Risk Results for System Parts or Whole.
- (5) Tailored Risk Management Analysis.

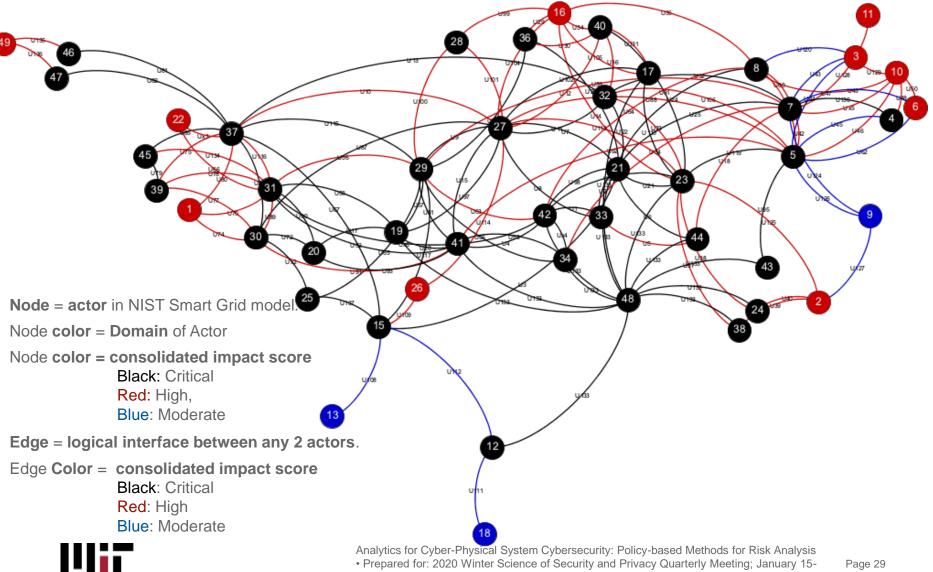

(1) Map Risk Properties, Impact Levels, Vulnerabilities

Based on criticality of information for worst-case system impact.

(2) Apply CVSS Logic for Risk Aggregation

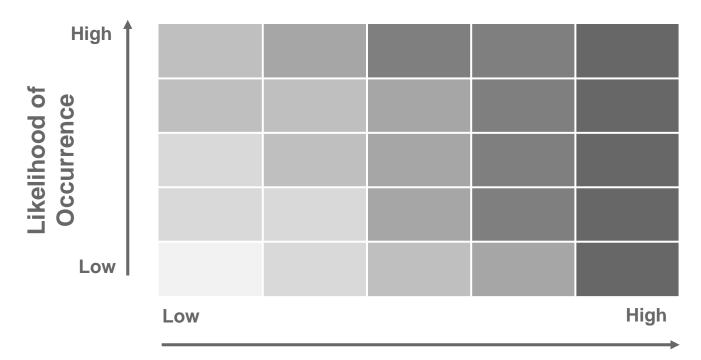
Produce a numerical score of severity (Impact) & exploitability for NIST qualitative assessments of risk.

- 1. See https://www.first.org/cvss/calculator/3.1 to calculate based Impact and Exploitability Scores.
- 2. Temporal and Environmental Scores are not included in this study.
- 3. for quantification of enterprise specific vulnerabilities


Impact metrics reflect direct consequence of a successful exploit & represent consequence to target that suffers the impact.

Exploitability metrics reflect ease & technical means by which vulnerability can be exploited.

(3) Integration: Consolidated Impact Score


Integrate system-wide results (from Step 1) per NIST CVSS (in Step 2)

Massachusetts Institute of Technology 16, 2020; Raleigh, North Carolina • Nazli Choucri • January 15, 2020 • © MIT, 2020.

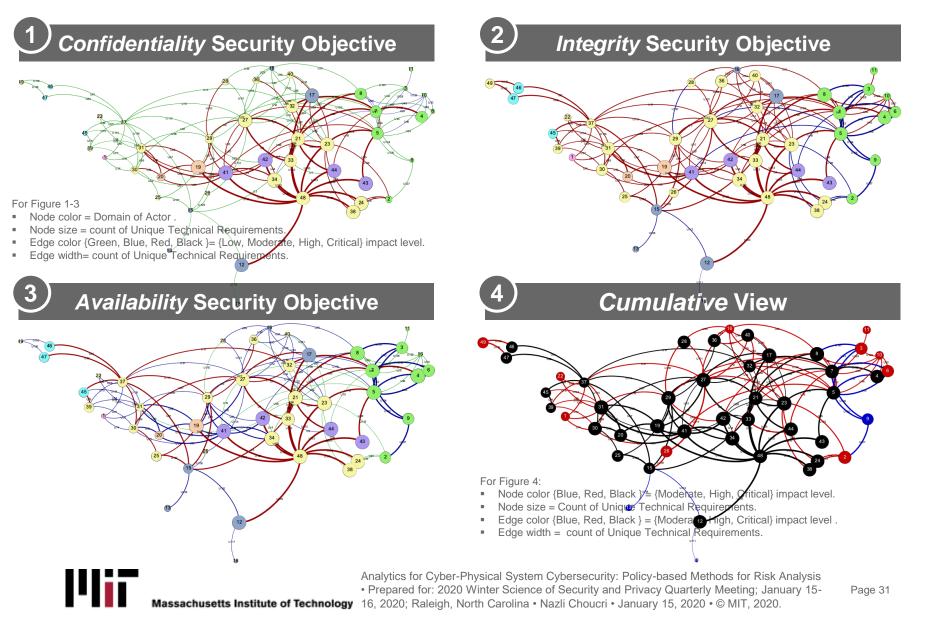
(4) Assess Risk Results-for System Parts or Whole

NIST framework to transform CVSS metrics into business objectives & to situate individual risks on risk matrix

Likelihood of occurrence based on:

- NIST National Vulnerability Database
- Historic data/ Internal Assessments
- Engineering Risk Benefit Analysis

Impact due to system compromise:


- Compromised National Security
- Loss of Business, and/or Loss of Sales
- Cleanup Costs

Analytics for Cyber-Physical System Cybersecurity: Policy-based Methods for Risk Analysis • Prepared for: 2020 Winter Science of Security and Privacy Quarterly Meeting; January 15-

Massachusetts Institute of Technology 16, 2020; Raleigh, North Carolina • Nazli Choucri • January 15, 2020 • © MIT, 2020.

(5) Tailored Risk Management Guidance (example) Select baseline security controls from NIST SP 800:53 Rev. 4.

Policy-based Risk Analysis

Outline & Agenda

1. Introduction – Problem & Methods

2. Create Linked Policy Database (Y1)

3. Construct System Dependency Framework (Y 2)

4. Generate Network Model of As-Is System (Y3 Preview)

5. Risk Analysis – Multiple Tasks & Integration (Y4-5 Preview)

6. Contributions to NSA Science of Security and Privacy Program

Relevance of our Linkage Approach to Cyber Security Framework & Privacy Framework

CSF & PF share common features:

Not a one-size-fits-all approach to managing cybersecurity risk

- No **one-solution-full-guidelines** covering all industries & companies.
- No ontological **structure or processes** provide for mapping Frameworks to specific industry activities.

No imposed profile templates & allow for flexibility in implementation

- An entity may select or tailor the Privacy/Cybersecurity Framework's Functions, Categories, & Subcategories to its specific needs.
- An entity may choose to have multiple Profiles for specific systems, products, services, or categories of individuals (e.g., employees, customers).

Result:

Application is left to implementing entity. <u>Linkage</u> mechanisms are needed to connect risks, vulnerabilities, impacts etc. of (a) <u>industry</u> or system <u>properties</u> to (b) Framework features.

Relevance to US DoD

Sec. 1641 of 2020 NDAA on "role of Chief Information Officer in improving enterprise-wide cybersecurity."

"(a) IN GENERAL.—

In carrying out the responsibilities established in section 142 of title 10, United States Code, the Chief Information Officer of the Department of Defense shall, to the maximum extent practicable, ensure that the cybersecurity programs and capabilities of the Department—

(1) fit into an enterprise-wide cybersecurity architecture;

(2) are maximally **interoperable with each other**, including those programs and capabilities deployed by the components of the Department;

(3) enhance enterprise-level visibility and responsiveness to threats; and

(4) are developed, procured, instituted, and managed in a cost-efficient manner, exploiting economies of scale and enterprise-wide services and **discouraging unnecessary customization and piecemeal acquisition.**"

* Public Law No: 116-92.

Contributions to Science of Security Program

Policy-Bases Analytics

Provide replicable methods to:

- Deconflict existing cybersecurity standards, regulations, and policies.
- Enhance enterprise-level visibility and responsiveness to threats.

Education

Demonstrate multi-methods for cybersecurity policy of complex systems:

- Provide "end-to-end" road map & document all applications step-by step.
- Explore advantages & constraints of multi-method approach.

Outreach

Connect to diverse communities.

- Envisage e-Lab for cybersecurity
- Ongoing discussions with NIST, Air Force and NSA personnel for possible extensions.

Relevance to Science of Security Hard Problems

Hard problem is policy-governed secure collaboration (applied to smart grid) & relation to other hard problems

1	Resilient Architectures	 Generate linked database of operations, standards & guidelines Design approach database to align enterprise functions to generic system-properties. Provide system-of-system database of critical documents.
2	Scalability & Composability	 Enable "full package" for different risk types, levels & time scales. Provide methods with tools to deep dive into database for customized insights & analyses. Create decision supports with methods to identify, analyse & record risk & its responses.
3	Policy Governed Secure Collaboration	 Conduct targeted enterprise-relevant analysis Address system-level complexity & heterogeneity due to policy landscapes. Identify points of power & control created by design decisions & policies.
4	Security-Metrics- Driven Evaluation, Design, Development & Deployment	 Identify & implement operational responses & actions. Use metrics to assess, deploy & develop capabilities – People, Policy & Procedures. Implement cybersecurity framework– Executive, Business/Process, Operations level.
5	Understanding & Accounting for Human Behaviour	 Establish independent monitoring of key enterprise functions. Timely, uniform & accurate accounting of business processes. Identify potential violations of policy directives & systematically prevent occurrences.
	11117	Analytics for Cyber-Physical System Cybersecurity: Policy-based Methods for Risk Analysis Prepared for: 2020 Winter Science of Security and Privacy Quarterly Meeting; January 15- Page 36

Massachusetts Institute of Technology 16, 2020; Raleigh, North Carolina • Nazli Choucri • January 15, 2020 • © MIT, 2020.

How Can We Collaborate?

Next steps?

- Explore further options for cybersecurity risk management methodology as required in 2020 NDAA.
- Initiate SoS cybersecurity risk management project with support of industry or business partner.

Key Questions

- Do you see relevance of our approach for your sector, system, or enterprise?
- How can we jointly contribute to Science of Security?
- What can we do that can be of mutual interest & benefit?

Contact details

Nazli Choucri

Professor of Political Science

+1 (617) 253 - 6198; nchoucri@mit.edu

