
Defence R&D
Canada

R et D pour la défense
Canada Canada

Software Vulnerabilities
& Verification Tools for C/C++ and Java

Frédéric Michaud & Frédéric Painchaud

Defence Scientists

Trusted C2IS Group

Defence R&D Canada – Valcartier # 2

Introduction

• Building reliable and secure software is a
difficult task

– Unmanageable complexity is the main
problem

• Flaws have many origins

• Design (ex: backdoor)

• Implementation (ex: buffer overrun)

• …

Defence R&D Canada – Valcartier # 3

Context

• Sensitive but not safety-critical applications
• Built with familiar technologies that users want

• Windows, Linux, C++, Java
• Our goal:

– Get rid of common security problems using
automated source code verification tools

• Design flaws:
– C2 Secure Design Patterns Study (04-05)

• Implementation flaws:
– Verification tools study (05-06)

Defence R&D Canada – Valcartier # 4

Goals of this Project

• Identify common software defects related to
C/C++ and Java usage

– Non application-specific

• Investigate errors and vulnerabilities created by
these defects

• Evaluate best of breed automatic verification
tools for C/C++ and Java

– Defect & error detection performance

– Usability

• Infer best practices

Defence R&D Canada – Valcartier # 5

Plan of the Presentation

1. Terminology

2. Errors

3. Vulnerabilities

4. Pitfalls & Shortcomings of C/C++

5. Defects

6. Tools Overview

7. Evaluation

8. Conclusion

Defence R&D Canada – Valcartier # 6

Program Sanity vs. Security

• Program Sanity

– Low level rules/conventions

– E.g.: C calling convention & parameters
placement on the stack

– Mostly related to programming

• Security

– High level control mechanisms

– For confidentiality, integrity and availability

– Mostly related to design

Defence R&D Canada – Valcartier # 7

Program Sanity vs. Security

Program Sanity
• Protected memory

• Valid control flow

• Valid data flow

• Correct management of
resources

Security
• Access Control

• Anti-virus

• Intrusion Prevention Systems

• Firewall

Defence R&D Canada – Valcartier # 8

Program Sanity vs. Security

• Automatic detection of security problems

– Too much variability

– Too much complexity

• Automatic detection of program sanity problems

– More or less always the same thing

– Especially interesting for C/C++

• Security begins with program sanity

– Program sanity problems are the main
cause of software security problems

Defence R&D Canada – Valcartier # 9

Some Terminology

• Error Execution
– Event that occurs when the behavior of a

program diverges from “what it should be”
• Defect Code

– Cause of an error, a set of program
instructions

– Can be the lack of something
• Vulnerability Exploitation

– Defect allowing a user to control the
program execution when it should not

Defence R&D Canada – Valcartier # 10

Defects, Errors and Vulnerabilities

Program Defect Vulnerability

OK

Defect
Present

No Defect

Defect
Active

DefectInactive

To
Check

Controlled
by User

Warning!

Not Controlled

Danger!!!

Error

Defence R&D Canada – Valcartier # 11

Defects, Errors and Vulnerabilities

Memory Write
Out of Bounds

Memory Read
Out of Bounds Resource Leak Program Crash Program Hang

Denial of ServiceUnauthorized
Access

Arbitrary Code
Execution

Memory
Management

Faults

Overruns
and

Underruns
Faults

Pointer
Faults

User in
Control of

Format String

Cast
Faults

Incorrect
Arithmetic

Faults
Misc. Faults

Defects

Errors

Vulnerabilities

Defence R&D Canada – Valcartier # 12

Plan of the Presentation

1. Terminology

2. Errors

3. Vulnerabilities

4. Pitfalls & Shortcomings of C/C++

5. Defects

6. Tools Overview

7. Evaluation

8. Conclusion

Defence R&D Canada – Valcartier # 13

Errors

• The list of possible low-level problems is almost
endless
– No interest in the correctness of

computations with respect to specifications
• Correct low-level program execution

– Memory access
– Control flow
– Resource allocation

• Java is immune to most program sanity
problems

Defence R&D Canada – Valcartier # 14

Memory Write Out of Bounds

• A region of valid memory is overwritten

• Impacts

– Depends on what is overwritten

– Can lead to many serious vulnerabilities

• Causes

– Bad pointer arithmetic

– Array walking with bad index value

• Java: cannot happen (will throw an exception)

Defence R&D Canada – Valcartier # 15

Memory Read Out of Bounds

• A region of invalid memory is read instead of a
valid one

• Impacts

– Errors in computations

– Sensitive values could be read

• Causes

– Reading of a string not terminated by a null

– Array walking with bad index

• Java: cannot happen (will throw an exception)

Defence R&D Canada – Valcartier # 16

Resource Leak

• A no longer needed resource is not returned to
the available pool
– Memory, file handle, network connection, …

• Impacts
– Depends on the resource and its usage
– Can lead to slowdown and crash

• Causes
– Reference lost because of pointer reuse
– Programmer forgot to free the resource

• Java: the garbage collector helps a lot

Defence R&D Canada – Valcartier # 17

Program Hang

• Program is in an infinite loop or wait state

• Impacts

– Denial of service

• Causes

– Threads in deadlock state

– Conditions to exit a loop never reached

Defence R&D Canada – Valcartier # 18

Program Crash

• An unrecoverable error happens and the
execution of the program is stopped

• Impacts

– Denial of service

• Causes

– Dereference of an invalid pointer (page fault)

– Uncaught exception

– Division by zero

Defence R&D Canada – Valcartier # 19

Plan of the Presentation

1. Terminology

2. Errors

3. Vulnerabilities

4. Pitfalls & Shortcomings of C/C++

5. Defects

6. Tools Overview

7. Evaluation

8. Conclusion

Defence R&D Canada – Valcartier # 20

Vulnerabilities

• Errors in general are undesirable
• But the real problem is vulnerabilities

– Especially the remotely-exploitable ones
• A vulnerability allows an attacker to have some

form of control over the program
– Influence the flow of control
– Influence the flow of data

• Memory read or written out of bounds
– Cause of most dangerous vulnerabilities

Defence R&D Canada – Valcartier # 21

Denial of Service

• Allows an attacker to prevent users from getting
correct service

• How it’s usually done
– Create an unrecoverable error condition
– Exploit a resource leak

• Java
– Most program sanity problems throw

unchecked exceptions
– Problems are “transformed” into denials of

service if exceptions are not caught

Defence R&D Canada – Valcartier # 22

Unauthorized Access

• Allows an attacker to access functionalities
without the required authorization

• How it’s usually done

– Bypass the control mechanism by modifying
it in memory

– Read sensitive values in memory and use
them to get access

Defence R&D Canada – Valcartier # 23

Code Injection

• Overwrite a function pointer that will be called

• Allows an attacker to take control of a process
by redirecting its execution to his own code

• Also known as buffer overflow or stack
smashing vulnerability

.........Return
Address

Local
variable...

Dummy
Data

Pointer to
Injected
Code

Injected
Code

Injected
Code

Memory

Attack String

Overflow

Defence R&D Canada – Valcartier # 24

Plan of the Presentation

1. Terminology

2. Errors

3. Vulnerabilities

4. Pitfalls & Shortcomings of C/C++

5. Defects

6. Tools Overview

7. Evaluation

8. Conclusion

Defence R&D Canada – Valcartier # 25

Pitfalls & Shortcomings of C/C++

• Many errors are possible because of choices
made when C/C++ were created

• These choices

– Require too much “micro-management” of
the program’s behavior

– “Encourage” mistakes

– Give serious consequences to seemingly
benign errors

• Java creators had these problems in mind and
got rid of the majority of them

Defence R&D Canada – Valcartier # 26

C/C++ Lack of Type-safety

• Type-safety ensures values assigned to variables
are correct

– Type-safety helps enforce the execution
model

– Type-safe programs are fail-fast

• Execution of erratic programs is not stopped

– Many exploits are using this fact

• Java programs are type-safe

– Verified at compile time and load time

Defence R&D Canada – Valcartier # 27

C/C++ Pointer Arithmetic

• The ability to change the value of a pointer
without restriction

– Can read or write anywhere in memory

– Control mechanisms can be bypassed

– Easy to create very obscure bugs

– Much higher verification complexity

• There is no pointer arithmetic in Java

Defence R&D Canada – Valcartier # 28

C/C++ Buffers Have a Static Size

• Buffers cannot grow to accommodate data

– Buffer accesses are not checked

– An overflow will overwrite memory

– Validation is cumbersome

– Source of buffer overflow vulnerabilities

• Java will throw an exception when an overflow
occurs

Defence R&D Canada – Valcartier # 29

C Lack of Robust String Type

• C has no type for character strings
– Static buffers with overflow problems are

used instead
– Size of string indicated by a null at the end
– Strings are used a lot in programs
– Very fragile: what if the null is not there?
– Source of buffer overflow vulnerabilities

• C++ programs can use the string type in the STL
– Not used enough

• Java only has a robust string type

Defence R&D Canada – Valcartier # 30

C/C++ Vulnerabilities in Std Libraries

• String manipulation functions
– strcpy(), gets() and friends

– Lack bounds checks for destination buffer

– Possible overflow if data size is not checked

– Source of buffer overflow vulnerabilities
– Use replacement functions: strncpy()

Defence R&D Canada – Valcartier # 31

Plan of the Presentation

1. Terminology

2. Errors

3. Vulnerabilities

4. Pitfalls & Shortcomings of C/C++

5. Defects

6. Tools Overview

7. Evaluation

8. Conclusion

Defence R&D Canada – Valcartier # 32

Defects: Some Observations

• Many defects are not ‘always on’
– They will not always generate errors
– Complex conditions have to be met
– Input values play an important role

• Most defects are composite
– Cannot be attributed to a single program

instruction
– A defect can be the absence of something

• Data validation
• Mostly C/C++ defects – (selection of 25)

Defence R&D Canada – Valcartier # 33

Defects

1 – Memory Management Faults
1.1 – Reading of freed memory
1.2 – Under allocated memory for a given type
1.3 – Call of free() with an invalid pointer
1.4 – Incorrect C++ array deletion
1.5 – Call of memcpy() with overlapping

memory regions
1.6 – Reading of an uninitialized variable
1.7 – Non-virtual destructor of derived class

not called

Defence R&D Canada – Valcartier # 34

Defects

2 – Overrun and Underrun Faults
2.1 – Overrun or underrun of an array
2.2 – Dereference of a past-the-end C++

iterator
2.3 – Dereference of an erased C++ iterator
2.4 – Incorrect size parameter to a buffer

function
2.5 – Use of negative array index or size
2.6 – Reading of a string of arbitrary length

without limit
2.7 – Reading of a non null-terminated string

Defence R&D Canada – Valcartier # 35

Defects

3 – Pointer Faults
3.1 – Return of a pointer to a local variable
3.2 – Incorrect pointer arithmetic
3.3 – Dereference of a null pointer
3.4 – Resource reference lost

4 – Incorrect Arithmetic Faults
4.1 – Division by zero
4.2 – Integer overflow or underflow
4.3 – Bit shift bigger than integral type or

negative

Defence R&D Canada – Valcartier # 36

Defects

5 – Cast Faults

5.1 – Integer sign lost because of implicit
unsigned cast

5.2 – Integer precision lost because of bad cast

6 – Miscellaneous Faults

6.1 – Unspecified format string

6.2 – Endless loop

Defence R&D Canada – Valcartier # 37

Plan of the Presentation

1. Terminology

2. Errors

3. Vulnerabilities

4. Pitfalls & Shortcomings of C/C++

5. Defects

6. Tools Overview

7. Evaluation

8. Conclusion

Defence R&D Canada – Valcartier # 38

Tools Overview

• Evaluated tools – most are multiplatform
– C/C++: 27 tools
– Java: 37 tools

• Free (open source) versus commercial tools
– C/C++: best tools are commercial
– Java: many good free tools

• Most academic tools are only proofs of concepts
• Evaluation criteria

– Precision, scalability, coverage, diagnostic

Defence R&D Canada – Valcartier # 39

1. Program Conformance Checkers

• Detect defects

2. Runtime Testers

• Detect errors

3. Advanced Static Analyzers

• Detect defects

RequiredRequired
Investment*Investment*

++

--

* In money, time, training, resources, etc.

Tools

Defence R&D Canada – Valcartier # 40

Program Conformance Checkers

• Check source code for common bug patterns

• Lightweight analysis based on syntax

– Excellent scalability

– Many false positives and negatives

– Poor performance except for a few defects

• E.g.: unspecified format string

• Many free tools are in this category

Defence R&D Canada – Valcartier # 41

Program Conformance Checkers

C/C++

• Secure Programming Lint

– C only

– Many “parse errors”

– Superficial analysis
without annotations

• FlawFinder

– Format strings

– Vulnerable functions

– A lot of false positives

Java

• PMD

– Enforces coding
conventions

– Well integrated

– Cut & paste detector

• AppPerfect CodeAnalyzer

– Similar to PMD

• Different rules

– Affordable & effective

Defence R&D Canada – Valcartier # 42

Runtime Testers

• Program behavior cannot always be deduced
statically
– Some values are not known before runtime

• Look for errors while the program is running
– Code is instrumented with checks
– Fine-grained analysis
– Excellent scalability
– Coverage can be poor without a good

strategy
• Excellent for composite defects related to

memory usage

Defence R&D Canada – Valcartier # 43

Runtime Testers

C/C++

• Parasoft Insure++

– Source instrumentation

– Impressive performance

– Easy to use (debugger)

– Good diagnostic

• Rational Purifier

– Similar to Insure++

– Analysis not as
thorough

Java

• AppPerfect Java Profiler

– Heap, threads, objects,
CPU usage, disk I/O,
memory usage

– Heap browser

– Deadlock detection

• JProfiler

• NetBeans Profiler

Defence R&D Canada – Valcartier # 44

Advanced Static Analyzers

• Work on program semantics instead of syntax

– Use formal methods, like abstract
interpretation or model-checking

– Scalability is often problematic

• Code must be compiled into a model

– A lot of code portability issues

• Generally much slower than other tools

• Very sophisticated tools: often expensive

Defence R&D Canada – Valcartier # 45

Advanced Static Analyzers

C/C++

• Coverity Prevent (SWAT)

– Good integration with
makefiles

– Excellent diagnostic
with execution trace

– Surprisingly scalable

• PolySpace for C++

– Very thorough but slow
and memory hungry

– Can detect runtime
exceptions statically

Java

• ESC/Java 2

– Can prove properties on
the behavior of programs

– Have to add annotations

– Very powerful

– Hard to use

– A must-have for critical
Java software
development

Defence R&D Canada – Valcartier # 46

Plan of the Presentation

1. Terminology

2. Errors

3. Vulnerabilities

4. Pitfalls & Shortcomings of C/C++

5. Defects

6. Tools

7. Evaluation

8. Conclusion

Defence R&D Canada – Valcartier # 47

C/C++ Evaluation

• Preliminary tests showed only 3 tools could help
us achieve our goal:

– Coverity Prevent

– Parasoft Insure++

– PolySpace for C++

• 2 sets of tests

– Synthetic tests for every kind of defect (25)

– Buggy code in production (~10,000 lines)

Defence R&D Canada – Valcartier # 48

Comparing Apples and Oranges

• Error detection vs. defect detection

– A conversion is necessary

• Synthetic tests

– Defects are known

– The errors they will cause too

– Easy to convert everything to defects

• Buggy code in production

– Defects are not known in advance

• Used best result as baseline (errors)

Defence R&D Canada – Valcartier # 49

Results of Synthetic Tests

• A C++ class for every kind of defect (25)
• Integrated in a small high-quality open-source

application (Windows MFC)
• Tests that would lead to a program crash or hang

were deactivated for Insure++
• Tests are called from the main()

– MFC applications have a “special” main()
– PolySpace had to be used in a “class by

class” analysis mode
• No tool tries to detect every kind of defect or

error

Defence R&D Canada – Valcartier # 50

Results of Synthetic Tests - Coverity

3

7

0

5

4

0

3

2

0

0

5

0

0

2

0

0

2

0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Memory
Management

Faults

Overrun and
Underrun Faults

Pointer Faults Incorrect
Arithmetic Faults

Cast Faults Miscellaneous
Faults

False Positives
False Negatives
Faults Found

Defence R&D Canada – Valcartier # 51

Results of Synthetic Tests – PolySpace

4

6

0

5

4

3

1

4

1

5

00

2

00

1

1

0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Memory
Management

Faults

Overrun and
Underrun Faults

Pointer Faults Incorrect
Arithmetic Faults

Cast Faults Miscellaneous
Faults

False Positives
False Negatives
Faults Found

Defence R&D Canada – Valcartier # 52

Results of Synthetic Tests – Insure++

8

2

0

6

3

0

3

2

0

1

4

0

0

2

0

0

2

0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Memory
Management

Faults

Overrun and
Underrun Faults

Pointer Faults Incorrect
Arithmetic Faults

Cast Faults Miscellaneous
Faults

False Positives
False Negatives
Faults Found

Defence R&D Canada – Valcartier # 53

Results of Buggy Code in Production

• Numerical analysis application

– About 10,000 lines of code

– In production for many years

– Reads a file and displays the results

• Not a reactive program like MFC Apps

– Bad quality code

• “C+” design

• A lot of cut and pasted, “spaghetti” code

• Really a worst-case scenario

Defence R&D Canada – Valcartier # 54

Results of Buggy Code in Production

002Program crash

0102Resource leak

01141Memory read out of bounds

2420Memory write out of bounds

Pol*InsCovErrors

* Over 300 false positives, ~16 hours of computation

Defence R&D Canada – Valcartier # 55

C/C++ Analysis

• Static analysis tools need good quality code to
perform well

– Pointer arithmetic and void pointers can also
be problematic

– PolySpace will stop the analysis of a branch
when a critical error is found

• Code portability issues

– Preprocessor definitions and conditional
compilation

– Compiler-specific extensions to C/C++

Defence R&D Canada – Valcartier # 56

Java Evaluation

• Preliminary tests showed 11 tools could be
useful

• The ones that stand out:

– AppPerfect DevSuite

– PMD

• 2 large, open-source applications tested

Defence R&D Canada – Valcartier # 57

Java Analysis

• Java design is better: less low-level defects

– Fewer problems to look for

– Tools for Java are great to assess software
quality

• No code portability issues

– A lot easier than C/C++

Defence R&D Canada – Valcartier # 58

Plan of the Presentation

1. Errors

2. Vulnerabilities

3. Pitfalls & Shortcomings of C/C++

4. Defects

5. Tools

6. Evaluation

7. Conclusion

Defence R&D Canada – Valcartier # 59

Conclusion

• Security problems generally don’t come from
the failure of security mechanisms

– The failure occurs at a lower level

• C/C++ are especially problematic

– Enforce almost no restriction on execution

– Vulnerabilities with serious consequences

• Java is immune to most C/C++ problems

– No serious vulnerabilities

Defence R&D Canada – Valcartier # 60

Conclusion

• Best usage scenario for Coverity

– Whole applications compiled with makefiles

• Best usage scenario for PolySpace

– Small sections of critical code where runtime
exceptions should never happen

• Best usage scenario for Insure++

– Integrated to test cases

– Test of hybrid systems based on many
heterogeneous components

• Values are always available at runtime

Defence R&D Canada – Valcartier # 61

Conclusion

• Verifying C/C++ programs is a huge challenge
– These languages are very hard to analyze

• Undefined behaviors, pointers, compiler-
specific extensions, etc.

– No verification tool can reduce the risk
significantly enough for this context

• For sensitive applications, we recommend the
use of Java or any managed .Net language
– Use C/C++ only if you really have to

• Restricted language usage, test cases, and
the use of verification tools are a must

Defence R&D Canada – Valcartier # 62

Frederic.Michaud@drdc-rddc.gc.ca
Frederic.Painchaud@drdc-rddc.gc.ca

http://www.drdc-rddc.gc.ca/researchtech/malicots/home_e.asp

Defence R&D Canada – Valcartier # 63

The Way Ahead

• Detection of higher level security problems

– A model for the security behavior of
programs is needed

• Automatic program hardening

– Based on aspect oriented programming

• Current research project

– Partnership with NSERC, Bell University
Labs and Concordia University

Defence R&D Canada – Valcartier # 64

PolySpace Viewer

Defence R&D Canada – Valcartier # 65

Coverity Prevent

Defence R&D Canada – Valcartier # 66

Insure

Defence R&D Canada – Valcartier # 67

AppPerfect DevSuite

	Software Vulnerabilities & Verification Tools for C/C++ and Java
	Introduction
	Context
	Goals of this Project
	Plan of the Presentation
	Program Sanity vs. Security
	Program Sanity vs. Security
	Program Sanity vs. Security
	Some Terminology
	Defects, Errors and Vulnerabilities
	Defects, Errors and Vulnerabilities
	Plan of the Presentation
	Errors
	Memory Write Out of Bounds
	Memory Read Out of Bounds
	Resource Leak
	Program Hang
	Program Crash
	Plan of the Presentation
	Vulnerabilities
	Denial of Service
	Unauthorized Access
	Code Injection
	Plan of the Presentation
	Pitfalls & Shortcomings of C/C++
	C/C++ Lack of Type-safety
	C/C++ Pointer Arithmetic
	C/C++ Buffers Have a Static Size
	C Lack of Robust String Type
	C/C++ Vulnerabilities in Std Libraries
	Plan of the Presentation
	Defects: Some Observations
	Defects
	Defects
	Defects
	Defects
	Plan of the Presentation
	Tools Overview
	Tools
	Program Conformance Checkers
	Program Conformance Checkers
	Runtime Testers
	Runtime Testers
	Advanced Static Analyzers
	Advanced Static Analyzers
	Plan of the Presentation
	C/C++ Evaluation
	Comparing Apples and Oranges
	Results of Synthetic Tests
	Results of Synthetic Tests - Coverity
	Results of Synthetic Tests – PolySpace
	Results of Synthetic Tests – Insure++
	Results of Buggy Code in Production
	Results of Buggy Code in Production
	C/C++ Analysis
	Java Evaluation
	Java Analysis
	Plan of the Presentation
	Conclusion
	Conclusion
	Conclusion
	The Way Ahead
	PolySpace Viewer
	Coverity Prevent
	Insure
	AppPerfect DevSuite

