DEFENCE

Softwar

& Verification ” | and Java

Frédéric Michaud & Frédéric Painchaud
Defence Scientists
Trusted C2IS Group

R et D pour la défense Defence R&D 1«1
I* Canadg Canada Canada

% -
r{*i/ Introduction

* Building reliable and secure software 1s a
difficult task

— Unmanageable complexity 1s the main
problem

* Flaws have many origins
* Design (ex: backdoor)

« Implementation (ex: buffer overrun)

Defence R&D Canada — Valcartier # 2

mj Context

Sensitive but not safety-critical applications

Built with familiar technologies that users want
 Windows, Linux, C++, Java
e Our goal:

— Get rid of common security problems using
automated source code verification tools

Design flaws:
— C2 Secure Design Patterns Study (04-05)
Implementation flaws:

— Verification tools study (05-06)

Defence R&D Canada — Valcartier # 3

% %4 ' '
r‘i} Goals of this Project

» Identify common software defects related to
C/C++ and Java usage

— Non application-specific

» Investigate errors and vulnerabilities created by
these defects

Evaluate best of breed automatic verification
tools for C/C++ and Java

— Defect & error detection performance
— Usability
Infer best practices

Defence R&D Canada — Valcartier # 4

@7 Plan of the Presentation

Terminology

Errors

Vulnerabilities

Pitfalls & Shortcomings of C/C++
Defects

Tools Overview

Evaluation

® NN -

Conclusion

Defence R&D Canada — Valcartier # 5

@7 Program Sanity vs. Security
L/..

* Program Sanity
— Low level rules/conventions

— E.g.: C calling convention & parameters
placement on the stack

— Mostly related to programming

* Security
— High level control mechanisms
— For confidentiality, integrity and availability

— Mostly related to design

Defence R&D Canada — Valcartier # 6

@7 Program Sanity vs. Security
L/..

Program Sanity

e Protected memory
e Valid control flow

 Valid data flow

e Correct management of
resources

Security

Access Control
Anti-virus
Intrusion Prevention Systems

Firewall

Defence R&D Canada — Valcartier # 7

@7 Program Sanity vs. Security
L/..

« Automatic detection of security problems
— Too much variability
— Too much complexity
e Automatic detection of program sanity problems

— More or less always the same thing

— Especially interesting for C/C++
* Security begins with program sanity

— Program sanity problems are the main
cause of software security problems

Defence R&D Canada — Valcartier # 8

P % :
B 5) Some Terminology

 FError 2 Execution

— Event that occurs when the behavior of a
program diverges from “what it should be”

e Defect 2 Code

— Cause Qf an error, a set of program
Instructions

— Can be the lack of something
* Vulnerability = Exploitation

— Defect allowing a user to control the
program execution when 1t should not

Defence R&D Canada — Valcartier # 9

@7 Defects, Errors and Vulnerabilities
L/..

__Defect
Present

\O 4/0
Gfécf

Defect Controlled
ey ' = by User

N D \/l/

/ S (0)

S% Co,, Yoy

Program » Defect

Defence R&D Canada — Valcartier # 10

@7 Defects, Errors and Vulnerabilities
L/..

Defects
Overruns User in
and Control of Pointer ey Inlcorreclt Misc. Faults e
Underruns : Faults Management Arithmetic . Faults
Format String Faults Faults
Faults
Errors
Memory Read Memory Write
Out of Bounds Out of Bounds Resource Leak Program Crash Program Hang

Unauthorized Arbitrary Code Denial of Service
Access Execution

Defence R&D Canada — Valcartier # 11

@7 Plan of the Presentation

Terminology

Errors

Vulnerabilities

Pitfalls & Shortcomings of C/C++
Defects

Tools Overview

Evaluation

X NN

Conclusion

Defence R&D Canada — Valcartier # 12

mj Errors

* The list of possible low-level problems 1s almost
endless

— No interest in the correctness of .
computations with respect to specifications

* Correct low-level program execution
— Memory access
— Control flow

— Resource allocation

e Java i1s immune to most program sanity
problems

Defence R&D Canada — Valcartier # 13

@7 Memory Write Out of Bounds

* A region of valid memory 1s overwritten
e Impacts
— Depends on what is overwritten
— Can lead to many serious vulnerabilities

Causes
— Bad pointer arithmetic
— Array walking with bad index value

Java: cannot happen (will throw an exception)

Defence R&D Canada — Valcartier # 14

@7 Memory Read Out of Bounds

* A region of invalid memory 1s read instead of a
valid one

e Impacts
— Errors in computations
— Sensitive values could be read
Causes
— Reading of a string not terminated by a null
— Array walking with bad index

Java: cannot happen (will throw an exception)

Defence R&D Canada — Valcartier # 15

Y
r‘i} Resource Leak

A no longer needed resource 1s not returned to
the available pool

— Memory, file handle, network connection, ...

* Impacts

— Depends on the resource and its usage

— Can lead to slowdown and crash
Causes

— Reference lost because of pointer reuse

— Programmer forgot to free the resource
Java: the garbage collector helps a lot

Defence R&D Canada — Valcartier # 16

%
!'/*i/ Program Hang

e Program is in an infinite loop or wait state
e Impacts
— Demnial of service
» Causes
— Threads in deadlock state

— Conditions to exit a loop never reached

Defence R&D Canada — Valcartier # 17

%
!}*i/ Program Crash

* An unrecoverable error happens and the
execution of the program 1s stopped

e Impacts

— Demnial of service
Causes

— Dereference of an invalid pointer (page fault)
— Uncaught exception

— Division by zero

Defence R&D Canada — Valcartier # 18

@7 Plan of the Presentation

Terminology

Errors

Vulnerabilities

Pitfalls & Shortcomings of C/C++
Defects

Tools Overview

Evaluation

X NN w D=

Conclusion

Defence R&D Canada — Valcartier # 19

\7 oge o
r‘i} Vulnerabilities

* Errors in general are undesirable
« But the real problem is vulnerabilities
— Especially the remotely-exploitable ones

e A vulnerability allows an attacker to have some
form of control over the program

— Influence the flow of control
— Influence the flow of data
Memory read or written out of bounds

— Cause of most dangerous vulnerabilities

Defence R&D Canada — Valcartier # 20

@\7 . .
!}. 5) Denial of Service

» Allows an attacker to prevent users from getting
correct service

 How it’s usually done
— Create an unrecoverable error condition
— Exploit a resource leak

Java

— Most program sanity problems throw
unchecked exceptions

— Problems are “transformed” into denials of
service 1f exceptions are not caught

Defence R&D Canada — Valcartier # 21

Y i
r‘i} Unauthorized Access

 Allows an attacker to access functionalities
without the required authorization

 How it’s usually done

— Bypass the control mechanism by modifying
it In memory

— Read sensitive values in memory and use
them to get access

Defence R&D Canada — Valcartier # 22

R

Code Injection

e Overwrite a function pointer that will be called

« Allows an attacker to take control of a process
by redirecting its execution to his own code

» Also known as buffer overflow or stack
smashing vulnerability

Memory {

Local Return
variable | Address
Pointer to . :
Attack String D;raqr:y Injected Inéeocctj(ead Inéeoccti?ad
Code
I !
Overflow

Defence R&D Canada — Valcartier # 23

@7 Plan of the Presentation

Terminology

Errors

Vulnerabilities

Pitfalls & Shortcomings of C/C++
Defects

Tools Overview

Evaluation

X =N kWD =

Conclusion

Defence R&D Canada — Valcartier # 24

@7 Pitfalls & Shortcomings of C/C++
L/..

« Many errors are possible because of choices
made when C/C++ were created

 These choices

— Require too much “micro-management” of
the program’s behavior

— “Encourage” mistakes

— QG1ve serious consequences to seemingly
benign errors

Java creators had these problems in mind and
got rid of the majority of them

Defence R&D Canada — Valcartier # 25

@7 C/C++ Lack of Type-safety
L/..

» Type-safety ensures values assigned to variables
are correct

— Type-safety helps enforce the execution
model

— Type-safe programs are fail-fast

« Execution of erratic programs 1s not stopped
— Many exploits are using this fact
« Java programs are type-safe

— Verified at compile time and load time

Defence R&D Canada — Valcartier # 26

@7 C/C++ Pointer Arithmetic
L/..

« The ability to change the value of a pointer
without restriction

— Can read or write anywhere in memory
— Control mechanisms can be bypassed
— Easy to create very obscure bugs

— Much higher verification complexity

* There 1s no pointer arithmetic in Java

Defence R&D Canada — Valcartier # 27

@7 C/C++ Buffers Have a Static Size
L/..

« Buffers cannot grow to accommodate data
— Buffer accesses are not checked
— An overflow will overwrite memory

— Validation 1s cumbersome

— Source of buffer overflow vulnerabilities

« Java will throw an exception when an overflow
occurs

Defence R&D Canada — Valcartier # 28

@7 C Lack of Robust String Type
L/..

e C has no type for character strings

— Static buffers with overflow problems are
used instead

— Size of string indicated by a nul/ at the end
— Strings are used a lot in programs

— Very fragile: what if the null 1s not there?

— Source of buffer overflow vulnerabilities

e (C++ programs can use the string type in the STL
— Not used enough

« Java only has a robust string type

Defence R&D Canada — Valcartier # 29

@7 C/C++ Vulnerabilities in Std Libraries
L/..

e String manipulation functions

— strecpy (), gets () and friends

— Lack bounds checks for destination buffer

— Possible overflow if data size 1s not checked
— Source of buffer overflow vulnerabilities

— Use replacement functions: strncpy ()

Defence R&D Canada — Valcartier # 30

@7 Plan of the Presentation

Terminology

Errors

Vulnerabilities

Pitfalls & Shortcomings of C/C++
Defects

Tools Overview

Evaluation

X NS¢ B WD

Conclusion

Defence R&D Canada — Valcartier # 31

@7 Defects: Some Observations
L/..

* Many defects are not ‘always on’
— They will not always generate errors
— Complex conditions have to be met
— Input values play an important role

e Most defects are composite

— Cannot be attributed to a single program
Instruction

— A defect can be the absence of something
 Data validation

e Mostly C/C++ defects — (selection of 25)

Defence R&D Canada — Valcartier # 32

&\7
!3' 5) Defects

1 — Memory Management Faults

1.1 — Reading of freed memory

1.2 — Under allocated memory for a given type
1.3 — Call of free () with an invalid pointer
1.4 — Incorrect C++ array deletion

1.5 — Call of memcpy () with overlapping
memory regions

1.6 — Reading of an uninitialized variable

1.7 — Non-virtual destructor of derived class
not called

Defence R&D Canada — Valcartier # 33

19\7
!3' 5) Defects

2 — Overrun and Underrun Faults
2.1 — Overrun or underrun of an array

2.2 — Dereference of a past-the-end C++
1terator

2.3 — Dereference of an erased C++ iterator

2.4 — Incorrect size parameter to a buffer
function

2.5 — Use of negative array index or size

2.6 — Reading of a string of arbitrary length
without limit

2.7 — Reading of a non null-terminated string

Defence R&D Canada — Valcartier # 34

@\7
!3' 5) Defects

3 — Pointer Faults
3.1 — Return of a pointer to a local variable
3.2 — Incorrect pointer arithmetic
3.3 — Dereference of a null pointer

3.4 — Resource reference lost

4 — Incorrect Arithmetic Faults
4.1 — Division by zero
4.2 — Integer overflow or underflow

4.3 — Bit shift bigger than integral type or
negative

Defence R&D Canada — Valcartier # 35

&\7
!}. 5) Defects

5 — Cast Faults

5.1 — Integer sign lost because of implicit
unsigned cast

5.2 — Integer precision lost because of bad cast
6 — Miscellaneous Faults
6.1 — Unspecified format string
6.2 — Endless loop

Defence R&D Canada — Valcartier # 36

@7 Plan of the Presentation

Terminology

Errors

Vulnerabilities

Pitfalls & Shortcomings of C/C++
Defects

Tools Overview

Evaluation

O O o

Conclusion

Defence R&D Canada — Valcartier # 37

"% i
r{i/ Tools Overview

Evaluated tools — most are multiplatform
— C/C++: 27 tools
— Java: 37 tools
* Free (open source) versus commercial tools
— C/C++: best tools are commercial
— Java: many good free tools
Most academic tools are only proofs of concepts
Evaluation criteria

— Precision, scalability, coverage, diagnostic

Defence R&D Canada — Valcartier # 38

1‘5’\7 T l
D‘J ools

Required
Investment*

1. Program Conformance Checkers 1
« Detect defects

2. Runtime Testers

 Detect errors

3. Advanced Static Analyzers

 Detect defects _I_

* In money, time, training, resources, etc.

Defence R&D Canada — Valcartier # 39

@7 Program Conformance Checkers
L/..

* Check source code for common bug patterns
» Lightweight analysis based on syntax

— Excellent scalability

— Many false positives and negatives

— Poor performance except for a few defects

* E.g.: unspecified format string

* Many free tools are in this category

Defence R&D Canada — Valcartier # 40

R

Program Conformance Checkers

C/C++ Java

* Secure Programming Lint <+« PMD

— Conly — Enforces coding
conventions
— Many “parse errors”
, , — Well integrated
— Superficial analysis
without annotations — Cut & paste detector
 FlawFinder AppPerfect CodeAnalyzer
— Format strings — Similar to PMD
— Vulnerable functions Different rules

— A lot of false positives — Affordable & effective

Defence R&D Canada — Valcartier # 41

&\7 .
!3') Runtime Testers

* Program behavior cannot always be deduced
statically

— Some values are not known before runtime
* Look for errors while the program 1s running
— Code 1s instrumented with checks
— Fine-grained analysis
— Excellent scalability

— Coverage can be poor without a good
strategy

Excellent for composite defects related to
memory usage

Defence R&D Canada — Valcartier # 42

R

Runtime Testers

C/C++

 Parasoft Insure++
— Source instrumentation
— Impressive performance
— Easy to use (debugger)
— Good diagnostic

« Rational Purifier
— Similar to Insure++

— Analysis not as
thorough

Java

AppPerfect Java Profiler

— Heap, threads, objects,
CPU usage, disk 1/0O,
memory usage

— Heap browser

— Deadlock detection
JProfiler

NetBeans Profiler

Defence R&D Canada — Valcartier # 43

@7 Advanced Static Analyzers

* Work on program semantics instead of syntax

— Use formal methods, like abstract
interpretation or model-checking

— Scalability is often problematic
Code must be compiled into a model

— A lot of code portability 1ssues
Generally much slower than other tools

Very sophisticated tools: often expensive

Defence R&D Canada — Valcartier # 44

@7 Advanced Static Analyzers
L/..

C/C++ Java

 Coverity Prevent (SWAT) < ESC/Java2

— Good integration with — Can prove properties on
makefiles the behavior of programs
— Excellent diagnostic — Have to add annotations

with execution trace

— Very powerful
— Surprisingly scalable
— Hard to use

* PolySpace for C++ .
— A must-have for critical

— Very thorough but slow Java software
and memory hungry development

— Can detect runtime
exceptions statically

Defence R&D Canada — Valcartier # 45

@7 Plan of the Presentation

Terminology

Errors

Vulnerabilities

Pitfalls & Shortcomings of C/C++
Defects

Tools

Evaluation

X NS A o=

Conclusion

Defence R&D Canada — Valcartier # 46

% :
!}i/ C/C++ Evaluation

e Preliminary tests showed only 3 tools could help
us achieve our goal:

— Coverity Prevent
— Parasoft Insure++

— PolySpace for C++

2 sets of tests

— Synthetic tests for every kind of defect (25)
— Buggy code 1n production (~10,000 lines)

Defence R&D Canada — Valcartier # 47

@7 Comparing Apples and Oranges

L/..

* Error detection vs. defect detection
— A conversion 1s necessary

* Synthetic tests
— Defects are known

— The errors they will cause too

— Easy to convert everything to defects
* Buggy code in production
— Defects are not known 1n advance

« Used best result as baseline (errors)

Defence R&D Canada — Valcartier # 48

@7 Results of Synthetic Tests

« A C++ class for every kind of defect (25)

. Inte]grated in a small h1 h-%uality open-source
application (Windows MFC)

» Tests that would lead to a program crash or hang
were deactivated for Insure++

Tests are called from the main ()
— MFC applications have a “special” main ()

— PolySpace had to be used in a “class by
class” analysis mode

No tool tries to detect every kind of defect or
error

Defence R&D Canada — Valcartier # 49

97 Results of Synthetic Tests - Coverity

100% —

90% —

80% —

70% —

60% —

OFalse Positives
B False Negatives
B Faults Found

50% —

40% —

30%—

20%—

10% —

0% —
Memory Overrun and Pointer Faults Incorrect Cast Faults Miscellaneous
Management Underrun Faults Arithmetic Faults Faults
Faults
Defence R&D Canada — Valcartier # 50

97 Results of Synthetic Tests — PolySpace

OFalse Positives
B False Negatives
B Faults Found

Memory Overrun and Pointer Faults Incorrect Cast Faults Miscellaneous
Management Underrun Faults Arithmetic Faults Faults
Faults

Defence R&D Canada — Valcartier # 51

97 Results of Synthetic Tests — Insure++

100% —

90% —

80% —

70% —

60% —

OFalse Positives
B False Negatives
B Faults Found

50% —

40% —

30% —

20%

10% —

0% —

Memory Overrun and Pointer Faults Incorrect Cast Faults Miscellaneous
Management Underrun Faults Arithmetic Faults Faults
Faults

Defence R&D Canada — Valcartier # 52

@7 Results of Buggy Code in Production
L/..

« Numerical analysis application
— About 10,000 lines of code
— In production for many years
— Reads a file and displays the results
» Not a reactive program like MFC Apps
— Bad quality code
e “C+” design
» A lot of cut and pasted, “spaghetti” code

* Really a worst-case scenario

Defence R&D Canada — Valcartier # 53

@7 Results of Buggy Code in Production

£
Errors Cov Ins | Pol*

Memory write out of bounds 0 42 2

Memory read out of bounds 1 114 0

Resource leak 2 10 0

Program crash 2 0 0

* Over 300 false positives, ~16 hours of computation
Defence R&D Canada — Valcartier # 54

% -
r‘i} C/C++ Analysis

 Static analysis tools need good quality code to
perform well

— Pointer arithmetic and void pointers can also
be problematic

— PolySpace will stop the analysis of a branch
when a critical error 1s found

* Code portability 1ssues

— Preprocessor definitions and conditional
compilation

— Compiler-specific extensions to C/C++

Defence R&D Canada — Valcartier # 55

@\7 :
!}i‘/ Java Evaluation

e Preliminary tests showed 11 tools could be
useful

* The ones that stand out:
— AppPerfect DevSuite
— PMD

« 2 large, open-source applications tested

Defence R&D Canada — Valcartier # 56

4 :
!3. 5) Java Analysis

« Java design is better: less low-level defects
— Fewer problems to look for

— Tools for Java are great to assess software
quality

* No code portability 1ssues
— A lot easier than C/C++

Defence R&D Canada — Valcartier # 57

@7 Plan of the Presentation

1.
2.
3.
4,
5.
6.
7.

Errors

Vulnerabilities

Pitfalls & Shortcomings of C/C++
Defects

Tools

Evaluation

Conclusion

Defence R&D Canada — Valcartier # 58

% -
!}i/ Conclusion

* Security problems generally don’t come from
the failure of security mechanisms

— The failure occurs at a lower level
e (C/C++ are especially problematic

— Enforce almost no restriction on execution

— Vulnerabilities with serious consequences
« Java is immune to most C/C++ problems

— No serious vulnerabilities

Defence R&D Canada — Valcartier # 59

% ;
!}i/ Conclusion

* Best usage scenario for Coverity
— Whole applications compiled with makefiles
» Best usage scenario for PolySpace

— Small sections of critical code where runtime
exceptions should never happen

* Best usage scenario for Insure++
— Integrated to test cases

— Test of hybrid systems based on many
heterogeneous components

» Values are always available at runtime

Defence R&D Canada — Valcartier # 60

"y, :
% Conclusion

* Verifying C/C++ programs 1s a huge challenge
— These languages are very hard to analyze

» Undefined behaviors, pointers, compiler-
specific extensions, etc.

— No verification tool can reduce the risk
significantly enough for this context

» For sensitive applications, we recommend the
use of Java or any managed .Net language

— Use C/C++ only 1f you really have to

* Restricted language usage, test cases, and
the use of verification tools are a must

Defence R&D Canada — Valcartier # 61

Frede .ca

http://www.drdc-rd icots/home e.asp

4
!}. 5) The Way Ahead

« Detection of higher level security problems

— A model for the security behavior of
programs 1s needed

e Automatic program hardening

— Based on aspect oriented programming

e Current research project

— Partnership with NSERC, Bell University
Labs and Concordia University

Defence R&D Canada — Valcartier # 63

&) -
5 J PolySpace Viewer

-

n PolySpace Viewer - C
File Edit ‘Windows Help
. . : w : Filter
- | K - Cu (5] & 1 : W-SHR | Aipha | Beta | Gawma TS
. —— .
ég‘ ﬂﬁ x kY FQC 'ﬁ' BRI zou | NIY, §E§t| P COR - POW IRW SHF |°{‘r{g, NIP | |F0'-U°F“|:' RSRT NTC K-NTC - NTL - UNR UOR
Procedural ertities (x| ? ‘/|Line Col % B2 Variable :]
w LURLE T o [|:] _A
r .
o CORZE 1 162 |8 __ “whriables i Mb read Ml
b Iblem Pibdodule Class. Irblem P 1hiodule Class : Lire Def ¥
COR.32 11 |1s b
A b IrblemPibodule Class. Irblem P 1hiodule Class : Lire Def
COR.33 1o s
A b IrblemPibodule Class. Irblem P 1hiodule Class : Lire Def
COR.35 1 o17e e ;
N itten by 1 b IrblemPibodule Class. Irblem P 1hiodule Class : Lire Def
COR.38 1] 183 |38
A Read b » b IrblemPibodule Class. Irblem P 1hiodule Class : Lire Def
~* COR4 1| 187 |37 e 5y)
b IrblemPibodule Class. Irblem P 1hiodule Class : Lire Def
COR.42 1| 190 |24 ;
A itten by task 41 b Irblem P ihdodule Class. Irblem P ihdadule Class :: Lire Def
COR.44 1| 193 |2
A Read bytask b IrblemPibodule Class. Irblem P 1hiodule Class : Lire Def
COR.47 1| 200 |16
A b IrblemPibodule Class. Irblem P 1hiodule Class : Lire Def
1 2 |1 ;
¥ CORde [PetiEmiiellly Wiiiem P IiblemP ibodule Class. Irslem P hodule Class :Lire Def
COR.50 1| 20z |16 3
A Potentizlly Fead by b IrblemPibodule Class. Irblem P 1hiodule Class : Lire Def
~* CORS1 1| oz a7)
b IrblemPibodule Class. Irblem P 1hiodule Class : Lire Def
COR.52 1| 204 |17
A b IrblemPibodule Class. Irblem P 1hiodule Class : Lire Def
COR.52 1| 208 |30
A b Irblem P ihdodule Class. Irblem P ihdodule Class - Lire Def b
~" CORSG 1 210 |34 < i S
~" CORS9 I3
W CoREz 1 217 |20 B3 IrblemP1ModuleCla = E
1 s | o | -
208 * Initialization of application * e
¥ coRsd 1 29 |19 / rp !
209 if (fRc) =
§ NTCES 1 9 (19 -)) .
210 fRc = Merulib::Initdpp (IrData.pszIniFile,sEcran);
~* COR 62 1| 228 |15 - T
1| oz s B .
W EORTI 212 /* Read meteo file METDATA */
" CORTE 1| 8 |16 2153 if (fRc)
. ¢ = LireMeteoFile (sEcran, IrData.pszDefFile);
' COR7S 1] B e 214 fRc = LireMeteoFile [sE IrDat DefFil
= IrblemP1bdodule Class ::Get Headen_iobuf®;char™) G | 1216 | 26 (100 215
~ CORO e z16 if (!IrData. £Irhx)
" COR.1 vl 217 FunBatch(sEcran) ;
~ I0P3 11z zla else
~ IDP.5 11233 (19 Z19 FunIrbx(sEcran);
~ COR: 1| 125 |32 zz0 1
" COR.11 1| 1226 |14 2zl
Irblerm P {hodule Class :: Get Linel_jobut™;char™) 3 [z |26 100 22z if(IrData.flrhx]
Irblem P iodule Class::Init Datalrblemp 1) 4 |a08 | 1235 |26 | @0 223 i
i 1
Irblem P 1hdodule Class:: Inft Dief Filel EC RANT char®) 0| 1658 |26 |100 224 if(!Toscreen) -
ZZ5 ifdef unix
[+ _Irblem P ibdodule Clas s Init'var Glabi 11 770 |26 [100 % P T # ;
< | >
:] COR.62 Details: unreachable failure of correctness condition [call never raises an exception (warning)]

Defence R&D Canada — Valcartier # 64

4 -
I 5 J Coverity Prevent

Coverity Error Browser - Mozilla Firefox

File Edit View Go Bookmarks Tools Help '::"

m @ (—\ @ 0 ";_!' [@ http:fﬂocalhnst:546?'fviev\'frror‘cgi?id=18&runid=22&user=admin&rnag\c=aae93c‘394bd9f81ea4f55ced07e4‘34f3&prevpage=quervfunftab\e.cgi%Fmagic%}DaaeQﬁQ%d%ﬁlea4f55ced07e4‘34f3WnZGprevuage%BD%ZSZFvie|'|

Q Computer and Infor,,. @Goog\e Scholar # The Metasploit Project

@Language Tools @ Merriam-Webster O,,, o TERMIUM Plus@ @Google Advanced Gr.

@) coverity

Event alloc fn- Called allocation function "fopen” (=]
Event var_assign: Assigned variable "p" to storage returned from "fopen” =

Also see events: [var_assign|[leaked storage]

153 fp = fopen(IrData.pszIniFile,"r"};

At conditional (1): "fp = 0" taking false path

154 if (fp == NULL) §
155 Error.Level = ER ERROR:
156 Error.Code = 110;
157 strcpy(Description, "Cannot open file \""):
158 strcat (Description, IrData.pszDefFile):
159 strcat (Description, "\".\n");
160 strncpy (Error.Description, Description, NBDESC):;
161 strncpy (Error.Funcld, Funcld, NBFUNCID):
162 ErrorLib: :CheckError (Exror, Programld, ErrorMode, ER FILE):;
163 ¥
164
165
|CD"E”W e el 166 /* Execution in batch or irbxzmode */

|New status row inserted by system.
At condifional (2): "Rc != 0" taking false path

167 if (fRec)

168 f

169 i

170 Creation d'un fichier pour indigquer que le programme a bien roule,
171 5i le programme se rend jusqu'au bout, ce fichier sera efface
172 */

173 /* le fichier n'est créé qu'en mode Irbx */

174 if(IrData.fIrbx)

175 {

176 fp = fopen ("kz3£5dfails0.cmp”, "w") ;

177 fprintf(fp,"If at the end this file is still in the directory, Irblempl didn't work properly.\n");
178 fclose (fp);

179 3

is0

181 /* Initialization of screen parameters */

182 if (fRe)

183 fRc = Menulib::InitPage (IrData.pszIniFile,&Ecran);

184

185 /* Initialization of system command and sub programs =/

186 if (fRe)

157 fRc = Menulib::InitCmdSys(IrDacta.pszIniFile, gEcran);

is8

189 /* Initialization of data structure IRBLEMP1 */

150 InitDatalrblempl () ;

Transferring data from localhost... T TN

mj Insure

£ Insure - irblemp1_case2.txt - Notepad
File Edit Format Wew Help

[[IrblemPlModuleClass. cxx:843] *¥LEAK_ASSIGN®*
= Irpata. pszbefFile = (char®) malloc(strlen{ppszraram[i+1])+1);

2[5

Memory leaked due to pointer reassignment: IrData.pszDefFile

Lost block : 0x01aB81760 thru 0x01aB8176a (11 bytes)
IrData.pszbefFile, allocated at IrblemPlModuleCTlass.cxx, 776
malloc() (interface)
IrblemPlModulaeClass: :Initvarclob() IrblemPlModulellass.cxx, 77
IrblemPlModuleClass: :FctMain) IrblemPlModuleClass. cxx, 122
start_Module() mainirblempl.cpp, 435
main() mainirblempl.cpp, 447

stack trace where the error occurred:
IrblemPlModuleClass: :ParsParam() IrblemPlModuleClass. cxx, B43
IrblemPiModuleclass: :FctMain() IrblemPlModuleclass. cxx, 125
start_Module() mainirblempl.cpp, 435
main{) mainirblempl.cpp, 447

[IrblemPlModuleClass. cxx:7299] **READ_OVERFLOW®®
e #((int*)IrData. 1stoptUpper.pElem[0].pDefData) = atoi(pszvalue);

string is not null terminated within range: <argument 1>

Readin : Ox0012F87cC
From block: 0x0012f&87c thru 0x0012f97h (256 b¥te5}
pszvalue, declared at IrblemPlModuleClass.cxx, 7225

stack trace where the error occurred:
atoi() (interface)
Irb1emPandu1ec1a55::LireDeFUp?er(} IrblemPlModuleclass. cxx, 7299
IrblemPlModuleClass: :InithefFile) IrblemPlModuleClass. cxx, 1707
IrblemPlModuleClass: :FctMain) IrblemPlModuleClass.cxx, 193
start_Module() mainirblempl.cpp, 435
main() mainirblempl.cpp, 447

@7 AppPerfect DevSuite
L/..

E8 AppPerfect Code Analyzer - Professional - [NewProject]

File Wiew Project Tools Help

BECH PHOG £ AP ARIOE @D

i Packages # | RuleId | M Seve... | Categary | Lire Murnber | #

=1-{@ net.percederberg, mibble.asn: Skring_concatenation Critical Cipkimization I saz
P Asnl.ﬂnalyzer.]a.va String_concatenation Critical Optimization IF 547)

g AsnlCnnstal?ts.]ava IUse_shift_operators High Optirnization I= 120

8 Asanarks;erl.]av? Use_shift_operators High Optimization @ 120

ﬁ t.ﬂ.san;I: bnlzer']ébﬁ b Avoid_method_calls_in_loop High Optimization @ 449

: n; 'EELﬁD?arIDngj;:; &.Oroy Awnid_method_calls_in_laop High Cpkimization JF 520

] o Check_loop_counter_against_zero High Cptimization ‘E,' 449

£ Mibhode, java : _ o g

MibTreeBuider.java Check_loop_counter _against_zero High Optimization 516

' snmpOperation. java || Check_loop_counter_against_zero High Ciptimization I 529

P Treelisterer. java Declare_private_constant_Fields_final Medium Optimization & 603

-3 net.percederberg.mbble — Maximumn_nurmber_of_Fields Mexdiurn Metrics I

3 CormpoundContext. java Define_initial_capacities Tedium Cpkimization I 1

P 1

£ DefaultContext, java Avoid_numeric_literals Mediunm CodeCanvention & 112

FileLocation. java Avoid_numeric_literals Medium CodeConvention 5}' 116

P mib.java Beoid_numeric_literals TMedium CodeConvention I e

Mibanalyzer java | Avaid_numeric_literals Mediurn CadeCanvention I 1z

ol ibblel Ja Avoid_numeric_literals Mediurn CodeCaonvernkion I 1z0

9 M!thePrlnter..]ava Avaid_numeric_literals Medium CodeCanvention I a7

9 M!beETes.ter.]a\i'a Avoid_numeric_literals Medium CodeConvention I 217
L Mibbletiglidator. java Avnid nnmeric lirerals Tt inn CndeCanventinn I ri7 b’

P MibContesxt java

¥ MibException. java Cansale Messages

MibLoader java Analyzing C:hamex_Demoimibble-2, 3\sroinet| percederbergimibble) tbypelYalueConstr aint, java ~
£ MibLoaderException. java Analyzing Camex_Demoimibble-2, 31srcnet|percederbergimibblelbypeivalueRangeConstraint java)
P MibLoaderLog. java &nalyzing C:Amex_Demoimibble-2,3\srcinet|percederbergimibble)value! BitSetvalue java

Analyzing Ciamex_Demaimibble-2, 3isrcinet’ percederbergimibble’ value\Booleanyalue. java

$ vibReference java Analyzing Ciamex_Demamibble-2, 3isrcnet|percederbergimibble’ valueiMullvalue java

MibSymbal java Analyzing Crsmex_Demaoimibble-2. 3 sronet percederbergimibble’ v alue| Numberyalue. java

P MibType.java Analyzing CiAmex_Demoimibble-2, 3isrcnet|percederbergimibble’valuel Object Identifieralue. java
8 MibTypesymbal java Analyzing Chamex_Demoimibble-2, 3\srcinet\percederbergimibblel valuel Stringvalue java

B R T fnie || analyzing C:hamex_Demoimibble-2, 34 srcinetpercederbergimibblelvaluelvalueR. eference java

| = b

< |
Jgd Rules Results
30 day remaining. .. luation period. | Finished Analyzing 00:00:09 Ock 13, 2004 4:41 FM
Detence R&D Canada — Valcartier # 0

	Software Vulnerabilities & Verification Tools for C/C++ and Java
	Introduction
	Context
	Goals of this Project
	Plan of the Presentation
	Program Sanity vs. Security
	Program Sanity vs. Security
	Program Sanity vs. Security
	Some Terminology
	Defects, Errors and Vulnerabilities
	Defects, Errors and Vulnerabilities
	Plan of the Presentation
	Errors
	Memory Write Out of Bounds
	Memory Read Out of Bounds
	Resource Leak
	Program Hang
	Program Crash
	Plan of the Presentation
	Vulnerabilities
	Denial of Service
	Unauthorized Access
	Code Injection
	Plan of the Presentation
	Pitfalls & Shortcomings of C/C++
	C/C++ Lack of Type-safety
	C/C++ Pointer Arithmetic
	C/C++ Buffers Have a Static Size
	C Lack of Robust String Type
	C/C++ Vulnerabilities in Std Libraries
	Plan of the Presentation
	Defects: Some Observations
	Defects
	Defects
	Defects
	Defects
	Plan of the Presentation
	Tools Overview
	Tools
	Program Conformance Checkers
	Program Conformance Checkers
	Runtime Testers
	Runtime Testers
	Advanced Static Analyzers
	Advanced Static Analyzers
	Plan of the Presentation
	C/C++ Evaluation
	Comparing Apples and Oranges
	Results of Synthetic Tests
	Results of Synthetic Tests - Coverity
	Results of Synthetic Tests – PolySpace
	Results of Synthetic Tests – Insure++
	Results of Buggy Code in Production
	Results of Buggy Code in Production
	C/C++ Analysis
	Java Evaluation
	Java Analysis
	Plan of the Presentation
	Conclusion
	Conclusion
	Conclusion
	The Way Ahead
	PolySpace Viewer
	Coverity Prevent
	Insure
	AppPerfect DevSuite

