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NASA’s Software Challenges
� High-quality software must be delivered on

schedule – astronauts are not beta-testers
� High dependability required over long mission

lifecycles while utilizing cutting edge
(unproven and risky) software technology

� Increasing system and software complexity
pushes beyond the limits of conventional
methods for assuring dependability

� Software is developed by interdisciplinary
teams from distributed organizations



Growing Software Complexity
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Testing Concurrent Programs

Program
  Var x:int;
  Parallel
      Block P
         x:= 1;
         x:= 2
      End P
  And
     Block Q
        x:=3
     End Q
End
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Program Executions Combinations to Test

[(size(P) + size(Q)] !
  size(P) ! size(Q) !

10,10 : 105

100,100 : 1059

1000,1000 : 10600



Model Checking

OK

Error trace

or
Finite-state model

Temporal logic formula

Model Checker
���������������

Line 5: …
Line 12: …
Line 15:…
Line 21:…
Line 25:…
Line 27:…
   …
Line 41:…
Line 47:…



Model Construction Problem

� Semantic gap:

Model Description
Model Checker

Program

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Gap

Programming Languages

Model Description Languages
methods, inheritance, dynamic creation, exceptions, etc.

automata



Java PathFinder
void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

0:    iconst_0
1:    istore_2
2:    goto #39
5:    getstatic 
8:    aload_0
9:    iload_2
10:   aaload

JVM

Special JVM Model Checker



JPF Highlights
� Models can be infinite state

� Depth-first state graph generation (Explicit-state model
checking)

� Errors are real
� Verification can be problematic (Abstraction required)

� All of Java is handled except native code
� Nondeterministic Environments

� JPF traps special nondeterministic methods
� Properties

� User-defined assertions and deadlock
� LTL properties (integrated with Bandera)

� Source level error analysis  (with Bandera tool)



Enabling Technologies

• Abstraction
• Under-approximations
• Over-approximations

•  Partial-order Reductions 

• Property Preserving Slicing

•  Reduce sizes:  
    e.g. Queues, arrays etc.
•  Reduce variable ranges  
    to singleton

•  Remove irrelevant code

• Group statements 
   together in atomic blocks 
   to reduce interleaving

•  Heuristic Search
•  State Compression



Case 0:
new();
Case 1:
Stop();
Case 2:
Remove();
Case 3:
Wait();

Case 0:
new();
Case 2:
Remove();

Slicing

Abstraction

Environment

JPF 

Repair

DEOS
10000 lines to 1500

Property 
preserving

DEOS
Infinite state to 1,000,000 states 

Semi-automated: requires domain knowledge

Heuristic search
Focused search for

errors

Partial-order
reduction

Spurious error
elimination during

abstraction

State compression

Bandera code-level debugging
of  error-path

3x 30x

5x 100x

2x 15x 2x 10x

2x 10x

Combined techniques allows 
O(102) source line and 

O(106) state-space increase 

Generation



Scaling Program Model Checking
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Challenges to Adoption

� State space limitation
� Verification context limited due to memory
� But, our success stories were about error

detection, not full verification
� Java only used in limited contexts:

� Java for data monitoring and visualization
� Embedded Java not picked up at NASA
� C/C++ used for control applications



Out of Memory… Exception?

� On most real programs, the model checker is
going to run out of memory.
� Program slicing & abstraction are helpful, but

effort is required to make them sufficient

� Then, what claim can be made when a model
checker only gets partial coverage?

� Furthermore: Can coverage metrics be used
to guide the model checker to find errors?



while (y > 0)  {
 if (x < y and x!=0)
    y = y+x;
 elseif (x>0)
   if (x>10)
     x = x - y;
   else
     x = x - 1;
 else
   y = y –1;
}

COVERAGE
20
5

14
10

4

1

CRITICAL
PROPERTIES
Always (x > 0)

Eventually (y < 0)

MODEL
CHECKER

MODEL
CHECKER

Guided State-Space Analysis



� If a certain structure (branch, condition,
DUpath) has not been covered

� Then there is no evidence for claiming
that part of the program behavior is
working correctly – or is free of errors

poor coverage => weak claim for error-freeness

Correctness by Coverage



Coverage => stronger claim for error-freeness
Coverage => strong claim for error-freeness?

For the claim to be strong:
• Metric has a strong correlation to class of

errors: coverage-based testing will find all
errors in the class

• Any set of test cases which provides
coverage is equally likely to find an error

Correctness by Coverage



Which Metrics for Model Checking?

� Decision (Branch), Condition,
Condition/Decision, MC/DC?

� Definition/Use and Concurrency Graph
coverage?

� Relevant paths coverage?
� Coverage for valid properties
  – what is the model checker doing???
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Directed Search
� Breadth-first (BFS) like

state-generation
� Priority queue according

to fitness function
� Queue limit parameter
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Search Tactics
� Best-First, Beam and A* Search
� Heuristics on structure of Program

� Branch Exploration: Maximize the coverage of new
branches

� Choose-free heuristic: Minimize non-deterministic
choice

� Assertions: Minimize distance to assertion
� Heuristics based on error classes

� deadlock: Maximize number of blocked threads
� Race conditions: Maximize thread interleavings

� User-defined heuristics
� Full access to JVM’s state via API

� Combine heuristics



C++ PathFinder

� Building a C++ to bytecode compiler
based on Apogee C++ compilers

� Extensions to JPF JVM
� Challenges:

� Pointers and memory model
� Type systems



Pointers and memory

� Assuming that pointer arithmetic is
array indexing:
� malloc �  new Array
� pointer � (ref Array, index)  (in complier)



Type systems

� Parameterized types (templates) are
handled by the compiler front-end

� Extending the JPF JVM to support
multiple inheritance – compiler passes
superclass info via class file attributes



C++ Front-end Status

� End to end C++ � bytecode working
on small examples

� JPF JVM extensions underway
� Integration in April



Conclusion

�Many barriers to having practical tools
� Languages, Performance, Coverage

� Have to get something out there:
� Knobs & Dials to trade cost/benefits
� What properties are important?
� Property checking vs. error detection?
� Integration with life-cycle: unit testing?

design checking?  code reviews?



JPF info

http://ase.arc.nasa.gov/jpf/



High-Dependability Computing
Program

Dr. Michael R. Lowry
NASA Ames Research Center



HDCP Purpose

� Develop scientific basis for engineering high-
dependability computing systems (software and
systems) through an experimental test-bed facility.

� Provide researchers a national facility for
experimenting with technology to improve
dependability on realistic systems at significant scale.

� Provide NASA and IT industry empirically validated
methods to predict dependability and to achieve
dependability. Anticipate that IT industry will
increasingly provide components to Aerospace
integrators - but these components must be highly
dependable.



HDCP Components
� High-Dependability Computing Program:

� CMU West (NASA Ames Research Park)
� CMU Pittsburgh
� USC, MIT, UMD, Washington & Wisconsin

� NASA collaborators
� Openly competed university research

NASA + NSF + NSA funding
� Industry Consortium: Adobe, Cisco, Compaq,

HP, IBM, ILOG, Marimba, Microsoft, Novell,
Oracle, SGI, Siebel Systems, Sybase, Sun
Microsystems
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