Policy DSL: High-level Specifications of
Information Flows for Security Policies

Magnus Carlsson, Joe Hurd, Sigbjorn Finne, Brett Letner,
Joel Stanley, Louis Testa, Peter White

Galois, Inc.

May 18, 2009

galois

1(48)

Overall goals

» Security policies that we can understand

» Domain-specific, high-level language: nested security domains,
information flows and assertions

» Established links with existing, relevant policy languages
» SELinux

» Long term: Descriptions of large, heterogeneous systems
» Networks with guards, firewalls, virtual machines,. . .

galois

2(48)

Talk Plan

3(48)

Background

Shrimp — SELinux Policies Made Precise
Lobster — Domains and Information Flows
Symbion — Policy Properties

Experience

Status and future

Conclusion

| galois |

Talk Plan

Background

| galois |

4(48)

Background - SELinux

» NSA: put Mandatory Access Control (using the FLASK
architecture) into Linux (Loscocco, Smalley, 2001)

» Released with Example Policy
» Fine-grained control over allowed permissions

» The native policy language: limited support for abstraction
and re-use

galois

5(48)

SELinux Native Policy Sample

Allow init to start httpd
allow httpd_t init_t:process sigchld;

allow httpd_t init_t:process signull;

6(48)

allow httpd_t httpd_exec_t:
allow httpd_t httpd_exec_t:
allow httpd_t httpd_exec_t:
typeattribute httpd_exec_t
typeattribute httpd_exec_t
typeattribute httpd_exec_t

file entrypoint;

file { getattr read execute };
file { ioctl lock };
entry_type;

exec_type;

file_type;

role system_r types httpd_t;

allow initrc_t httpd_exec_t:file { getattr read execute };
allow initrc_t httpd_t:process transition;

dontaudit initrc_t httpd_t:process { noatsecure siginh };
dontaudit initrc_t httpd_t:process rlimitinh;
type_transition initrc_t httpd_exec_t:process httpd_t;
allow httpd_t initrc_t:fd use;

allow httpd_t initrc_t:fifo_file { getattr read write };
allow httpd_t initrc_t:fifo_file { append ioctl lock I};
allow httpd_t initrc_t:process sigchld;

galois

Background - SELinux

» Re-use improved by using macro definitions

» Policy code on previous slide captured with one macro call:
init_daemon_domain(httpd_t,httpd_exec_t)

» Tresys Technology: introduced the Reference Policy
(PeBenito, Mayer, MacMillan, 2006)

Modularized the Example Policy

Separated interface from implementation

Discouraged the unstructured use of “global variables”
Successful application of software engineering principles
Large impact - used in a number of wide-spread Linux
distributions

» Complex - over 150,000 lines in 250 modules

vV VY VY VY

galois

7(48)

SELinux - Reference Policy example

Separation of interfaces from implementation:
apache_read_config(my_program_t)

allows my program to access the configuration files of the web
server

My program Web server

galois

8(48)

SELinux - the Reference Policy

» The Reference Policy: enabled security policies to scale
> Issues:

» Difficult to analyze - e.g. what are the information flows
between modules?
» Still implemented using textual processing (macro-expansion)

galois

9(48)

Problem with macro processors

» Macro processors provide simple means of defining
domain-specific languages by defining language “primitives”
as macro definitions

» Problem: limited means for analyzing the input

» checking types and number of parameters
» controlling where macros should be expanded

galois

10(48)

Macro processing in the Reference Policy

» Example: processing of file contexts:
/bin/login -- gen_context(system_u:object_r:login_exec_t,s0)

» Associates the login program with the security domain
login_exec_t

galois

11(48)

Macro processing in the Reference Policy

» Example: processing of file contexts:
/bin/login -- gen_context(system_u:object_r:login_exec_t,s0)

» Associates the login program with the security domain
login_exec_t

> gen_context is a macro, and the specification is expanded to

/bin/login -- system_u:object_r:login_exec_t

galois

12(48)

Macro processing in the Reference Policy

» Suppose we want to specify that a new program we call
secure_mode_conf should be in the security domain
my_domain:

/bin/secure_mode_conf -- gen_context(system_u:object_r:my_domain,s0)

galois

13(48)

Macro processing in the Reference Policy

> Suppose we want to specify that a new program we call
secure_mode_conf should be in the security domain
my_domain:
/bin/secure_mode_conf -- gen_context(system_u:object_r:my_domain,s0)

» Problem: secure_mode_conf happens to be a macro
definition, and the text expands to:

/bin/false -- system_u:object_r:my_domain

» Accidentally, we have associated the system program false
to be in our security domain!

» The Reference Policy has over 500 macros that may clash

galois

14(48)

Macro processing in the Reference Policy

» Macro processing makes it difficult to understand the
Reference Policy

» Current analysis tools work on policy after macro expansion

» Policy writers that use analysis tools must understand policy
languages both before and after macro expansion

galois

15(48)

Challenges with SELinux

» How can the Reference Policy be analyzed without macro
expansion?

» How can we understand information flow without looking
inside policy modules?

» How can we explicitly state restrictions in information flows
between modules?

galois

16(48)

Approach

Shrimp — Treating the Reference Policy as a domain-specific
language in its own right

» Giving a precise specification of the Reference Policy language
Lobster — Policy language based on information flow and nested
security domains
Symbion — Assertion language over information flows and domains

» example: “every flow from the Secret domain to the Internet
domain goes through the Encryption domain.”

galois

17(48)

Talk Plan

Shrimp — SELinux Policies Made Precise

| galois |

18(48)

Shrimp

19(48)

Treating the SELinux Reference Policy as a domain-specific
language in its own right

Gives a precise specification of the Reference Policy semantics
(collaboration with Tresys)

Allows us to analyze the complete Reference Policy and detect
over 100 problems (“lint" for policies)

Example: illegal references to private types across module
boundaries (the equivalent of “global variables™)

Integrated with SLIDE (an IDE for policy writers) (David
Sugar & co, Tresys Technology)

Our hope: Shrimp will help increase our confidence in the
Reference Policy

galois

Shrimp in SLIDE

20(48)

le Edit Navigate Search Project Run Window Help

L1 @ % 0vQ & G &~ §l e e

</summary>
<paran nanedonain'>
<summary:

Domain alluwed to transition.
</sumary>

</param>

FEER

o

nterface (" apcupsd_append_Log",
gen_require
& type apcupsd_log_t;
)

Togging_search_logs (51)
allow $1 apcupsd_log_t:dir List_dir_perm
Tlow 91 apeuped_Log t:f1le { getattr sppend 1;

<summary>
Execute a domain transition to run httpd_apcupsd_cgi_script.
</sumary>

<param name="domain”>

Interfaces (.if) Private Policy (te) | File Contexts (.fc)
Declaration | [£ Problems 2 Audll‘cnnsnle‘ » v =0
0 errors, 226 warnings, 0 infos

Description Resource | Path ~ Location

& Module header name 'audio_entropy does not match file name 'FILE' audioentropy:t test2/policy/modules/services

& Out-of-scope reference to ‘automount_etc_t' defined at tomount i line 34
& Undefined class 'dbus’ cron.if test2/policyimodules/services line 163
& out-of-scope reference to '$1_t defined at dbus.if line 94,
& The interface 'mta_mailserver' has an e mta.if jces line 297
& The interface ‘mta_mailserver' has an s mtaif line 207
& Undefined domain 'postfix_master_t' postiicif testajpolicyimodules/services line 43
& the trface postipar ol teraplat has an undocumantad any pare posict LeREEEITICALISREERY e 100

Writable Insert 75:23

galois

Talk Plan

Lobster — Domains and Information Flows

| galois |

21(48)

A Security Policy Designer’'s View

How a security policy designer might see an application:

Security domains with explicit information flow through ports

galois

22(48)

Security Policy Designer's View

Inside the application, there might be some more information flow
specified:

application

galois

23(48)

Lobster Use Case

The intended use of Lobster:

A security policy designer writes a
1. Lobster information flow graph for
the application.

A developer writes a Lobster pol-
icy for the application.

3. An automatic tool verifies that the Lobster policy (2) is a
refinement of the Lobster information flow graph (1), in that
no extra information flows have been introduced.

4. A compiler takes the Lobster policy (2) and generates
SELinux policy statements.

galois

24(48)

Information flow graphs in Lobster

class AQ) { class BO) {
port input; port input;
port output; port output;
domain p = BQ); }
domain q = B(Q);

input --> p.input;
p.output --> q.input;
q.output —--> output;

galois

25(48)

Compiling Lobster to SELinux

Primitive classes have ports corresponding to SELinux permissions:

domain d = Process();

domain f = File("/etc/foo");
d.active <-- f.read;
d.active -—> f.write;

gets translated to
allow d_t f_t:file { read write };

/etc/foo -- gen_context(system_u:object_r:f_t,s0)

galois

26(48)

Talk Plan

Symbion — Policy Properties

| galois |

27(48)

Background: Assertions on flows

Simple on small policies

“Every flow from Secret to Internet goes through Encrypt”

Secret Internet

galois

28(48)

Background: Assertions on flows

Not so simple on large policies

“Every flow from Secret to Internet goes through Encrypt”

20(48)

Background: Assertions on flows

» Assertions are useful for expressing desired properties on
information flows in security policies

» Easy to check manually for small policies

» Very hard to check manually for large policies — we need help
from tools

» Useful to have assertions as
part of the policy, and expressed in terms of the policy

30(48) galO] S

Symbion
A Symbion assertion has the form
P—Q:¢

where P and @ are predicates on start and end ports, and ¢ is a
predicate on what flows are acceptable between the ports.
Predicates are built using regular expressions and propositional
connectives.

Some examples:

> [Secret.x] — [Internet.x] : false — “there is no flow from any
port of the Secret domain to any port of the Internet domain”

> [Secret.x| — [Internet.x] : x[Encrypt.x|* — “every flow from
the Secret domain to the Internet domain goes through the
Encrypt domain”

31(48) galO] S

Symbion for Domain specifications

» Domain specifications can be used by a security policy
designer to specify acceptable flows in domains yet to be
refined

» Symbion assertions define the set of conceivable valid flows:

galois

32(48)

Symbion for Domain specifications

» When a developer refines the policy, the actual flows must be
a subset of the valid flows

Implementation

galois

33(48)

Symbion for Domain specifications

Example of a guard domain specification with Symbion assertions:

class Guard() {
port unclassified;
port classified;
port output;

assert unclassified -> output : true;
assert classified -> output : *[Declassify.x*]x*;

34(48) galO] S

Challenges with SELinux

» How can the Reference Policy be analyzed without macro
expansion? — by using Shrimp, treating the Reference Policy
as a proper domain-specific language

» How can we understand information flow without looking
inside policy modules? — by using Lobster, making all
information flows explicit

» How can we explicitly state restrictions in information flows
between modules? — by using Symbion, expressing assertions
over flows in Lobster policies

galois

35(48)

Talk Plan

Experience

| galois |

36(48)

Experience

Project Guardol — with Rockwell Collins

Security policies from guard specifications

» The resulting policy locks
down the guard components

» The Lobster policy is
suitable for evaluation —
high level and readable

37(48)

galois

Experience

Policies for Secure Virtual Platforms

» Lobster policies for describing information flow through event
channels and grants

» Compiled into a XSM (Xen Security Module) policy

galois

38(48)

Talk Plan

Status and future

| galois |

39(48)

Current status

what we have

» Lobster compiler to SELinux
» Shrimp analyzer from Reference Policy

» Design of Symbion assertion language

galois

40(48)

Current status

what we are working on

v

Reverse compiling Reference Policy into Lobster

» automatic discovery of domain hierarchies
> gives us high-level information flow analysis of SELinux

v

Implementing Symbion assertion checks

v

Describing information flow among virtual machines
» Lobster for designing Xen security policies

v

Prototyping visualization tools

galois

41(48)

Future

Visualizing Lobster policies

portage

quota postlink prelink

42(48)

Future
Going beyond SELinux

43(48)

» Use Lobster to describe informa-
tion flow in networks of guards,

@Ay AT
firewalls, routers, virtual machines ﬁéﬂi

» SELinux would be one of many “back-ends”

» Make tools and specifications open to invite back-end
development by community

» Use Lobster to describe information flow inside programs
(connect to ASA - Automated Security Assurance)

galois

Future

Describing information flow in complex system

Federated e
network 5T
specification

Cerived
federated
configuraticn

Network
configuration

Individual
system
configurations

| galois |

44(48)

Future

Prescribing information flow in complex system

Federated Derived
network T
specification federated
configuration

Network
configuration

Individual
system
configurations

| galois |

45(48)

Future

Information flow in complex systems — opportunities

» Continuous, on-line analy-
sis of existing organization

» Dashboard visualizes differences between prescribed and
analyzed policies

» Having one comprehensive, consistent description allows us to
express and check more properties, like defense in depth

» Extend Lobster to express trust relationships

» Not only machines but people can be described and assigned
trust levels

galois

46(48)

Talk Plan

Conclusion

| galois |

47(48)

Conclusion

48(48)

» Shrimp — Precise understanding of complex SELinux security
policies

» Lobster — High-level description of security policies in terms
of nested security domains and information flows

» Symbion — High-level properties over security policies

» Future — lots of opportunities!

galois

	Background
	Shrimp --- SELinux Policies Made Precise
	Lobster --- Domains and Information Flows
	Symbion --- Policy Properties
	Experience
	Status and future
	Conclusion

