
Practical Model Checking

Dr. John Penix
Automated Software Engineering Group
NASA Ames Research Center

Outline

� NASA’s Software Challenges
� Past Work: Program Model Checking
� Transition Challenges

� Limited coverage of real systems
� Languages

� Summary
� High-Dependability Computing Program

NASA’s Software Challenges
� High-quality software must be delivered on

schedule – astronauts are not beta-testers
� High dependability required over long mission

lifecycles while utilizing cutting edge
(unproven and risky) software technology

� Increasing system and software complexity
pushes beyond the limits of conventional
methods for assuring dependability

� Software is developed by interdisciplinary
teams from distributed organizations

Growing Software Complexity

8

1700

3

32

160
430

1

10

100

1000

10000

Voyager
(1977)

Galileo
(1989)

Cassini
(1997)

MPF
(1997)

Shuttle
(2000)

ISS
(2000)

Mission

Li
ne

s
of

 C
od

e
(T

ho
us

an
ds

)

52
CPUs

Testing Concurrent Programs

Program
 Var x:int;
 Parallel
 Block P
 x:= 1;
 x:= 2
 End P
 And
 Block Q
 x:=3
 End Q
End

3 2

1

0

2

3

132

P2

P1

P2

P2

P1

Q3

Q3

Q3

Program Executions Combinations to Test

[(size(P) + size(Q)] !
 size(P) ! size(Q) !

10,10 : 105

100,100 : 1059

1000,1000 : 10600

Model Checking

OK

Error trace

or
Finite-state model

Temporal logic formula

Model Checker
���������������

Line 5: …
Line 12: …
Line 15:…
Line 21:…
Line 25:…
Line 27:…
 …
Line 41:…
Line 47:…

Model Construction Problem

� Semantic gap:

Model Description
Model Checker

Program

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Gap

Programming Languages

Model Description Languages
methods, inheritance, dynamic creation, exceptions, etc.

automata

Java PathFinder
void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

0: iconst_0
1: istore_2
2: goto #39
5: getstatic
8: aload_0
9: iload_2
10: aaload

JVM

Special JVM Model Checker

JPF Highlights
� Models can be infinite state

� Depth-first state graph generation (Explicit-state model
checking)

� Errors are real
� Verification can be problematic (Abstraction required)

� All of Java is handled except native code
� Nondeterministic Environments

� JPF traps special nondeterministic methods
� Properties

� User-defined assertions and deadlock
� LTL properties (integrated with Bandera)

� Source level error analysis (with Bandera tool)

Enabling Technologies

• Abstraction
• Under-approximations
• Over-approximations

• Partial-order Reductions

• Property Preserving Slicing

• Reduce sizes:
 e.g. Queues, arrays etc.
• Reduce variable ranges
 to singleton

• Remove irrelevant code

• Group statements
 together in atomic blocks
 to reduce interleaving

• Heuristic Search
• State Compression

Case 0:
new();
Case 1:
Stop();
Case 2:
Remove();
Case 3:
Wait();

Case 0:
new();
Case 2:
Remove();

Slicing

Abstraction

Environment

JPF

Repair

DEOS
10000 lines to 1500

Property
preserving

DEOS
Infinite state to 1,000,000 states

Semi-automated: requires domain knowledge

Heuristic search
Focused search for

errors

Partial-order
reduction

Spurious error
elimination during

abstraction

State compression

Bandera code-level debugging
of error-path

3x 30x

5x 100x

2x 15x 2x 10x

2x 10x

Combined techniques allows
O(102) source line and

O(106) state-space increase

Generation

Scaling Program Model Checking

30.00 50.00

330.00

550.00

1000.00

0.00

250.00

500.00

750.00

1000.00

1997 1998 2000 2001 2002

LOC analyzed per Person day

Remote Agent
Hand-translation

SPIN DEOS
Hand-translation

SPIN

DEOS
Java-translation

JPF

Autopilot
JPF

Challenges to Adoption

� State space limitation
� Verification context limited due to memory
� But, our success stories were about error

detection, not full verification
� Java only used in limited contexts:

� Java for data monitoring and visualization
� Embedded Java not picked up at NASA
� C/C++ used for control applications

Out of Memory… Exception?

� On most real programs, the model checker is
going to run out of memory.
� Program slicing & abstraction are helpful, but

effort is required to make them sufficient

� Then, what claim can be made when a model
checker only gets partial coverage?

� Furthermore: Can coverage metrics be used
to guide the model checker to find errors?

while (y > 0) {
 if (x < y and x!=0)
 y = y+x;
 elseif (x>0)
 if (x>10)
 x = x - y;
 else
 x = x - 1;
 else
 y = y –1;
}

COVERAGE
20
5

14
10

4

1

CRITICAL
PROPERTIES
Always (x > 0)

Eventually (y < 0)

MODEL
CHECKER

MODEL
CHECKER

Guided State-Space Analysis

� If a certain structure (branch, condition,
DUpath) has not been covered

� Then there is no evidence for claiming
that part of the program behavior is
working correctly – or is free of errors

poor coverage => weak claim for error-freeness

Correctness by Coverage

Coverage => stronger claim for error-freeness
Coverage => strong claim for error-freeness?

For the claim to be strong:
• Metric has a strong correlation to class of

errors: coverage-based testing will find all
errors in the class

• Any set of test cases which provides
coverage is equally likely to find an error

Correctness by Coverage

Which Metrics for Model Checking?

� Decision (Branch), Condition,
Condition/Decision, MC/DC?

� Definition/Use and Concurrency Graph
coverage?

� Relevant paths coverage?
� Coverage for valid properties
 – what is the model checker doing???

1513 17

2

Directed Search
� Breadth-first (BFS) like

state-generation
� Priority queue according

to fitness function
� Queue limit parameter

1

0

54 6

10 118

14

3

7

12

1916 18

9

3 2 1

Priority Queue with limit 4

2 1 7 6 1 7

10 1 11 71 16 11 7

5 164 11 7

Search Tactics
� Best-First, Beam and A* Search
� Heuristics on structure of Program

� Branch Exploration: Maximize the coverage of new
branches

� Choose-free heuristic: Minimize non-deterministic
choice

� Assertions: Minimize distance to assertion
� Heuristics based on error classes

� deadlock: Maximize number of blocked threads
� Race conditions: Maximize thread interleavings

� User-defined heuristics
� Full access to JVM’s state via API

� Combine heuristics

C++ PathFinder

� Building a C++ to bytecode compiler
based on Apogee C++ compilers

� Extensions to JPF JVM
� Challenges:

� Pointers and memory model
� Type systems

Pointers and memory

� Assuming that pointer arithmetic is
array indexing:
� malloc � new Array
� pointer � (ref Array, index) (in complier)

Type systems

� Parameterized types (templates) are
handled by the compiler front-end

� Extending the JPF JVM to support
multiple inheritance – compiler passes
superclass info via class file attributes

C++ Front-end Status

� End to end C++ � bytecode working
on small examples

� JPF JVM extensions underway
� Integration in April

Conclusion

�Many barriers to having practical tools
� Languages, Performance, Coverage

� Have to get something out there:
� Knobs & Dials to trade cost/benefits
� What properties are important?
� Property checking vs. error detection?
� Integration with life-cycle: unit testing?

design checking? code reviews?

JPF info

http://ase.arc.nasa.gov/jpf/

High-Dependability Computing
Program

Dr. Michael R. Lowry
NASA Ames Research Center

HDCP Purpose

� Develop scientific basis for engineering high-
dependability computing systems (software and
systems) through an experimental test-bed facility.

� Provide researchers a national facility for
experimenting with technology to improve
dependability on realistic systems at significant scale.

� Provide NASA and IT industry empirically validated
methods to predict dependability and to achieve
dependability. Anticipate that IT industry will
increasingly provide components to Aerospace
integrators - but these components must be highly
dependable.

HDCP Components
� High-Dependability Computing Program:

� CMU West (NASA Ames Research Park)
� CMU Pittsburgh
� USC, MIT, UMD, Washington & Wisconsin

� NASA collaborators
� Openly competed university research

NASA + NSF + NSA funding
� Industry Consortium: Adobe, Cisco, Compaq,

HP, IBM, ILOG, Marimba, Microsoft, Novell,
Oracle, SGI, Siebel Systems, Sybase, Sun
Microsystems

	Practical Model Checking
	Outline
	NASA’s Software Challenges
	Growing Software Complexity
	Testing Concurrent Programs
	Model Checking
	Model Construction Problem
	Java PathFinder
	JPF Highlights
	Enabling Technologies
	
	Scaling Program Model Checking
	Challenges to Adoption
	Out of Memory… Exception?
	Guided State-Space Analysis
	Correctness by Coverage
	Which Metrics for Model Checking?
	Directed Search
	Search Tactics
	C++ PathFinder
	Pointers and memory
	Type systems
	C++ Front-end Status
	Conclusion
	JPF info
	High-Dependability Computing Program
	HDCP Purpose
	HDCP Components

