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Introduction

• Building reliable and secure software is a 
difficult task

– Unmanageable complexity is the main 
problem

• Flaws have many origins

• Design (ex: backdoor)

• Implementation (ex: buffer overrun)

• …
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Context

• Sensitive but not safety-critical applications
• Built with familiar technologies that users want

• Windows, Linux, C++, Java
• Our goal:

– Get rid of common security problems using 
automated source code verification tools

• Design flaws:
– C2 Secure Design Patterns Study (04-05)

• Implementation flaws:
– Verification tools study (05-06)
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Goals of this Project

• Identify common software defects related to 
C/C++ and Java usage

– Non application-specific

• Investigate errors and vulnerabilities created by 
these defects

• Evaluate best of breed automatic verification 
tools for C/C++ and Java

– Defect & error detection performance

– Usability

• Infer best practices
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Plan of the Presentation

1. Terminology

2. Errors

3. Vulnerabilities

4. Pitfalls & Shortcomings of C/C++

5. Defects

6. Tools Overview

7. Evaluation

8. Conclusion
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Program Sanity vs. Security

• Program Sanity

– Low level rules/conventions

– E.g.: C calling convention & parameters 
placement on the stack

– Mostly related to programming

• Security

– High level control mechanisms

– For confidentiality, integrity and availability

– Mostly related to design
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Program Sanity vs. Security

Program Sanity
• Protected memory

• Valid control flow

• Valid data flow

• Correct management of 
resources 

Security
• Access Control

• Anti-virus

• Intrusion Prevention Systems

• Firewall
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Program Sanity vs. Security

• Automatic detection of security problems

– Too much variability

– Too much complexity

• Automatic detection of program sanity problems

– More or less always the same thing

– Especially interesting for C/C++

• Security begins with program sanity

– Program sanity problems are the main 
cause of software security problems
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Some Terminology

• Error Execution
– Event that occurs when the behavior of a 

program diverges from “what it should be”
• Defect Code

– Cause of an error, a set of program 
instructions

– Can be the lack of something
• Vulnerability Exploitation

– Defect allowing a user to control the 
program execution when it should not
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Defects, Errors and Vulnerabilities

Program Defect Vulnerability

OK

Defect 
Present

No Defect

Defect 
Active

DefectInactive

To 
Check

Controlled 
by User

Warning!

Not Controlled

Danger!!!

Error
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Defects, Errors and Vulnerabilities

Memory Write
Out of Bounds
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Execution
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Errors
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Errors

• The list of possible low-level problems is almost 
endless
– No interest in the correctness of 

computations with respect to specifications
• Correct low-level program execution

– Memory access
– Control flow
– Resource allocation

• Java is immune to most program sanity 
problems
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Memory Write Out of Bounds

• A region of valid memory is overwritten

• Impacts

– Depends on what is overwritten

– Can lead to many serious vulnerabilities

• Causes

– Bad pointer arithmetic

– Array walking with bad index value

• Java: cannot happen (will throw an exception)
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Memory Read Out of Bounds

• A region of invalid memory is read instead of a 
valid one

• Impacts

– Errors in computations

– Sensitive values could be read

• Causes

– Reading of a string not terminated by a null 

– Array walking with bad index

• Java: cannot happen (will throw an exception)
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Resource Leak

• A no longer needed resource is not returned to 
the available pool
– Memory, file handle, network connection, …

• Impacts
– Depends on the resource and its usage
– Can lead to slowdown and crash

• Causes
– Reference lost because of pointer reuse
– Programmer forgot to free the resource

• Java: the garbage collector helps a lot
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Program Hang

• Program is in an infinite loop or wait state

• Impacts

– Denial of service

• Causes

– Threads in deadlock state

– Conditions to exit a loop never reached
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Program Crash

• An unrecoverable error happens and the 
execution of the program is stopped

• Impacts

– Denial of service

• Causes

– Dereference of an invalid pointer (page fault)

– Uncaught exception

– Division by zero
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Vulnerabilities

• Errors in general are undesirable
• But the real problem is vulnerabilities

– Especially the remotely-exploitable ones
• A vulnerability allows an attacker to have some 

form of control over the program
– Influence the flow of control
– Influence the flow of data

• Memory read or written out of bounds
– Cause of most dangerous vulnerabilities
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Denial of Service

• Allows an attacker to prevent users from getting 
correct service

• How it’s usually done
– Create an unrecoverable error condition
– Exploit a resource leak

• Java
– Most program sanity problems throw 

unchecked exceptions
– Problems are “transformed” into denials of 

service if exceptions are not caught
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Unauthorized Access

• Allows an attacker to access functionalities 
without the required authorization

• How it’s usually done

– Bypass the control mechanism by modifying 
it in memory

– Read sensitive values in memory and use 
them to get access
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Code Injection

• Overwrite a function pointer that will be called

• Allows an attacker to take control of a process 
by redirecting its execution to his own code

• Also known as buffer overflow or stack 
smashing vulnerability

.........Return
Address

Local 
variable...

Dummy 
Data

Pointer to 
Injected 
Code

Injected 
Code

Injected 
Code

Memory

Attack String

Overflow
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Pitfalls & Shortcomings of C/C++

• Many errors are possible because of choices 
made when C/C++ were created

• These choices

– Require too much “micro-management” of 
the program’s behavior

– “Encourage” mistakes

– Give serious consequences to seemingly 
benign errors

• Java creators had these problems in mind and 
got rid of the majority of them
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C/C++ Lack of Type-safety

• Type-safety ensures values assigned to variables 
are correct

– Type-safety helps enforce the execution 
model

– Type-safe programs are fail-fast

• Execution of erratic programs is not stopped

– Many exploits are using this fact

• Java programs are type-safe

– Verified at compile time and load time
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C/C++ Pointer Arithmetic

• The ability to change the value of a pointer 
without restriction

– Can read or write anywhere in memory

– Control mechanisms can be bypassed

– Easy to create very obscure bugs

– Much higher verification complexity

• There is no pointer arithmetic in Java
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C/C++ Buffers Have a Static Size

• Buffers cannot grow to accommodate data

– Buffer accesses are not checked

– An overflow will overwrite memory

– Validation is cumbersome

– Source of buffer overflow vulnerabilities

• Java will throw an exception when an overflow 
occurs
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C Lack of Robust String Type

• C has no type for character strings
– Static buffers with overflow problems are 

used instead
– Size of string indicated by a null at the end
– Strings are used a lot in programs
– Very fragile: what if the null is not there?
– Source of buffer overflow vulnerabilities

• C++ programs can use the string type in the STL
– Not used enough

• Java only has a robust string type



Defence R&D Canada – Valcartier # 30

C/C++ Vulnerabilities in Std Libraries

• String manipulation functions
– strcpy(), gets() and friends

– Lack bounds checks for destination buffer

– Possible overflow if data size is not checked

– Source of buffer overflow vulnerabilities
– Use replacement functions: strncpy()
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Defects: Some Observations

• Many defects are not ‘always on’
– They will not always generate errors
– Complex conditions have to be met
– Input values play an important role

• Most defects are composite
– Cannot be attributed to a single program 

instruction
– A defect can be the absence of something

• Data validation
• Mostly C/C++ defects – (selection of 25)
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Defects

1 – Memory Management Faults
1.1 – Reading of freed memory
1.2 – Under allocated memory for a given type
1.3 – Call of free() with an invalid pointer
1.4 – Incorrect C++ array deletion
1.5 – Call of memcpy() with overlapping   

memory regions
1.6 – Reading of an uninitialized variable
1.7 – Non-virtual destructor of derived class 

not called
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Defects

2 – Overrun and Underrun Faults
2.1 – Overrun or underrun of an array
2.2 – Dereference of a past-the-end C++ 

iterator
2.3 – Dereference of an erased C++ iterator
2.4 – Incorrect size parameter to a buffer 

function
2.5 – Use of negative array index or size
2.6 – Reading of a string of arbitrary length 

without limit
2.7 – Reading of a non null-terminated string
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Defects

3 – Pointer Faults
3.1 – Return of a pointer to a local variable
3.2 – Incorrect pointer arithmetic
3.3 – Dereference of a null pointer
3.4 – Resource reference lost

4 – Incorrect Arithmetic Faults
4.1 – Division by zero
4.2 – Integer overflow or underflow
4.3 – Bit shift bigger than integral type or 

negative
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Defects

5 – Cast Faults

5.1 – Integer sign lost because of implicit 
unsigned cast

5.2 – Integer precision lost because of bad cast

6 – Miscellaneous Faults

6.1 – Unspecified format string

6.2 – Endless loop
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Tools Overview

• Evaluated tools – most are multiplatform
– C/C++: 27 tools
– Java: 37 tools

• Free (open source) versus commercial tools
– C/C++: best tools are commercial
– Java: many good free tools

• Most academic tools are only proofs of concepts
• Evaluation criteria

– Precision, scalability, coverage, diagnostic
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1. Program Conformance Checkers

• Detect defects

2. Runtime Testers

• Detect errors

3. Advanced Static Analyzers

• Detect defects

RequiredRequired
Investment*Investment*

++

--

* In money, time, training, resources, etc.

Tools
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Program Conformance Checkers

• Check source code for common bug patterns

• Lightweight analysis based on syntax

– Excellent scalability

– Many false positives and negatives

– Poor performance except for a few defects

• E.g.: unspecified format string

• Many free tools are in this category
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Program Conformance Checkers

C/C++

• Secure Programming Lint

– C only

– Many “parse errors”

– Superficial analysis 
without annotations

• FlawFinder

– Format strings

– Vulnerable functions

– A lot of false positives

Java

• PMD

– Enforces coding 
conventions

– Well integrated

– Cut & paste detector

• AppPerfect CodeAnalyzer

– Similar to PMD

• Different rules

– Affordable & effective
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Runtime Testers

• Program behavior cannot always be deduced 
statically
– Some values are not known before runtime

• Look for errors while the program is running
– Code is instrumented with checks
– Fine-grained analysis
– Excellent scalability
– Coverage can be poor without a good 

strategy
• Excellent for composite defects related to 

memory usage
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Runtime Testers

C/C++

• Parasoft Insure++

– Source instrumentation

– Impressive performance

– Easy to use (debugger)

– Good diagnostic

• Rational Purifier

– Similar to Insure++

– Analysis not as 
thorough

Java

• AppPerfect Java Profiler

– Heap, threads, objects, 
CPU usage, disk I/O, 
memory usage

– Heap browser

– Deadlock detection

• JProfiler

• NetBeans Profiler
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Advanced Static Analyzers

• Work on program semantics instead of syntax

– Use formal methods, like abstract 
interpretation or model-checking

– Scalability is often problematic

• Code must be compiled into a model

– A lot of code portability issues

• Generally much slower than other tools

• Very sophisticated tools: often expensive
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Advanced Static Analyzers

C/C++

• Coverity Prevent (SWAT)

– Good integration with 
makefiles

– Excellent diagnostic 
with execution trace

– Surprisingly scalable

• PolySpace for C++

– Very thorough but slow 
and memory hungry

– Can detect runtime 
exceptions statically

Java

• ESC/Java 2

– Can prove properties on 
the behavior of programs

– Have to add annotations

– Very powerful

– Hard to use

– A must-have for critical 
Java software 
development
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C/C++ Evaluation

• Preliminary tests showed only 3 tools could help 
us achieve our goal:

– Coverity Prevent

– Parasoft Insure++

– PolySpace for C++

• 2 sets of tests

– Synthetic tests for every kind of defect (25)

– Buggy code in production (~10,000 lines)
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Comparing Apples and Oranges

• Error detection vs. defect detection

– A conversion is necessary

• Synthetic tests

– Defects are known

– The errors they will cause too

– Easy to convert everything to defects

• Buggy code in production

– Defects are not known in advance

• Used best result as baseline (errors)
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Results of Synthetic Tests

• A C++ class for every kind of defect (25)
• Integrated in a small high-quality open-source 

application (Windows MFC)
• Tests that would lead to a program crash or hang 

were deactivated for Insure++
• Tests are called from the main()

– MFC applications have a “special” main()
– PolySpace had to be used in a “class by 

class” analysis mode
• No tool tries to detect every kind of defect or 

error
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Results of Synthetic Tests - Coverity
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Results of Synthetic Tests – PolySpace
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Results of Synthetic Tests – Insure++
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Results of Buggy Code in Production

• Numerical analysis application

– About 10,000 lines of code

– In production for many years

– Reads a file and displays the results

• Not a reactive program like MFC Apps

– Bad quality code

• “C+” design

• A lot of cut and pasted, “spaghetti” code

• Really a worst-case scenario
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Results of Buggy Code in Production

002Program crash

0102Resource leak

01141Memory read out of bounds

2420Memory write out of bounds

Pol*InsCovErrors

* Over 300 false positives, ~16 hours of computation
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C/C++ Analysis

• Static analysis tools need good quality code to 
perform well

– Pointer arithmetic and void pointers can also 
be problematic

– PolySpace will stop the analysis of a branch 
when a critical error is found

• Code portability issues

– Preprocessor definitions and conditional 
compilation

– Compiler-specific extensions to C/C++
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Java Evaluation

• Preliminary tests showed 11 tools could be 
useful

• The ones that stand out:

– AppPerfect DevSuite

– PMD

• 2 large, open-source applications tested
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Java Analysis

• Java design is better: less low-level defects

– Fewer problems to look for

– Tools for Java are great to assess software 
quality

• No code portability issues

– A lot easier than C/C++
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Conclusion

• Security problems generally don’t come from 
the failure of security mechanisms

– The failure occurs at a lower level

• C/C++ are especially problematic

– Enforce almost no restriction on execution

– Vulnerabilities with serious consequences

• Java is immune to most C/C++ problems

– No serious vulnerabilities
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Conclusion

• Best usage scenario for Coverity

– Whole applications compiled with makefiles

• Best usage scenario for PolySpace

– Small sections of critical code where runtime 
exceptions should never happen

• Best usage scenario for Insure++

– Integrated to test cases

– Test of hybrid systems based on many 
heterogeneous components

• Values are always available at runtime
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Conclusion

• Verifying C/C++ programs is a huge challenge
– These languages are very hard to analyze

• Undefined behaviors, pointers, compiler-
specific extensions, etc.

– No verification tool can reduce the risk 
significantly enough for this context

• For sensitive applications, we recommend the 
use of Java or any managed .Net language
– Use C/C++ only if you really have to

• Restricted language usage, test cases, and 
the use of verification tools are a must
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The Way Ahead

• Detection of higher level security problems

– A model for the security behavior of 
programs is needed

• Automatic program hardening 

– Based on aspect oriented programming

• Current research project

– Partnership with NSERC, Bell University 
Labs and Concordia University
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PolySpace Viewer
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Coverity Prevent
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Insure
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AppPerfect DevSuite
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