
Pragmatic Approaches with
COTS
Reverse Engineering for the Detection of
Undesirable Functionality

WISDOM SOFTWARE, LTD.

Wisdom Software, Ltd.
 Small Business- Incorporated in Virginia
 Business Interests

 Formal Methods research and application
development

 Software Certification
 System Safety Analysis

 Customer Base
 NSA
 US Army – WRAIR
 FDA

Research Objectives
 Evaluate the practicality of using

reverse engineering (RE) to identify
undesirable functionality (UF)

 Document and implement a practical
(formal methods) process for RE

 Examine implications for addressing
system security and safety

Undesirable Functionality
Definition

 permits non-secure access
 exports sensitive information
 damages computer or network operations
 modifies other unrelated systems or

resources
 otherwise compromises system security

The UF Problem
 There is potentially an infinite set of

unique instances of UF
 Each instance might be implemented in

many ways
 Implications

 A general solution is needed
 Functionality must be examined in context

Finding Undesirable
Functionality
 Pattern matching is insufficient

 Only useful if you already know specifically
what you are looking for

 Does not address variations on
implementation

 Does not identify unknown undesirable
functionality

 The alternative: Examining functional
behavior in context

Examination of Behavior in
Context
 Context is based on the scope of information

abstracted from the software
 Context of definition
 Context of use

 Obvious behavior
 Local function definition
 Short stimulus sequence trigger

 Not so obvious behavior
 Function definition is distributed
 Long stimulus sequence trigger

Reverse Engineering Process
 Segment the software into functional

blocks
 Abstract the program function for each

segment
 Compose the abstracted segment

functions
 Generate the Legal Sequence Table

from the composed segment function

Segmentation
 Segmentation divides the software into

functional blocks
 A segmentation graph shows the

hierarchical relationship of the
segments

 Each segment represents a context of
definition

static void free_proc_chain(struct process_chain *procs)
{
 struct process_chain *p;
 int need_timeout = 0;
 int status;

 if (procs == ((void *)0))
 return;

2666 "alloc.c"

 for (p = procs; p; p = p->next) {
 if (waitpid(p->pid, (int *) 0, 1) > 0) {
 p->kill_how = kill_never;
 }
 }

 for (p = procs; p; p = p->next) {
 if ((p->kill_how == kill_after_timeout)
 || (p->kill_how == kill_only_once)) {

 if (kill(p->pid , 15) != -1)
 need_timeout = 1;
 }
 else if (p->kill_how == kill_always) {
 kill(p->pid, 9);
 }
 }

 if (need_timeout)
 sleep(3);

 for (p = procs; p; p = p->next) {

 if (p->kill_how == kill_after_timeout)
 kill(p->pid, 9);

 if (p->kill_how != kill_never)
 waitpid(p->pid, &status, 0);
 }
}

Function Abstraction
 Function abstraction is the process of

deriving a state machine for a segment
 A state machine is abstracted for each

segment in the system being analyzed
 The state machine is represented in a

tabular format for each segment

Function Composition
 Abstracted state machines for related

segments are combined by function
composition

 A loop unrolling algorithm is employed to
eliminate dynamic looping or recursion in the
software
 Resulting definition of behavior is an

approximation
 Accuracy increases as the number of cycles

unrolled is increased

Segment 82
Stimulus Current Condition State Update Response

Invoke procs == null return
terminate

Invoke procs != null waitpid(procs->pid, (int*) 0, 1)
waitpid(procs->pid, (int*) 0, 1)
> 0

procs!= null procs->kill_how = kill_never terminate

waitpid(procs->pid, (int*) 0, 1)
≤ 0

procs!= null
(procs->kill_how ==
kill_after_timeout
OR
procs->kill_how ==
kill_only_once)

 kill(procs->pid, 15)

waitpid(procs->pid, (int*) 0, 1)
≤ 0

procs!= null
procs->kill_how ==
kill_always

 kill(procs->pid, 9)
waitpid(procs->pid, &status,
0)
terminate

waitpid(procs->pid, (int*) 0, 1)
≤ 0

procs!= null
procs->kill_how !=
kill_after_timeout
procs->kill_how != kill_never
procs->kill_how !=
kill_only_once
procs->kill_how !=
kill_always

 waitpid(procs->pid, &status,
0)
terminate

waitpid(procs->pid, (int*) 0, 1)
≤ 0

procs!= null
procs->kill_how == kill_never

 terminate

kill(procs->pid, 15) == -1 procs!= null
procs->kill_how ==
kill_after_timeout

 kill(procs->pid, 9)
waitpid(procs->pid, &status,
0)
terminate

kill(procs->pid, 15) == -1 procs!= null
procs->kill_how ==
kill_only_once

 waitpid(procs->pid, &status,
0)
terminate

kill(procs->pid, 15) != -1 procs!= null
procs->kill_how ==
kill_after_timeout

 sleep(3)
kill(procs->pid, 9)
waitpid(procs->pid, &status,
0)
terminate

kill(procs->pid, 15) != -1 procs!= null
procs->kill_how ==
kill_only_once

 sleep(3)
waitpid(procs->pid, &status,
0)
terminate

Legal Sequence Table
The composed segment table is processed to

derive the legal stimulus sequences
 This identifies behavior in context of use

 Series of responses generated for each sequence
 Series of state updates generated for each

sequence
 For lower level segments - possible conditions

under which a sequence may occur
 Gives the analyst a clearer picture of the

actions being performed by the segment

Segment 82
Legal sequences

Sequence Conditions State Updates Responses
Invoke procs == null return

terminate
Invoke
waitpid(procs->pid, (int*) 0, 1)
> 0

procs != null procs->kill_how = kill_never waitpid(procs->pid, (int*) 0, 1)
terminate

Invoke
waitpid(procs->pid, (int*) 0, 1)
≤ 0
kill(procs->pid, 15) == -1

procs!= null
procs->kill_how ==
kill_after_timeout

 waitpid(procs->pid, (int*) 0, 1)
kill(procs->pid, 15)
kill(procs->pid, 9)
waitpid(procs->pid, &status,
0)
terminate

Invoke
waitpid(procs->pid, (int*) 0, 1)
≤ 0
kill(procs->pid, 15) == -1

procs!= null
procs->kill_how ==
kill_only_once

 waitpid(procs->pid, (int*) 0, 1)
kill(procs->pid, 15)
waitpid(procs->pid, &status,
0)
terminate

Invoke
waitpid(procs->pid, (int*) 0, 1)
≤ 0
kill(procs->pid, 15) != -1

procs!= null
procs->kill_how ==
kill_after_timeout

 waitpid(procs->pid, (int*) 0, 1)
kill(procs->pid, 15)
sleep(3)
kill(procs->pid, 9)
waitpid(procs->pid, &status,
0)
terminate

Invoke
waitpid(procs->pid, (int*) 0, 1)
≤ 0
kill(procs->pid, 15) != -1

procs!= null
procs->kill_how ==
kill_only_once

 waitpid(procs->pid, (int*) 0, 1)
kill(procs->pid, 15)
sleep(3)
waitpid(procs->pid, &status,
0)
terminate

Invoke
waitpid(procs->pid, (int*) 0, 1)
≤ 0

procs != null
procs->kill_how ==
kill_always

 waitpid(procs->pid, (int*) 0, 1
kill(procs->pid, 9)
waitpid(procs->pid, &status,
0)
terminate

Invoke
waitpid(procs->pid, (int*) 0, 1)
≤ 0

procs!= null
procs->kill_how !=
kill_after_timeout
procs->kill_how != kill_never
procs->kill_how !=
kill_only_once
procs->kill_how !=
kill_always

 waitpid(procs->pid, (int*) 0, 1)
waitpid(procs->pid, &status,
0)
terminate

Invoke
waitpid(procs->pid, (int*) 0, 1)
≤ 0

procs!= null
procs->kill_how == kill_never

 waitpid(procs->pid, (int*) 0, 1)
terminate

Results Analysis
 Behavioral description of the program

function
 State machine definition
 Legal Sequence Table

 Potentially large volume of data to address
 Prioritization – current research
 Assertion tests – proposed research
 Semantic analysis – proposed research

Prioritization
 Prioritization is being investigated to direct

analyst attention to segments that have a
higher likelihood of containing UF

 Based on a cursory examination of attributes
 Segment level
 State machine level
 Legal sequence level

 Generates a weighted score for each segment
that reflects a potential for or sensitivity to UF

Ongoing Research
 Refinement of the prioritization

weighting scheme
 Optimal weighting values for measured

attributes
 Additional attributes to examine

 Refinement of Abstraction process
 Improved automation support

 Results Analysis and Presentation

	Pragmatic Approaches with COTS�Reverse Engineering for the Detection of Undesirable Functionality
	Wisdom Software, Ltd.
	Research Objectives
	Undesirable Functionality
	The UF Problem
	Finding Undesirable Functionality
	Examination of Behavior in Context
	Reverse Engineering Process
	Segmentation
	Slide Number 10
	Function Abstraction
	Function Composition
	Slide Number 13
	Legal Sequence Table
	Slide Number 15
	Results Analysis
	Prioritization
	Ongoing Research

