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Motivation
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Example

1 Patient Bob wants to update his physician Alice about his
Body Mass Index (BMI) and weight (x).

2 Alice already knows the BMI category of Bob (c).

3 Alice and Bob want to keep the BMI category c private from
Eve, a passive eavesdropper, after observing the
communication.
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Setting and Threat Model

Setting

Disclosed Identity

The identity of the sender (s) is attached to each disclosed piece
of information.

Intended Recipient’s Knowledge

The sender belongs to a class (c) that is known to the intended
recipient.

Threat Model

Adversary is a passive man in the middle interested in inferring the
class c of the sender s based on the disclosed information.
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Idea

The sender discloses an encoded version z of x , where the
encoding depends on her class c .
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Objectives

Decoding Condition

The intended recipient can make full use of the sent information z ,
i.e. obtain the original message x from the transmitted message z .

Hiding Class Condition

The adversary’s ability to make inference about c given s, based
on the sent information z is minimized.
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Some Definitions

S is the set of senders’ identities

⌃ is the set of senders’ classes

I is the set of pieces of information
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The Process

The Disclosure Process

Let R : ⌃! II (Privacy Mapping Function)

(Equivalent to
R : ⌃⇥ I ! I being injective in the second argument)

Sending Information

Sender s 2 S (from class c 2 ⌃) wants to send information
x 2 I.
Let the sender encode z = [R(c)] (x), and send z .

Receiving Information

The intended recipient knows the identity of s and her class c .

The intended recipient then can decode x  [R(c)]l (z).
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Statistical Graphical Model

S

P(S)
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S C

P(C |S)
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Statistical Graphical Model

S C

X

P(X |C , S)
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Statistical Graphical Model

S C

X

Z

p(Z = z |X = x ,C = c) , � (z � [R(c)] (x))
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Statistical Graphical Model

S C

X

Z

P(S) P(C |S) P(X |C , S)
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Formulation of Problem

minimize I (C ,Z |S ;R)
w.r.t R 2

�
⌃! II�

1 Properties?

2 How do we learn such a privacy mapping function, R?
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Theorem 1

If there exists a privacy mapping function R such that

p(Z = z |C = c , S = s;R) = f (z , s) for all c 2 ⌃ then:

1
I (C ,Z |S ;R) = 0 (global optimum)

2
p(C = c |Z = z , S = s;R) = p(C = c |S = s) (Bayesian
updates prevented)

Aranki, Bajcsy (UC Berkeley) Private Disclosure of Information May 7, 2015 11 / 25



Motavation Framework Optimality Analysis Learning Example Future Work

Intuition
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Gaussian Information

Theorem 2

If X |C = c , S = s ⇠ N(µ
c

,⌃
c

) (Normal distribution) for every

c 2 ⌃ and s 2 S, then [R(c)] (x) = ⌃
� 1

2
c

· (x � µ
c

) yields
I (C ,Z |S ;R) = 0 and “prevents Bayesian updates”.
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Exponentially Distributed Information

Theorem 3

If X |C = c , S = s ⇠ Exp(�
c

) (Exponential distribution) for every
c 2 ⌃ and s 2 S, then [R(c)] (x) = �

c

x yields I (C ,Z |S ;R) = 0
and “prevents Bayesian updates”.
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Gamma Distributed Information

Theorem 4

If X |C = c , S = s ⇠ Gamma(k , ✓
c

) (Gamma distribution with

shape and scale parameters) for every c 2 ⌃ and s 2 S, then
[R(c)] (x) = x

✓
c

yields I (C ,Z |S ;R) = 0 and “prevents Bayesian

updates”.
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Uniform Information

Theorem 5

If X |C = c , S = s ⇠ U(a
c

, b
c

) (Uniform distribution) for every

c 2 ⌃ and S 2 S, then [R(c)] (x) = x�a

c

b

c

�a

c

yields I (C ,Z |S ;R) = 0
and “prevents Bayesian updates”.
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The Learning Problem

Hard problem:

1
I (C ,Z |S ;R) is non-convex in R .

2 Search space is hard to compute over.

MATLAB Implementation as a toolbox:

1 Parametrize R(·)! R(·; ✓) where ✓ 2 ⇥ a (vector) of
parameter(s) from a parameter space.

2 Treat all subjects as “equal”

p(S) is uniform.
p(C |S = s) is invariant in s.
p(X |C = c , S = s) is invariant in s.

3 minimize I (C ,Z ;R(·; ✓)) w.r.t. ✓ 2 ⇥

4 Non-parametric modeling of p(X |C ) and p(C )
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BMI (kg/m2)
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Table: Confusion Matrix. UW = Underweight, HW = Healthy Weight,
OW = Overweight, OB = Obese

Ground Truth Category
UW HW OW OB

P
re
d
ic
te
d

C
at
eg

or
y UW 47 20 0 0
HW 14 1203 66 1
OW 0 45 194 47
OB 0 2 37 308

trace(Confusion Matrix)/sum(Confusion Matrix) = 88.31%
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pdi begin

% data/information space

pdi dimension BMI 0:2:60;

pdi dimension weight 0:5:180;

% define classes

pdi class underweight healthy weight overweight obese

% provide data

pdi datapoints underweight fv uw

pdi datapoints healthy weight fv hw

pdi datapoints overweight fv ow

pdi datapoints obese fv ob

% parameter space

pdi var shift(pdi nrdimensions, pdi nrclasses);

pdi var scale(pdi nrdimensions, pdi nrclasses);

% z = scale.

*

(x-shift)

pdi reference @(x, cn) bsxfun(@times, bsxfun(@minus,

x, shift(:,cn)), scale(:,cn));

% such that

scale(:,1) == 1; % entry-wise

shift(:,1) == 0; % entry-wise

scale>=.1; % entry-wise

shift>=0; % entry-wise

pdi end
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Privatized BMI
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Table: Confusion Matrix After Privatizing. UW = Underweight, HW =
Healthy Weight, OW = Overweight, OB = Obese

Ground Truth Category
UW HW OW OB

P
re
d
ic
te
d

C
at
eg

or
y UW 48 14 8 5

HW 13 1217 276 290
OW 0 25 13 29
OB 0 14 0 32

trace(Confusion Matrix)/sum(Confusion Matrix) = 66.03%

from 88.31%
lower bound: #HW/sum(Confusion Matrix) = 64.01%
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Future Directions

Bounds on privacy.

Sensitivity analysis.

Relaxing the assumption of perfect classification knowledge
for the intended recipient.

Markov-type relaxation.

Study the relationships between I (C ,Z |S) and I (X ,Z |S).
Parametric modeling of p(X |C ) for learning.
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