
C O V E R F E A T U R E

0018-9162/07/$25.00 © 2007 IEEE62 Computer P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

awareness from the resulting data streams has not kept
pace. Sensed-event data is often displayed in relatively
raw formats, leaving analysis and interpretation up to
human operators, which ultimately is not scalable.

This has certainly been the case for computer-secu-
rity-related instrumentation: Commercial software like
that offered by ArcSight (www.arcsight.com/index.htm)
can display and archive large volumes of security events
collected within a corporate network, but it can con-
duct only a superficial analysis of the data automatically,
which places a huge burden on system administrators.

Neither traditional database technology nor rule-
based expert systems have proved to be up to the task
of closing the gap between low-level sensor events and
high-level situational awareness. Database technologies,
including extensions to data-stream processing,1,2 effec-
tively store, index, and retrieve sensor reports but do
not provide analysis beyond rudimentary report gener-
ation. On the other hand, decision trees and logical-rule
processing inherit the well-known brittleness and scal-
ability problems associated with expert systems. A new
approach for extracting situational awareness from
sensed data is therefore needed.

During the past three years, we have studied situa-
tional-awareness problems that have arisen in multiple
application domains including computer security, auto-
nomic computing, sensor networks, video tracking, and
social network analysis. The variety of applications sug-
gests that a common analytic foundation underlies many
such problems. As a result, we have developed a general-

Sensors produce large streams of raw events while instrumenting environments such as
computer systems, communications networks, physical spaces, and human organizations.
Extracting meaningful and actionable information from these events, however, remains
a challenge. Process query systems, a new algorithmic and software paradigm, offer a
powerful and generic way to address event-processing challenges.

George Cybenko and Vincent H. Berk
Dartmouth College

O ur ability to instrument different environments
has increased dramatically in recent years.
Computer systems and networks now routinely
include various performance monitors, fire-
walls, intrusion-detection systems, and appli-

cation-logging agents.
Researchers can deploy sensor networks in physical

environments to record acoustic, seismic, infrared, video,
electromagnetic, and other types of measurements. These
networks also can monitor and extensively archive com-
munications and financial and social transactions among
large communities of people and organizations.

We now have a tremendous amount of data coming
at us; the question remains what to do with it.

Generally speaking, the underlying purpose of instru-
menting environments is to better understand “what is
going on,” formally known as situational awareness. In
the context of computer security, situational awareness
typically means knowing which monitored systems are
under attack and the nature of those attacks. For a phys-
ical sensor network within a building or extending across
a geographic region, this might mean being cognizant of
certain objects and activities, such as a fire, people, ani-
mals, or vehicles and their location. In industrial and man-
ufacturing systems, situational awareness means detecting
infrastructure failures and diagnosing their causes.

THE SENSOR DATA PROCESSING CHALLENGE
While the technology to instrument such environments

has matured significantly, the ability to obtain situational

Process Query Systems

January 2007 63

purpose framework for modeling situational awareness
across multiple sensor types and environments. Using
this framework, which is based on process detection, we
have implemented a process query system and tested it
in several applications.

PQS MODELING FRAMEWORK
Figure 1 shows the PQS modeling framework. The

fundamental premise behind PQS is that a sensed envi-
ronment consists of processes with distinct states,
dynamics, and observables (Step 1). In the case of com-
puter security, computer attacks are the processes.
Possible states of these attack processes include recon-
naissance, intrusion, exploitation, and data exfiltration.
Attack processes change their states over time as deter-
mined by the attack model’s dynamics.

The process-oriented nature of PQS implies that an
instrumented and monitored environment’s static
aspects are not of much interest. The changes in an envi-
ronment are what we want to detect and understand.
Typically, the states and dynamics of processes in an
environment cannot be observed directly, but they do
produce observable events and artifacts (Step 2).

This is where the sensors come in—the sensing infra-
structure detects events and communicates them back
to an analysis center (Step 3). The events provide evi-
dence of the processes’ states but are not identical to
them. For example, it’s usually impossible to know pre-
cisely about a computer attack’s abstract internal state
—only sensing and detecting observable artifacts of
attacks such as network packets, file system changes,
and system behaviors, including processor utilization,
can be expected.

Sensor observations about the hidden, internal
processes’ states often consist of inconclusive and noisy
evidence. Given these noisy and ambiguous sensor obser-
vations, gaining situational awareness of the environ-
ment (Step 4) is a challenge. In terms of PQS process
modeling, this requires detecting processes and estimat-
ing their states from the received sensor observations.

Knowledge of the processes and their states within an
environment provides the desired situational awareness
(Step 5). A key complicating factor in these application
domains is that many active processes are possible, and
observations of the processes are interwoven, ambigu-
ous, and unlabeled. Some observations can be missed
while others can enter the data stream as noise.

Table 1 summarizes how the PQS framework applies
to various application domains.

PROCESS DETECTION
Figure 2 demonstrates the process detection concept.

Figure 2a shows a simple process in which solid circles
denote states U1 and U2. The arrows between states indi-
cate the possible transitions. In this case, the transitions
from U1 to U2 and from U2 to itself are the only possi-

bilities. State U1 is associated with the observable event
e, and state U2 is associated with event f.

Researchers could use this process to model the oper-
ational status of a computer or network component
such as a network interface, in which event e is a startup
log entry and event f is an error message. The hidden,
internal states U1 and U2 are normal and failed. The
startup event is evidence that the device initially oper-
ated in a normal mode, while error messages, of which
there can be many, indicate abnormal operation. An
event sequence in the form efff is unambiguously asso-
ciated with the state sequence U1U2U2U2, meaning that
the device has entered into an abnormal or failed oper-
ating mode.

Figure 1. PQS framework. (Step 1) A sensed environment
consists of processes with distinct states, dynamics, and
observables. (Step 2) The states and dynamics of processes
in an environment cannot be observed directly, but they do
produce observable events and artifacts. (Step 3) The sensing
infrastructure detects events and communicates them back to
an analysis center. (Step 4) Sensor observations about the
hidden, internal processes’ states often consist of inconclusive
and noisy evidence, which makes gaining situational
awareness of the environment a challenge. (Step 5) Knowledge
of the processes and their states within an environment
provides the desired situational awareness.

Multiple processes
router failure

wormportscan

Events
…

Time

An environment

1

2

Unlabeled sensor reports

4

5

Hypotheses

3

129.170.46.3 is at high risk
129.170.46.33 is a stepping-stone…

Multiple processes
in an environment
produce events
which sensors can
detect and report
back for analysis.

The analysis
problem is
to detect the
processes and
estimate their
states to obtain
situational
awareness.

consists of

that produce

that are
seen as

Time

…

that PQS
resolves into

that provide
situational awareness

Process 1
Process 2
Process 3

64 Computer

A simple rule can easily achieve situational awareness
in this example—if a single error message is received, the
device is in an abnormal operating mode. However, mat-
ters become more challenging when multiple process
models associated with ambiguous evidence are involved.

For the process models shown in Figures 2b and 2c, the
complexity of situational awareness increases even though
the models themselves are relatively simple. These mod-
els, which occur naturally in computer security applica-
tions, each show three states with the possible state
transitions and state-to-observation associations. A key
ingredient of the two models is the ambiguity inherent in

event x, which can be associated with either state S2 of
model M1 or state R2 of model M2. All other events are
unambiguously related to unique states.

If the event sequence gkxx is observed, a unique
sequence of model states cannot account for these
events. M1 and M2 can occupy (interleaved) states
S1R1R2S2, S1R1R2R2, or other possibilities. Each consis-
tent assignment of a subsequence of events to a process
model’s states is called a track; each consistent set of
tracks that explain the entire observed event sequence
is called a hypothesis. A set of hypotheses that can
explain observed events conveys situational awareness
in this example.

Future observed events can result in either an increase
or a reduction in the number of hypotheses. For exam-
ple, if the next event observed is j, the full observation
sequence becomes gkxxj, and the only viable hypothe-
sis is S1R1S2S2R1 because Model M2 cannot transition
from state R2 to R1—all observed x events must be asso-
ciated with process model M1. On the other hand, if the
next observed event is another x, the number of
hypotheses will clearly increase.

Table 2 shows the complete set of hypotheses corre-
sponding to models M1 and M2.

PQS COMPONENTS
PQS is software that uses various algorithms to gen-

erate and manage hypotheses about an observed event
sequence, given a set of process models. It consists of
the following components.

Track and hypothesis extension. Given a new event,
this component updates the tracks in the current set of
hypotheses. Specifically, a track can be extended if its
current hypothesized state can transition to a next state
that can generate the currently observed event. The new
tracks can be instantiated to accommodate the newly
observed event, which creates a new set of hypotheses.

Hypothesis scoring. Because the number of hypothe-
ses can increase exponentially, this component ranks

Table 1. Process detection in various application areas.

Application environment Processes States Observables

Computer attacks Host and network behaviors Normal, scanned, infected, Tripwire, applications logs, Snort alerts,
failed, trusted, hostile host-based logs, file access, user access

Autonomic server farms Server applications Normal, degraded, failed, recovered Performance measures, response times,
Snort readings, IDS alerts

National border and Moving objects (people, Position and velocity Video, infrared images, acoustic data,
physical perimeter defense animals, vehicles) seismic data, electromagnetic data
Geographic region Airborne agent diffusion Releases at times T, locations L Sensor detection of an airborne agent

and drift
Identity theft and Consumer, bank, ID thief ’s Normal, phished, exploited Credit reports, Web postings, database
management activities breaches, pretexts
Social networks Business and social activity Stages of a business or social process Communications and transactions

Figure 2. Different formalisms representing processes in the
PQS framework. (a) This model illustrates the graphical
notation used to represent a nondeterministic automaton
process model, or a weak model. (b) and (c) Both of these
models involve common observable events—the reason that
detecting and disambiguating multiple processes become a
significant challenge, even in a simple example.

(a)

(b)

(c)

{ l }{ x }{ j, k }

{ h }{ x }{ g }

M2

M1

R1 R2 R3

S1 S2 S3

{ f }{ e }
Observables
for state U2

The only
observables
for state U1

Example process
Transition from
state U2 to itself

U1 U2

Transition
from state U1
to state U2

January 2007 65

them according to a score that measures the merit of
tracks within the hypothesis or some other metric. For
example, Occam-type rules can assign high scores to the
simplest hypotheses, or, if the models are hidden
Markov models (HMMs), a Viterbi-type decoder can
score hypotheses by the likelihood of their tracks.

Hypothesis management. This component keeps
hypotheses with the best scores and scores above a select
threshold. Possible approaches for implementing this
component include applying heuristics that simply keep
the highest scoring hypotheses; clustering hypotheses
and keeping exemplars from each cluster of hypotheses;
and maintaining a probability distribution over all pos-
sible hypotheses by updating and sampling the distrib-
ution using Markov chain Monte Carlo (MCMC)
techniques.3,4

Situation evaluation. This component uses risk-assess-
ment or variance-estimation computations to address
ambiguous situations in which multiple hypotheses can
be consistent with the observed events at any given time.
For example, given multiple possible explanations for a
sequence of events, it might assign reporting priority to
those hypotheses that present a higher risk within the
environment.

The power of the PQS approach derives from the sep-
aration of the models from the detection logic.
Constructing a decision tree or a rule set to derive the
possible hypotheses in Table 2, for example, is not diffi-
cult. However, how the decision tree or rule set would
have to be changed if other models were added to the
environment must be considered. In the PQS framework,
if we add new model descriptions, the algorithmic steps
depicted in Table 2 would operate as usual; in contrast,
the corresponding rule sets and decision trees would have
to be extensively and carefully revised to maintain the
ability to disambiguate between the different possible
observation sequences and resulting hypotheses. The
strength of PQS is that it automates the logic of the detec-
tion and disambiguation computation, while decision
trees and expert system-type rule sets must encode both
the models and the detection logic simultaneously.

Even though PQS is a generic and universal approach
to process detection for situational awareness issues,
using the framework requires addressing several tech-
nical challenges.

• Model derivation and description. To date, re-
searchers have used domain knowledge and com-
mon sense to build process models for different PQS
application problems. Representations of the mod-
els have included nondeterministic finite automata
(see Figure 2), HMMs, and classical state-based sys-
tems as in Kalman-filtering applications for kine-
matic-modeling problems.

• Model-event scoring. Given a subset of events and a
specific process model, what are effective and efficient

algorithms for producing a metric that captures the
extent to which that process could have produced that
event sequence? To date, PQS has used 0-1 scoring
(possible or impossible) as in the case of finite
automata, likelihoods for HMMs, and approximate
likelihoods for kinematic state-space-based models in
lieu of precise Kalman-filtering methods.

• Hypothesis management. To date, PQS applications
have used simple techniques such as maintaining a
small number of high-scoring hypotheses, while other
researchers have used MCMC methods for kinematic
tracking using sensor networks.4

• Solution evaluation. How can we evaluate the
robustness of a solution to the deterministically syn-
chronized sequential processes? That is, what would
be the analog of a variance estimate as in traditional
statistical inference? Researchers have proposed the
entropy of the set of possible hypotheses as a mea-
sure of confidence in a solution, but more work
remains to be done in this area.5

While our PQS implementation has demonstrated the
feasibility and breadth of the approach’s applicability,
we will continue to address many analytic and imple-
mentation issues to improve its performance and gen-
erality.

NETWORK SECURITY
Because enterprise-class networks require monitoring

numerous sensors to manage threats, human adminis-
trators have great difficulty maintaining comprehensive
real-time situational awareness around the clock.
However, connecting all the sensors to PQS was simple,
and using a variety of process models to correlate the
event stream turned out to be effective and robust.

The test environment in this domain consisted of more
than 1,000 hosts divided into several subnets, with mul-
tiple connections to the Internet. In that setting, we used
IDS sensors, logs from dozens of services (Apache,
Internet Information Services, syslogs, Tripwire, Samhain,

Table 2. PQS hypothesis generation showing the PQS
algorithm’s iterative steps on the event sequence gkxxj.

Step Observations Tracks Hypotheses

1 g S1 {S1}
2 gk S1R1 {S1, R1}
3 gkx S1R1S2, {S1S2, R1},

S1R1R2 {S1, R1R2}
4 gkxx S1R1S2S2, {S1S2S2, R1},

S1R1S2R2, {S1S2, R1R2},
S1R1R2S2, {S1, R1R2R2}
S1R1R2R2 {S1, R1R2R2}

5 gkxxj S1R1S2S2R1 {S1S2S2, R1R1}

66 Computer

and SaMBa), and network flows.5,6 Events were corre-
lated using a large number of fairly simple process mod-
els related to both security and infrastructure failures. The
models included behaviors of self-propagating worms;
low and slow scans; remote administration tool deploy-
ments; malicious insider document accesses; unwanted
information leakage through covert channels; and multi-
stage, multicomputer intrusions. Figure 3 shows exam-
ples of some process models used in this domain.

PQS associates evidence from the sensor data stream
with the possible dynamics the process models express
and presents the hypothesized security and activity inci-
dents. To prioritize tracks within a hypothesis, PQS
includes a severity score. This PQS application has sig-
nificantly reduced the amount of information that
network administrators must review, making them more
effective and efficient. In government-conducted tests,
this system showed a data reduction rate of more
than 200:1.

A key feature of PQS that differs from previous
approaches is that it can simultaneously model, monitor,
and consistently detect multiple attack models and other
behaviors. By maintaining multiple hypotheses concur-
rently, an unlikely current explanation could become the
best explanation after the system senses and processes
supporting evidence.

False-positive problems are mitigated by hypotheses
which, when reported to an analyst, must be internally
consistent—the same evidence cannot be used to sup-
port two tracks within a single hypothesis at the same
time. PQS handles the false-negative problem—missing

the detection of a true attack—by letting users build
both novel sensors and models quickly and effectively.
Models can be either generic or specific to suit users’
requirements; since each model is a stand-alone com-
ponent, integrating new models simply consists of sub-
mitting them to the PQS. In contrast, rule-based and
decision tree methods require explicitly updating con-
sistency rules and decision logic across the whole space
of attacks when a new threat is added, which creates
severe scaling problems.

Another area closely related to network security is
the monitoring and automated repair of computer sys-
tems and their application programs.7,8 As computer
networks grow larger and software becomes increas-
ingly more complex, monitoring and maintaining indi-
vidual computers, especially in large-scale server farms,
presents a difficult challenge. The goal is to automati-
cally detect unusual behaviors and fix the problem
before it escalates.

In this domain, using PQS to easily attach new sensor
sources offers a major benefit. The PQS engine can mon-
itor the network data to collect and process an enor-
mous amount of information. Examples of sensor data
include memory and CPU (and other general resources)
usage, process-forking behavior, application logs, and
network sensors (such as firewall logs and intrusion-
detection alarms).

Using a specific collection of process models for this
application, the PQS implementation maintains situa-
tional awareness of all hosts and servers in a network.
The predictive abilities of the process models are used to

estimate when deviant behavior will become a
problem and recommend an appropriate action.

For example, an FTP service daemon spawn-
ing a shell (/bin/sh) process might be a sign that
something is wrong, especially if it can be cor-
related with an IDS alarm. The obvious action
would be to immediately kill the shell process
and possibly also to take the FTP daemon down,
since it appears to be vulnerable to a remote
exploit attack.

Similarly, if the system is running a program
that services network requests and leaks mem-
ory with every request it services, the host will
eventually run out of memory, affecting other
applications. The PQS process models predict
when this will happen and preventively restart
the buggy service before resource consumption
becomes a problem. Figure 4 shows an exam-
ple of the impact of this type of PQS-based
monitoring.

INFRARED/VIDEO TRACKING
PQS can use simple kinematic models to track

the motion of multiple objects in physical space.
To demonstrate this, we used PQS with a video

Figure 3. Process models. (a) Simple model for correlating activity at a
host. (b) Stepping-stone model. (c) Multistage phishing attack model.

Normal Suspect
(a)

Normal Suspect
(b)

Spreading Attacked

(c)

{Host B scans
or attacks host "C"}

{Host A becomes
suspect as above}

{Host A scans
or attacks host "B"}

{Scans, attacks, flows
originating from the
same IP address range}

Stepping-
stone

Data
exfiltration

Login
attempt

Login
attempt

Exploit
upload

Exploit
upload

Phish
recon

Start

camera to track the movements of several fish simulta-
neously in an aquarium and with an infrared camera to
track people inside a building.

Figure 5 shows the fish-tracking application, in which
bubbles from the aerator, food, dirt particles, and an
air-operated toy skeleton constituted sources of noise.
The fish can be occluded by rocks and each other, result-
ing in ambiguity and missed event detections. The PQS
implementation distinguished between the fish and other
objects by correlating events with the modeled dynam-
ics of the fish motions. Complicated video analysis and
image recognition were not required.

The sensor-event stream was based on simple
video-frame analysis, which first involved a
frame’s color segmentation. The centroids of the
red regions of each frame were computed in real
time (the fish were red), producing only a stream
of (x, y) coordinates without other attributes.
The kinematic model of a swimming fish is very
simple; the “state” of a fish is (xt, yt, x!t, y!t) where
xt and yt are positions within the field of view,
and x!t and y!t are the velocities. The kinematic
model of a swimming fish merely constrained
the way that (xt, yt, x!t, y!t) could change over
time. That is, the model required (xt, yt, x!t, y!t),
the state at time t, and (xt + "t, yt + "t, x!t + "t, y!t + "t),
the state at time t + "t, to satisfy

and

The first two inequalities constrain how
quickly a fish can swim between frames relative
to the hypothesized fish velocity based on previ-
ous frames. The second two equalities
update the hypothesized velocity with a cap
on the absolute velocities in each direction.

These simple kinematic constraints sum-
marize the model’s essence. Given this
model, every new (w, z) observation is
matched with an existing track using the
above criteria, with the “score” of the
match inversely proportional to how close
(w, z) is to (xt + "t # x!t, yt + "t # y!t). Good
matches are retained and become tracks.
A hypothesis is therefore completely sum-
marized by a collection of (xt, yt, x!t, y!t)
state coordinates—a vector for each pos-
sible tracked object.

′ =
′

′

+
+x

x x
t

y

t t
t t t

t

maxmin
–

,δ
δ
δ

∆

++
+=

′

maxmin

–
,δ

δ
δt

t t ty y
t

∆

x x c tx y y c tyt t t t t t t t– , –+ +≤ ′ ≤ ′δ δδ δ

Since the fish could be swimming past each other with
respect to the camera’s field of view, multiple (x, y) cen-
troid coordinates could match multiple existing tracks
from multiple existing hypotheses. A metric or score is
therefore needed to quantify how well a new measure-
ment fits an existing model track. We experimented with
Euclidean and logarithmic distances with little empiri-
cal performance variation in the results, suggesting that
the models and correlation framework are relatively
robust.

To take this kinematic model detection concept a step
further, one of our colleagues, Alex Jordan, used a

January 2007 67

Figure 4. PQS autonomic computing application. (a) Memory
consumption of a server system running a buggy daemon that is
leaking memory with each serviced request. (b) Cumulative number
of requests serviced by the server host. The application restarted the
daemon three times during this 10-minute experiment.

(a)

(b)

0
50

100
150
200
250
300
350
400

To
ta

l s
uc

ce
ss

fu
l r

eq
ue

st
s

(in
 th

ou
sn

ad
s)

0 100 200 300 400 500
Time (seconds)

0
10
20
30
40
50
60
70
80
90

100

Sy
st

em
 m

em
or

y
us

ag
e

(p
er

ce
nt

)

0 100 200 300 400 500
Time (seconds)

Figure 5. Fish-tracking PQS application. The application investigates the
detection of schooling, pursuit, and feeding. Sample frames show fish (a)
swimming past each other and (b) approaching each other. Tracks are marked
in different colors.

(a) (b)

68 Computer

second PQS engine that takes its input from the first PQS
engine.9 This second-level PQS engine incorporates sev-
eral process models that use first-level fish tracks to detect
more complex collective behaviors. This way, Jordan reli-
ably identified when the fish were eating and when they
were chasing each other.

The process model for chasing behavior, for example,
has two top-level states: approach and depart. When one
fish quickly approaches another, the chasing model com-
bines two tracked fish from the first PQS into an approach
state. If the second fish subsequently flees by increasing the
distance between the two fish (depart), a chase detection
is made. This behavior can repeat multiple times.

The entire setup was completed with a 35-gallon tank,
some red platys, a 5-year-old desktop PC, and a $100
USB webcam. Jordan wrote and debugged the PQS mod-
els within a week.

In a related application, PQS was used to track
persons and objects using a thermal infrared camera.
The objective was to detect whether a person was

approaching or walking away from the
camera. As Figure 6 shows, the process
model identifies approaching or depart-
ing objects by measuring the changes in
size of their total heat fingerprint and the
changes of their position in the frame rel-
ative to other objects and the horizon.

The main implementation challenge in
this application was feeding the thermal
camera’s output to the front-end frame
processing on the PQS engine computer.
The video processing consisted of a simple
thresholded union-find algorithm produc-
ing sets of (X, Y) coordinates as in the fish-

tracking application.
This process model consisted of several states: depart-

ing, stopping, neutral move, and approaching.10 Although
these sample applications are relatively simple, they
demonstrate the power of using PQS to create a func-
tioning and effective situational-awareness system in a
domain quite different from cybersecurity.

DYNAMIC SOCIAL NETWORK ANALYSIS
Detecting social and business processes in networks

of people and organizations serves as another example
of effectively applying PQS to a complex environment.
In this domain, researchers have observed communica-
tions events and other transactions between people such
as e-mail, phone calls, postal mail, meetings, instant
messaging, and financial transactions to detect the
processes being undertaken and the roles people play in
the network.

For example, can the timing and propagation of a
CEO’s communications identify the person that holds
that position? Is it possible to determine a person’s busi-
ness process (product planning, purchasing, or person-
nel recruiting) based on the detected temporal and
structural event correlations?

Within the PQS framework, the assumption is that
people engage in various social or business processes
with purpose. That is, they are trying to accomplish
something by communicating and participating in finan-
cial dealings or meetings.

For example, building a team is a common social and
business process in which an initiator contacts one or
more people with a proposal to join a group. The team
could be formed to write a joint proposal, develop a new
product, or have a picnic. The initiator, A, contacts a
person, B, with the proposal, and B either agrees or asks
for more details. As Figure 7 depicts, this can lead to a
sequence of exchanges.

A major difference between the PQS approach and
traditional social network analysis is that PQS models
the dynamic processes that exist within a social network,
not merely the static structural artifacts—such as who
knows whom—of such a network. PQS can use the

Figure 7. Social network analysis. The PQS framework can
model the relationships between events and business or social
processes. (a) Temporal sequence of communications. (b)
Business process model for recruiting a team.

A

B B
A

A

B

Invite

Negotiate

Does not join

Joins

(a)

(b)

A asks B to join a
project or answers
questions

B responds
(asks questions
or accepts) A adds B to a

list of recipients
A B, C, …

Time t ++Time t +Time t
This is the event
"A sends a message to B"

Figure 6. Infrared tracking application of PQS. The process model measures
changes in the total heat fingerprint and changes in their position in the frame
relative to other objects and the horizon to detect whether the person is (a)
approaching or (b) walking away from the camera.

(a) (b)

temporal nature of commu-
nications and transactions
to extract processes.

A second-tier PQS model
identifies the role that a spe-
cific person, or actor, plays
in a network or process.11

Communications events are
associated with the states in
the first-tier process models
that indicate the roles an
actor plays. This can change
over time, or an actor may
play multiple roles at once.
Wayne Chung and coau-
thors provided additional
details of the PQS approach
to dynamic process-based
social network analysis.11

CHEMICAL PLUME
TRACKING

Airborne agent plume tracking is an area of increas-
ing interest and concern. An airborne agent release,
whether it is smoke from a fire, pollution from an indus-
trial plant, or a toxic agent released with malicious
intent, will spread according to the physical dynamics
of a gas in a windy environment. Drift-diffusion partial
differential equations can describe these dynamics.

The sensing infrastructure in this application domain
is a distributed network of sensors that can detect an
agent’s presence. As Figure 8 shows, the sensors report
detections, which can be very noisy and highly granular.
Our simulations have used noisy binary sensor models;
that is, a sensor can detect the agent without concen-
tration-level readings, and the detection itself is subject
to noise. Time, sensor location, and the sensor’s detec-
tion status are the reported events of this simulation.

Sensor reports are collected continuously at a central
site running a PQS engine with drift-diffusion models
of airborne agents. Our models require continuous mon-
itoring of the wind velocity to determine the drift com-
ponent of the time-varying model.

PQS can quickly and directly support developing mul-
tiple hypotheses about how the agent is spreading, the
location of estimated release points, and where the
plumes are heading. The multiple processes correspond
to the agent’s possible release points.12 Correct estima-
tion of the release points and future evolution of the
plumes allows for both investigation and response.

T he introduction of affordable large-capacity disk
drives and modern database management systems
based on Structured Query Language (SQL) revo-

lutionized data processing in the 1970s. A major result

of that revolution was that database-applications devel-
opers could focus on their application logic and pro-
gramming and disregard the routine bookkeeping and
overhead of file and record access in sequential files.

We believe that the PQS concepts and software imple-
mentations can have the same revolutionary effect on
sensor network data processing and the resultant situa-
tional-awareness applications built on top of sensor net-
works.13 Application developers can use PQS to build
situational awareness systems faster, better, and with
fewer errors.

Another key innovation of the PQS approach is that
it is patently process-based, encouraging developers to
think about the dynamics, not just the static artifacts,
of an environment. By explicitly modeling the dynam-
ics of multiple processes in an environment, the ambi-
guity of event-to-process model associations introduces
computationally difficult—that is, NP-complete—
matching problems that researchers cannot generally
solve efficiently. Much work remains to scale PQS pro-
cessing so that it remains effective within acceptable effi-
ciency constraints when dealing with larger problems.14

Additional references and a preliminary release of
our research PQS software can be found at www.
pqsnet.net. !

Acknowledgments
This work was a project of the Institute for Security

Technology Studies at Dartmouth College and was sup-
ported in part by ARDA under Grant F30602-03-C-0248,
DARPA Projects F30602-00-2-0585 and F30602-98-2-
0107, and Award number 2000-DT-CX-K001 from the
US Department of Homeland Security, Science and

January 2007 69

Figure 8. Airborne agent plume tracking. (a) Two releases of an airborne agent subject to wind
drift and natural diffusion. (b) PQS implementation showing a field of sensors with their detec-
tion status and estimated and reconstructed plume tracks.12

(a) (b)

70 Computer

Technology Directorate. All opinions expressed are those
of the authors, not the sponsoring agencies.

References
1. M. Stonebraker, U. Cetintemel, and S. Zdonik, “The 8

Requirements of Real-Time Stream Processing,” ACM SIG-
MOD Record, Dec. 2005, pp. 42-47.

2. Y. Yao and J. Gehrke, “The Cougar Approach to In-Network
Query Processing in Sensor Networks,” ACM SIGMOD
Record, Sept. 2002, pp. 9-18.

3. S.S. Blackman, Multiple-Target Tracking with Radar Appli-
cations, Artech House, 1986.

4. S. Oh et al., A Scalable Real-Time Multiple-Target Tracking
Algorithm for Sensor Networks, tech. report UCB//ERL M05/9,
Univ. of California, Berkeley, 2005.

5. V.H. Berk and N. Fox, “Process Query Systems for Network
Security Monitoring,” Proc. SPIE—Sensors, and Command,
Control, Communications, and Intelligence (C3I) Technolo-
gies for Homeland Security and Homeland Defense IV, 2005,
pp. 520-530; http://people.ists.dartmouth.edu/~vberk/papers/
berkfox5778-75.pdf.

6. O. Kreidl and T. Frazier, “Feedback Control Applied to Sur-
vivability: A Host-Based Autonomic Defense System,” IEEE
Trans. Reliability, Mar. 2004, pp. 148-166.

7. C. Roblee, V. Berk, and G. Cybenko, “Implementing Large-
Scale Autonomic Server Monitoring Using Process Query Sys-
tems,” Proc. 2nd Int’l Conf. Autonomic Computing, IEEE CS
Press, 2005, pp. 123-133.

8. G. Jiang, H. Chen, and K. Yoshihira, “Discovering Likely
Invariants of Distributed Transaction Systems for Autonomic
System Management,” Proc. IEEE Int’l Conf. Autonomic
Computing, IEEE CS Press, 2006, pp. 199-208.

9. A.B. Jordan, “Models for Tracking and Level 2 Fusion,” mas-
ter’s thesis, Thayer School of Eng., Dartmouth College, 2005.

10. A. Barsamian, V.H. Berk, and G. Cybenko, “Target Tracking
and Localization Using Infrared Video Imagery,” Proc. SPIE
Unattended Ground, Sea, and Air Sensor Technologies and
Applications VIII, vol. 6231, May 2006, pp. 1-7; www.ists.
dartmouth.edu/library/246.pdf.

11. W.W. Chung et al., “Identifying and Tracking Dynamic
Processes in Social Networks,” Proc. SPIE Sensors, and Com-
mand, Control, Communications, and Intelligence (C3I) Tech-
nologies for Homeland Security and Homeland Defense V,
vol. 6201, May 2006, pp. 1- 12.

12. G. Nofsinger and G. Cybenko, “Distributed Chemical Plume
Process Detection,” Proc. Military Comm. Conf., IEEE Press,
2005, pp. 1076-1082.

13. V.H. Berk, “Process Query Systems,” doctoral dissertation,
Leiden Univ., 2006.

14. V. Crespi, G. Cybenko, and G. Jiang, “The Theory of Track-
ability with Applications to Sensor Networks,” submitted to
ACM Trans. Sensor Networks, Aug. 2006; also available as
tech. report TR2005-555, Computer Science Dept., Dart-
mouth College, 2006.

15. D. Hernando, V. Crespi, and G. Cybenko, “Efficient Com-
putation of the Hidden Markov Model Entropy for a Given
Observation Sequence,” IEEE Trans. Information Theory,
July 2005, pp. 2681-2685.

George Cybenko is the Dorothy and Walter Gramm Pro-
fessor of Engineering at Dartmouth College. His research
interests include distributed information, control systems,
computer security, and signal processing. Cybenko received
a PhD in mathematics from Princeton University. He is a
Fellow of the IEEE, a member of SIAM, and serves on the
boards of the IEEE Computer Society and the Computing
Research Association. Contact him at gvc@dartmouth.edu.

Vincent H. Berk is a lecturer and research scientist at Dart-
mouth College and a cofounder of ProQueSys LLC. His
research interests include computer network security, high-
performance computing, and complex systems software
design. Berk received a PhD in computer science from Lei-
den University. He is a member of the IEEE, the ACM, and
the MAA. Contact him at vhb@dartmouth.edu.

save
25%

on all
conferences
sponsored

by the
IEEE

Computer
Society

I E E E
C o m p u t e r

S o c i e t y
m e m b e r s

w w w . c o m p u t e r. o r g / j o i n

