
Policy DSL: High-level Specifications of
Information Flows for Security Policies

Magnus Carlsson, Joe Hurd, Sigbjorn Finne, Brett Letner,
Joel Stanley, Louis Testa, Peter White

Galois, Inc.

May 18, 2009

1(48)



Overall goals

I Security policies that we can understand
I Domain-specific, high-level language: nested security domains,

information flows and assertions

I Established links with existing, relevant policy languages
I SELinux

I Long term: Descriptions of large, heterogeneous systems
I Networks with guards, firewalls, virtual machines,. . .

2(48)



Talk Plan

Background

Shrimp — SELinux Policies Made Precise

Lobster — Domains and Information Flows

Symbion — Policy Properties

Experience

Status and future

Conclusion

3(48)



Talk Plan

Background

Shrimp — SELinux Policies Made Precise

Lobster — Domains and Information Flows

Symbion — Policy Properties

Experience

Status and future

Conclusion

4(48)



Background - SELinux

I NSA: put Mandatory Access Control (using the FLASK
architecture) into Linux (Loscocco, Smalley, 2001)

I Released with Example Policy

I Fine-grained control over allowed permissions

I The native policy language: limited support for abstraction
and re-use

5(48)



SELinux Native Policy Sample
Allow init to start httpd

allow httpd_t init_t:process sigchld;
allow httpd_t init_t:process signull;
allow httpd_t httpd_exec_t:file entrypoint;
allow httpd_t httpd_exec_t:file { getattr read execute };
allow httpd_t httpd_exec_t:file { ioctl lock };
typeattribute httpd_exec_t entry_type;
typeattribute httpd_exec_t exec_type;
typeattribute httpd_exec_t file_type;
role system_r types httpd_t;
allow initrc_t httpd_exec_t:file { getattr read execute };
allow initrc_t httpd_t:process transition;
dontaudit initrc_t httpd_t:process { noatsecure siginh };
dontaudit initrc_t httpd_t:process rlimitinh;
type_transition initrc_t httpd_exec_t:process httpd_t;
allow httpd_t initrc_t:fd use;
allow httpd_t initrc_t:fifo_file { getattr read write };
allow httpd_t initrc_t:fifo_file { append ioctl lock };
allow httpd_t initrc_t:process sigchld;

6(48)



Background - SELinux

I Re-use improved by using macro definitions

I Policy code on previous slide captured with one macro call:

init_daemon_domain(httpd_t,httpd_exec_t)

I Tresys Technology: introduced the Reference Policy
(PeBenito, Mayer, MacMillan, 2006)

I Modularized the Example Policy
I Separated interface from implementation
I Discouraged the unstructured use of “global variables”
I Successful application of software engineering principles
I Large impact - used in a number of wide-spread Linux

distributions
I Complex - over 150,000 lines in 250 modules

7(48)



SELinux - Reference Policy example

Separation of interfaces from implementation:

apache_read_config(my_program_t)

allows my program to access the configuration files of the web
server

8(48)



SELinux - the Reference Policy

I The Reference Policy: enabled security policies to scale
I Issues:

I Difficult to analyze - e.g. what are the information flows
between modules?

I Still implemented using textual processing (macro-expansion)

9(48)



Problem with macro processors

I Macro processors provide simple means of defining
domain-specific languages by defining language “primitives”
as macro definitions

I Problem: limited means for analyzing the input
I checking types and number of parameters
I controlling where macros should be expanded

10(48)



Macro processing in the Reference Policy

I Example: processing of file contexts:

/bin/login -- gen_context(system_u:object_r:login_exec_t,s0)

I Associates the login program with the security domain
login_exec_t

I gen_context is a macro, and the specification is expanded to

/bin/login -- system_u:object_r:login_exec_t

11(48)



Macro processing in the Reference Policy

I Example: processing of file contexts:

/bin/login -- gen_context(system_u:object_r:login_exec_t,s0)

I Associates the login program with the security domain
login_exec_t

I gen_context is a macro, and the specification is expanded to

/bin/login -- system_u:object_r:login_exec_t

12(48)



Macro processing in the Reference Policy

I Suppose we want to specify that a new program we call
secure_mode_conf should be in the security domain
my_domain:

/bin/secure_mode_conf -- gen_context(system_u:object_r:my_domain,s0)

I Problem: secure_mode_conf happens to be a macro
definition, and the text expands to:

/bin/false -- system_u:object_r:my_domain

I Accidentally, we have associated the system program false
to be in our security domain!

I The Reference Policy has over 500 macros that may clash

13(48)



Macro processing in the Reference Policy

I Suppose we want to specify that a new program we call
secure_mode_conf should be in the security domain
my_domain:

/bin/secure_mode_conf -- gen_context(system_u:object_r:my_domain,s0)

I Problem: secure_mode_conf happens to be a macro
definition, and the text expands to:

/bin/false -- system_u:object_r:my_domain

I Accidentally, we have associated the system program false
to be in our security domain!

I The Reference Policy has over 500 macros that may clash

14(48)



Macro processing in the Reference Policy

I Macro processing makes it difficult to understand the
Reference Policy

I Current analysis tools work on policy after macro expansion

I Policy writers that use analysis tools must understand policy
languages both before and after macro expansion

15(48)



Challenges with SELinux

I How can the Reference Policy be analyzed without macro
expansion?

I How can we understand information flow without looking
inside policy modules?

I How can we explicitly state restrictions in information flows
between modules?

16(48)



Approach

Shrimp — Treating the Reference Policy as a domain-specific
language in its own right

I Giving a precise specification of the Reference Policy language

Lobster — Policy language based on information flow and nested
security domains

Symbion — Assertion language over information flows and domains
I example: “every flow from the Secret domain to the Internet

domain goes through the Encryption domain.”

17(48)



Talk Plan

Background

Shrimp — SELinux Policies Made Precise

Lobster — Domains and Information Flows

Symbion — Policy Properties

Experience

Status and future

Conclusion

18(48)



Shrimp

I Treating the SELinux Reference Policy as a domain-specific
language in its own right

I Gives a precise specification of the Reference Policy semantics
(collaboration with Tresys)

I Allows us to analyze the complete Reference Policy and detect
over 100 problems (“lint” for policies)

I Example: illegal references to private types across module
boundaries (the equivalent of “global variables”)

I Integrated with SLIDE (an IDE for policy writers) (David
Sugar & co, Tresys Technology)

I Our hope: Shrimp will help increase our confidence in the
Reference Policy

19(48)



Shrimp in SLIDE

20(48)



Talk Plan

Background

Shrimp — SELinux Policies Made Precise

Lobster — Domains and Information Flows

Symbion — Policy Properties

Experience

Status and future

Conclusion

21(48)



A Security Policy Designer’s View

How a security policy designer might see an application:

Security domains with explicit information flow through ports

22(48)



Security Policy Designer’s View

Inside the application, there might be some more information flow
specified:

23(48)



Lobster Use Case

The intended use of Lobster:

1.
A security policy designer writes a
Lobster information flow graph for
the application.

2.
A developer writes a Lobster pol-
icy for the application.

3. An automatic tool verifies that the Lobster policy (2) is a
refinement of the Lobster information flow graph (1), in that
no extra information flows have been introduced.

4. A compiler takes the Lobster policy (2) and generates
SELinux policy statements.

24(48)



Information flow graphs in Lobster

class A() { class B() {
port input; port input;
port output; port output;
domain p = B(); }
domain q = B();
input --> p.input;
p.output --> q.input;
q.output --> output;

}

25(48)



Compiling Lobster to SELinux

Primitive classes have ports corresponding to SELinux permissions:

domain d = Process();
domain f = File("/etc/foo");
d.active <-- f.read;
d.active --> f.write;

gets translated to

allow d_t f_t:file { read write };

/etc/foo -- gen_context(system_u:object_r:f_t,s0)

26(48)



Talk Plan

Background

Shrimp — SELinux Policies Made Precise

Lobster — Domains and Information Flows

Symbion — Policy Properties

Experience

Status and future

Conclusion

27(48)



Background: Assertions on flows
Simple on small policies

“Every flow from Secret to Internet goes through Encrypt”

28(48)



Background: Assertions on flows
Not so simple on large policies

“Every flow from Secret to Internet goes through Encrypt”

29(48)



Background: Assertions on flows

I Assertions are useful for expressing desired properties on
information flows in security policies

I Easy to check manually for small policies

I Very hard to check manually for large policies — we need help
from tools

I Useful to have assertions as
part of the policy, and expressed in terms of the policy

30(48)



Symbion

A Symbion assertion has the form

P → Q : φ

where P and Q are predicates on start and end ports, and φ is a
predicate on what flows are acceptable between the ports.
Predicates are built using regular expressions and propositional
connectives.

Some examples:

I [Secret.∗]→ [Internet.∗] : false — “there is no flow from any
port of the Secret domain to any port of the Internet domain”

I [Secret.∗]→ [Internet.∗] : ∗[Encrypt.∗]∗ — “every flow from
the Secret domain to the Internet domain goes through the
Encrypt domain”

31(48)



Symbion for Domain specifications

I Domain specifications can be used by a security policy
designer to specify acceptable flows in domains yet to be
refined

I Symbion assertions define the set of conceivable valid flows:

32(48)



Symbion for Domain specifications

I When a developer refines the policy, the actual flows must be
a subset of the valid flows

33(48)



Symbion for Domain specifications

Example of a guard domain specification with Symbion assertions:

class Guard() {
port unclassified;
port classified;
port output;

assert unclassified -> output : true;
assert classified -> output : *[Declassify.*]*;

}

34(48)



Challenges with SELinux

I How can the Reference Policy be analyzed without macro
expansion? — by using Shrimp, treating the Reference Policy
as a proper domain-specific language

I How can we understand information flow without looking
inside policy modules? — by using Lobster, making all
information flows explicit

I How can we explicitly state restrictions in information flows
between modules? — by using Symbion, expressing assertions
over flows in Lobster policies

35(48)



Talk Plan

Background

Shrimp — SELinux Policies Made Precise

Lobster — Domains and Information Flows

Symbion — Policy Properties

Experience

Status and future

Conclusion

36(48)



Experience
Project Guardol — with Rockwell Collins

Security policies from guard specifications

I The resulting policy locks
down the guard components

I The Lobster policy is
suitable for evaluation —
high level and readable

37(48)



Experience
Policies for Secure Virtual Platforms

I Lobster policies for describing information flow through event
channels and grants

I Compiled into a XSM (Xen Security Module) policy

38(48)



Talk Plan

Background

Shrimp — SELinux Policies Made Precise

Lobster — Domains and Information Flows

Symbion — Policy Properties

Experience

Status and future

Conclusion

39(48)



Current status
what we have

I Lobster compiler to SELinux

I Shrimp analyzer from Reference Policy

I Design of Symbion assertion language

40(48)



Current status
what we are working on

I Reverse compiling Reference Policy into Lobster
I automatic discovery of domain hierarchies
I gives us high-level information flow analysis of SELinux

I Implementing Symbion assertion checks
I Describing information flow among virtual machines

I Lobster for designing Xen security policies

I Prototyping visualization tools

41(48)



Future
Visualizing Lobster policies

42(48)



Future
Going beyond SELinux

I Use Lobster to describe informa-
tion flow in networks of guards,
firewalls, routers, virtual machines

I SELinux would be one of many “back-ends”

I Make tools and specifications open to invite back-end
development by community

I Use Lobster to describe information flow inside programs
(connect to ASA - Automated Security Assurance)

43(48)



Future
Describing information flow in complex system

44(48)



Future
Prescribing information flow in complex system

45(48)



Future
Information flow in complex systems — opportunities

I Continuous, on-line analy-
sis of existing organization

I Dashboard visualizes differences between prescribed and
analyzed policies

I Having one comprehensive, consistent description allows us to
express and check more properties, like defense in depth

I Extend Lobster to express trust relationships

I Not only machines but people can be described and assigned
trust levels

46(48)



Talk Plan

Background

Shrimp — SELinux Policies Made Precise

Lobster — Domains and Information Flows

Symbion — Policy Properties

Experience

Status and future

Conclusion

47(48)



Conclusion

I Shrimp — Precise understanding of complex SELinux security
policies

I Lobster — High-level description of security policies in terms
of nested security domains and information flows

I Symbion — High-level properties over security policies

I Future — lots of opportunities!

48(48)


	Background
	Shrimp --- SELinux Policies Made Precise
	Lobster --- Domains and Information Flows
	Symbion --- Policy Properties
	Experience
	Status and future
	Conclusion

