
Predicting Attack-prone Components

Michael Gegick

22 May 2009

Security should be designed and
built into the software [1]

Software security: Build security into the software [4]
Incorporating security into the software life cycle has
reduced count of serious vulnerabilities at Microsoft1

1http://eweek.com/article2/0,1759,1779769,00.asp
2

Challenge: The costs to identify faults increases
downstream in the software life cycle [2].

31ISO/IEC 24765, "Software and Systems Engineering Vocabulary," 2006.

The goal of this research is to reduce vulnerabilities from escaping into the
field. We incorporate metrics into statistical models that predict which
components are most susceptible to attack .

HA: above a statistically determined threshold, source code static analysis tool
warnings are predictive of other vulnerabilities identified during testing and in the
field.

No single fault detection technique can identify all faults in
a software system [5].

Background: Defining Vulnerability- and
Attack-prone Components

Fault-prone component
Likely to contain faults

Failure-prone component
Likely to cause failures

Reliability context Security context

Vulnerability-prone component
Likely to contain vulnerabilities

Attack-prone component
Likely to be exploited

Reliability concepts may be applicable in the security realm.

component - “one of the parts that make up a system” [3]

5

Research objective: predict which
components are attack-prone.

Attack-prone components1 are those
components that have at least one vulnerability
identified during testing or reported by
customers or third-party researchers.

1Multiple files per component in the context of this research.

6

Prioritize security fortification efforts to the attack-prone components.

Empirical Case Studies on Three
Commercial Software Systems

Three commercial telecommunications software systems
Two systems from one anonymous vendor
Cisco Systems system

Each system has over one million source lines of C/C++ code

Each system is in a different telecommunications product
sector.

7

Classification and Regression Trees
(CART) used as statistical approach

Static analysis tools warnings
Code churn
Coupling
Size (KLOC)
Faults from code/design reviews

Independent variables

Classification and
Regression

Tree Analysis

Attack-prone

Not Attack-prone
Testing: attacks reported during

testing
Field: attacks reported by

customers, third-party researchers

Dependent variables

Other approaches that were examined, but found to be less effective
Logistic regression
Discriminant analysis
Zero-inflated Poisson
Zero-inflated negative binomial

8

Threats to Validity

Residual vulnerabilities in software are possible.

Vulnerability count is a function of security testing
effort and customer usage, where effort and usage
are not equal for all components.

Identified vulnerabilities are scarce. Confidence in
statistical results can be low as a result.

Results are from three software systems. They are
not representative for all software systems.

9

10

Correlations between metrics and vulnerability count are
positive and significant.

Since correlations are significant, these metrics are used in statistical models.

Non-security failure count among the strongest correlations for all metrics and case
studies.

Reliability engineers should look for vulnerabilities in the most failure-prone
components.

Metric
Case study 1

(component-level)
Case study 2

(file-level)
Case study 2

(component-level)
Case study 3

(component-level)
Non-security
failures 0.8 0.4 0.7 0.4

Code churn 0.4 0.4 0.7 0.2

Size (SLOC) 0.4 0.4 0.6 0.2

Coupling
Metric N/A 0.2 0.6 N/A

SCSA
warnings 0.2 0.2 0.6 0.2

SCSA security
warning 0.2 0.2 0.5 0.2

CART results: Source code metrics can prioritize security
fortification efforts to attack-prone components.

True Positives (TP) + False Positives (FP): 18.6% of system components
False Positives: 9.1%

Accuracy: 88.0%
Precision: 52.5%
Recall: 75.6%

TN (True Negatives - correctly classified as not attack-prone)
FN (False Negatives - misclassified as not attack-prone)
TP (True Positives - correctly classified as attack-prone)
FP (False Positives - misclassified as attack-prone)

Region size
proportional
to count of
components

Model prioritizes security efforts in TP and FP
regions.

11

12

AUC = 93.0% AUC = 91.9% AUC = 94.4%

Case study 1 Case study 2 Case study 3

Area under the curve (AUC) is not dissimilar
for three case studies

13

Source code static analysis
warnings are an important predictor

SCSA
warnings Churn

Static
inspections

File
coupling

Case study 1 10.6 12.2 N/A N/A

Case study 2 32.2 156.6 N/A 18.6

Case study 3 76.1 24.9 20.2 N/A

Larger G2 indicates better fit to the data.

G2 likelihood-ratio chi-square statistic.

Components with source code static analysis warnings may also have other
types of vulnerabilities.

References
[1] Anderson J., "Computer Security Technology Planning Study," Fort Washington, October 1972.
[2] Boehm B., Software Engineering Economics, New Jersey, Prentice-Hall, 1981.
[3] IEEE, "ANSI/IEEE Standard Glossary of Software Engineering Terminology (IEEE Std 610.12-1990)," IEEE Computer

Society Press, Los Alamitos, CA, 1990.
[4] McGraw G., Software Security: Building Security In, Boston, Addison-Wesley, 2006.
[5] Young M. and R. N. Taylor, "Rethinking the Taxonomy of Fault Detection Techniques," ICSE, pp. 53-62, 1989.

14

	Predicting Attack-prone Components��Michael Gegick��22 May 2009
	Security should be designed and built into the software [1]
	Challenge: The costs to identify faults increases downstream in the software life cycle [2].
	HA: above a statistically determined threshold, source code static analysis tool warnings are predictive of other vulnerabilit
	Background: Defining Vulnerability- and Attack-prone Components�
	Research objective: predict which components are attack-prone.
	Empirical Case Studies on Three Commercial Software Systems
	Classification and Regression Trees (CART) used as statistical approach
	Threats to Validity
	Correlations between metrics and vulnerability count are positive and significant.
	CART results: Source code metrics can prioritize security fortification efforts to attack-prone components.
	Area under the curve (AUC) is not dissimilar for three case studies
	 Source code static analysis warnings are an important predictor
	References

