Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	O	00000	

Private Disclosure of Information in Health Tele-monitoring

Daniel Aranki, Ruzena Bajcsy

University of California, Berkeley {daranki,bajcsy}@eecs.berkeley.edu

May 7, 2015

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
●0	0000000	000000	O	00000	
Motivatio	on				

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
⊙●	0000000	000000	O	00000	
Example					

 Patient Bob wants to update his physician Alice about his Body Mass Index (BMI) and weight (x).

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
⊙●	0000000	000000	O	00000	
Example					

- Patient Bob wants to update his physician Alice about his Body Mass Index (BMI) and weight (x).
- 2 Alice already knows the BMI category of Bob (c).

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
⊙●	0000000	000000	O	00000	
Example					

- Patient Bob wants to update his physician Alice about his Body Mass Index (BMI) and weight (x).
- 2 Alice already knows the BMI category of Bob (c).
- Alice and Bob want to keep the BMI category c private from Eve, a passive eavesdropper, after observing the communication.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	●000000	000000	O	00000	
Setting	and Threa	t Model			

Setting

Disclosed Identity

The identity of the sender (s) is attached to each disclosed piece of information.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	●000000	000000	O	00000	
Setting	and Threa	t Model			

Setting

Disclosed Identity

The identity of the sender (s) is attached to each disclosed piece of information.

Intended Recipient's Knowledge

The sender belongs to a class (c) that is known to the intended recipient.

Motavation 00	Framework •000000	Optimality Analysis	Learning O	Example 00000	Future Work
Setting	and Threa	t Model			

Setting

Disclosed Identity

The identity of the sender (s) is attached to each disclosed piece of information.

Intended Recipient's Knowledge

The sender belongs to a class (c) that is known to the intended recipient.

Threat Model

Adversary is a passive man in the middle interested in inferring the class c of the sender s based on the disclosed information.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
	000000				

Idea

The sender discloses an encoded version z of x, where the encoding depends on her class c.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	000000	000000	O	00000	
Objectiv	ves				

Decoding Condition

The intended recipient can make full use of the sent information z, i.e. obtain the original message x from the transmitted message z.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	000000	000000	O	00000	
Objectiv	ves				

Decoding Condition

The intended recipient can make full use of the sent information z, i.e. obtain the original message x from the transmitted message z.

Hiding Class Condition

The adversary's ability to make inference about c given s, based on the sent information z is minimized.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	000●000	000000	O	00000	
Some De	finitions				

$\bullet \ \mathcal{S}$ is the set of senders' identities

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	O	00000	
Some Def	finitions				

- ${\mathcal S}$ is the set of senders' identities
- $\bullet~\Sigma$ is the set of senders' classes

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	O	00000	
Some Def	finitions				

- $\mathcal S$ is the set of senders' identities
- $\bullet~\Sigma$ is the set of senders' classes
- $\bullet \ \mathcal{I}$ is the set of pieces of information

Motavation 00	Framework	Optimality Analysis	Learning O	Example 00000	Future Work
The Pro	cess				

Let $R: \Sigma \to \mathcal{I}^{\underline{\mathcal{I}}}$ (Privacy Mapping Function)

- ∢ ∃ ▶

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	○○○○●○○	000000	O	00000	
The Proc	cess				

Let $R: \Sigma \to \mathcal{I}^{\underline{\mathcal{I}}}$ (Privacy Mapping Function) (Equivalent to $R: \Sigma \times \mathcal{I} \to \mathcal{I}$ being injective in the second argument)

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	○○○○●○○	000000	O	00000	
The Proc	cess				

Let $R: \Sigma \to \mathcal{I}^{\underline{\mathcal{I}}}$ (Privacy Mapping Function) (Equivalent to $R: \Sigma \times \mathcal{I} \to \mathcal{I}$ being injective in the second argument)

Sending Information

• Sender $s \in S$ (from class $c \in \Sigma$) wants to send information $x \in I$.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	○○○○●○○	000000	O	00000	
The Proc	cess				

Let $R : \Sigma \to \mathcal{I}^{\underline{\mathcal{I}}}$ (Privacy Mapping Function) (Equivalent to $R : \Sigma \times \mathcal{I} \to \mathcal{I}$ being injective in the second argument)

Sending Information

- Sender $s \in S$ (from class $c \in \Sigma$) wants to send information $x \in I$.
- Let the sender encode z = [R(c)](x), and send z.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	○○○○●○○	000000	O	00000	
The Proc	cess				

Let $R : \Sigma \to \mathcal{I}^{\underline{\mathcal{I}}}$ (Privacy Mapping Function) (Equivalent to $R : \Sigma \times \mathcal{I} \to \mathcal{I}$ being injective in the second argument)

Sending Information

- Sender $s \in S$ (from class $c \in \Sigma$) wants to send information $x \in I$.
- Let the sender encode z = [R(c)](x), and send z.

Receiving Information

• The intended recipient knows the identity of s and her class c.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	○○○○●○○	000000	O	00000	
The Proc	cess				

Let $R : \Sigma \to \mathcal{I}^{\underline{\mathcal{I}}}$ (Privacy Mapping Function) (Equivalent to $R : \Sigma \times \mathcal{I} \to \mathcal{I}$ being injective in the second argument)

Sending Information

- Sender $s \in S$ (from class $c \in \Sigma$) wants to send information $x \in I$.
- Let the sender encode z = [R(c)](x), and send z.

Receiving Information

- The intended recipient knows the identity of s and her class c.
- The intended recipient then can decode $x \leftarrow [R(c)]^{l}(z)$.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	○○○○○●○	000000	O	00000	
Statistical	Graphical	Model			

P(S)

Motavation 00	Framework ○○○○○●○	Optimality Analysis	Learning O	Example 00000	Future Work
Statistical	Graphical	Model			

P(C|S)

Motavation 00	Framework ○○○○○●○	Optimality Analysis	Learning O	Example 00000	Future Work
Statistical	Graphical	Model			

Motavation 00	Framework ○○○○○●○	Optimality Analysis	Learning O	Example 00000	Future Work
Statistical	Graphical	Model			

$$p(Z = z | X = x, C = c) \triangleq \delta(z - [R(c)](x))$$

▲□▶ ▲圖▶ ▲国▶ ▲国≯

Motavation 00	Framework ○○○○○●○	Optimality Analysis	Learning O	Example 00000	Future Work
Statistical	Graphical	Model			

P(S) P(C|S) P(X|C,S)

Motavation 00	Framework ○○○○○○●	Optimality Analysis	Learning O	Example 00000	Future Work
Formulation	on of Prob	lem			

 $\begin{array}{l} \text{minimize } I(C, Z | S; R) \\ \text{w.r.t } R \in \left(\Sigma \rightarrow \mathcal{I}^{\underline{\mathcal{I}}} \right) \end{array}$

(日本) (日本) (日本)

Motavation 00	Framework ○○○○○●	Optimality Analysis	Learning O	Example 00000	Future Work
Formulation	on of Prob	lem			

minimize I(C, Z|S; R)w.r.t $R \in (\Sigma \to \mathcal{I}^{\underline{\mathcal{I}}})$

.∃ > э

Motavation 00	Framework ○○○○○●	Optimality Analysis	Learning O	Example 00000	Future Work
Formulati	on of Prob	lem			

Properties?

e How do we learn such a privacy mapping function, R?

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
		00000			

If there exists a privacy mapping function R such that p(Z = z | C = c, S = s; R) = f(z, s) for all $c \in \Sigma$ then:

$$I(C, Z|S; R) = 0 (global optimum)$$

2
$$p(C = c | Z = z, S = s; R) = p(C = c | S = s)$$
 (Bayesian

updates prevented)

Motavation 00	Framework 0000000	Optimality Analysis	Learning O	Example 00000	Future Work
Intuition					

▶ < 불 ▶ 불 ∽ ९ ୯ May 7, 2015 12 / 25

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	00●000	O	00000	
Gaussian	Informatio	n			

If $X|C = c, S = s \sim N(\mu_c, \Sigma_c)$ (Normal distribution) for every $c \in \Sigma$ and $s \in S$, then $[R(c)](x) = \Sigma_c^{-\frac{1}{2}} \cdot (x - \mu_c)$ yields I(C, Z|S; R) = 0 and "prevents Bayesian updates".

Motavation 00	Framework 0000000	Optimality Analysis	Learning O	Example 00000	Future Work
Exponen	tially Dist	ributed Inform	ation		

If $X|C = c, S = s \sim Exp(\lambda_c)$ (Exponential distribution) for every $c \in \Sigma$ and $s \in S$, then $[R(c)](x) = \lambda_c x$ yields I(C, Z|S; R) = 0 and "prevents Bayesian updates".

00	0000000		O	00000	
Gamma	Distributed	Information			

If $X|C = c, S = s \sim Gamma(k, \theta_c)$ (Gamma distribution with shape and scale parameters) for every $c \in \Sigma$ and $s \in S$, then $[R(c)](x) = \frac{x}{\theta_c}$ yields I(C, Z|S; R) = 0 and "prevents Bayesian updates".

Motavation 00	Framework 0000000	Optimality Analysis	Learning O	Example 00000	Future Work
Uniform I	nformatior	1			

If $X|C = c, S = s \sim U(a_c, b_c)$ (Uniform distribution) for every $c \in \Sigma$ and $S \in S$, then $[R(c)](x) = \frac{x-a_c}{b_c-a_c}$ yields I(C, Z|S; R) = 0 and "prevents Bayesian updates".

Motavation 00	Framework 0000000	Optimality Analysis	Learning ●	Example 00000	Future Work
The Learn	ning Proble	em			

• I(C, Z|S; R) is non-convex in R.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	•	00000	
The Lear	rning Prob	olem			

- I(C, Z|S; R) is non-convex in R.
- Search space is hard to compute over.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	•	00000	
The Lea	rning Prot	olem			

- I(C, Z|S; R) is non-convex in R.
- Search space is hard to compute over.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	●	00000	
The Learr	ning Proble	em			

- I(C, Z|S; R) is non-convex in R.
- **2** Search space is hard to compute over.

MATLAB Implementation as a toolbox:

Parametrize R(·) → R(·; θ) where θ ∈ Θ a (vector) of parameter(s) from a parameter space.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	●	00000	
The Learr	ning Proble	em			

- I(C, Z|S; R) is non-convex in R.
- **2** Search space is hard to compute over.

- Parametrize R(·) → R(·; θ) where θ ∈ Θ a (vector) of parameter(s) from a parameter space.
- 2 Treat all subjects as "equal"

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	●	00000	
The Learr	ning Proble	em			

- I(C, Z|S; R) is non-convex in R.
- **2** Search space is hard to compute over.

- Parametrize R(·) → R(·; θ) where θ ∈ Θ a (vector) of parameter(s) from a parameter space.
- Ireat all subjects as "equal"
 - p(S) is uniform.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	●	00000	
The Learr	ning Proble	em			

- I(C, Z|S; R) is non-convex in R.
- **2** Search space is hard to compute over.

- Parametrize R(·) → R(·; θ) where θ ∈ Θ a (vector) of parameter(s) from a parameter space.
- Ireat all subjects as "equal"
 - p(S) is uniform.
 - p(C|S = s) is invariant in s.

Motavation 00	Framework 0000000	Optimality Analysis	Learning •	Example 00000	Future Work
The Lea	rning Prot	olem			

- I(C, Z|S; R) is non-convex in R.
- **2** Search space is hard to compute over.

- Parametrize R(·) → R(·; θ) where θ ∈ Θ a (vector) of parameter(s) from a parameter space.
- 2 Treat all subjects as "equal"
 - p(S) is uniform.
 - p(C|S = s) is invariant in s.
 - p(X|C = c, S = s) is invariant in s.

Motavation 00	Framework 0000000	Optimality Analysis	Learning •	Example 00000	Future Work
The Lea	rning Prot	olem			

- I(C, Z|S; R) is non-convex in R.
- **2** Search space is hard to compute over.

MATLAB Implementation as a toolbox:

- Parametrize R(·) → R(·; θ) where θ ∈ Θ a (vector) of parameter(s) from a parameter space.
- 2 Treat all subjects as "equal"
 - p(S) is uniform.
 - p(C|S = s) is invariant in s.
 - p(X|C = c, S = s) is invariant in s.

𝗿 minimize I(C, Z; R(·; θ)) w.r.t. θ ∈ Θ

Motavation 00	Framework 0000000	Optimality Analysis	Learning •	Example 00000	Future Work
The Lea	rning Prot	olem			

- I(C, Z|S; R) is non-convex in R.
- **2** Search space is hard to compute over.

- Parametrize R(·) → R(·; θ) where θ ∈ Θ a (vector) of parameter(s) from a parameter space.
- Ireat all subjects as "equal"
 - p(S) is uniform.
 - p(C|S = s) is invariant in s.
 - p(X|C = c, S = s) is invariant in s.
- minimize $I(C, Z; R(\cdot; \theta))$ w.r.t. $\theta \in \Theta$
- Non-parametric modeling of p(X|C) and p(C)

Motavation 00	Framework 0000000	Optimality Analysis	Learning O	Example 0●000	Future Work

Table: Confusion Matrix. UW = Underweight, HW = Healthy Weight, OW = Overweight, OB = Obese

		Ground Truth Category						
		UW	UW HW OW OB					
Predicted Category	UW HW OW OB	47 14 0	20 1203 45 2	0 66 194 37	0 1 47 308			

trace(Confusion Matrix)/sum(Confusion Matrix) = 88.31%

Motavation 00	Framework 0000000	Optimality Analysis 000000	Learning ○	Example 00●00	Future Work
pd	i_begin				
-	% data/informati	on space			
	pdi_dimension BM	4I 0:2:60;			
	pdi_dimension we	eight 0:5:180;			
	% define classes	3			
	pdi_class underw	veight healthy_we	ight overw	eight obese	
	% provide data	2 1	2	2	
	pdi_datapoints u	underweight fv_uw			
	pdi_datapoints h	nealthy_weight fv	_hw		
	pdi_datapoints c	verweight fv_ow			
	pdi_datapoints c	bese fv_ob			
	% parameter space	ce			
	pdi_var shift(po	di_nrdimensions,	pdi_nrclas	ses);	
	pdi_var scale(po	di_nrdimensions,	pdi_nrclas:	ses);	
	% z = scale.*(x-	-shift)			
	pdi_reference 0	(x, cn) bsxfun(@t	imes, bsxf	un(@minus,	
	x, shift(:,c	n)), scale(:,cn))	;		
	% such that				
	<pre>scale(:,1) == 1;</pre>	% entry-wise			
	shift(:,1) == 0;	% entry-wise			
	<pre>scale>=.1; % ent</pre>	ry-wise			
	<pre>shift>=0; % entr</pre>	ry-wise			
pd	i_end				

■ のへで

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

May 7, 2015 21 / 25

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
				00000	

Table: Confusion Matrix After Privatizing. UW = Underweight, HW = Healthy Weight, OW = Overweight, OB = Obese

		Ground Truth Category				
		UW	HW	OW	OB	
pë >	UW	48	14	8	5	
gor	НW	13	1217	276	290	
edi Ite	OW	0	25	13	29	
ΓG	OB	0	14	0	32	

trace(Confusion Matrix)/*sum*(Confusion Matrix) = 66.03%

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
				00000	

Table: Confusion Matrix After Privatizing. UW = Underweight, HW = Healthy Weight, OW = Overweight, OB = Obese

		Ground Truth Category				
		UW	HW	OW	OB	
be Y	UW	48	14	8	5	
gor	НW	13	1217	276	290	
edi iteg	OW	0	25	13	29	
μΩ	OB	0	14	0	32	

trace(Confusion Matrix)/sum(Confusion Matrix) = 66.03% from 88.31%

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
				00000	

Table: Confusion Matrix After Privatizing. UW = Underweight, HW = Healthy Weight, OW = Overweight, OB = Obese

		Ground Truth Category				
		UW	HW	OW	OB	
م ع	UW	48	14	8	5	
ge cte	HW	13	1217	276	290	
edi	OW	0	25	13	29	
μΩ	OB	0	14	0	32	

trace(Confusion Matrix)/sum(Confusion Matrix) = 66.03%
from 88.31%
lower bound: #HW/sum(Confusion Matrix) = 64.01%

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	O	00000	
Future D	irections				

• Bounds on privacy.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	O	00000	
Future D	Directions				

- Bounds on privacy.
- Sensitivity analysis.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	O	00000	
Future D	irections				

- Bounds on privacy.
- Sensitivity analysis.
- Relaxing the assumption of perfect classification knowledge for the intended recipient.

Motavation 00	Framework 0000000	Optimality Analysis	Learning O	Example 00000	Future Work
Future D	irections				

- Bounds on privacy.
- Sensitivity analysis.
- Relaxing the assumption of perfect classification knowledge for the intended recipient.
- Markov-type relaxation.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	O	00000	
Future D	irections				

- Bounds on privacy.
- Sensitivity analysis.
- Relaxing the assumption of perfect classification knowledge for the intended recipient.
- Markov-type relaxation.
- Study the relationships between I(C, Z|S) and I(X, Z|S).

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	O	00000	
Future D	Directions				

- Bounds on privacy.
- Sensitivity analysis.
- Relaxing the assumption of perfect classification knowledge for the intended recipient.
- Markov-type relaxation.
- Study the relationships between I(C, Z|S) and I(X, Z|S).
- Parametric modeling of p(X|C) for learning.

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	O	00000	
Reference	es I				

- Daniel Aranki and Ruzena Bajcsy, Differential disclosure of information, Tech. Report UCB/EECS-2014-47, EECS Department, University of California, Berkeley, May 2014.
- Private disclosure of information in health tele-monitoring, arXiv preprint arXiv:1504.07313 (2015).

Motavation	Framework	Optimality Analysis	Learning	Example	Future Work
00	0000000	000000	O	00000	
Acknowledgments					

- Gregorij Kurillo
- Yusuf Erol
- Arash Nourian
- This work was supported in part by TRUST, Team for Research in Ubiquitous Secure Technology, which receives funding support for the National Science Foundation (NSF award number CCF-0424422).