
4/24/2011

Program Verification
and the Church-Rosser Theorem

Peter Vincent Homeier
National Security Agency

homeier@saul.cis.upenn.edu

4/24/2011

The Need for Practical Verification

• Reliability is critical for some applications
• For qualitatively superior reliability, verification is

necessary
• For credible proofs, mechanical verification is necessary
• Goal is a tool to support human construction of software

designs and code that are proven consistent with specs
• Desired result is code verified to perform as specified

2

4/24/2011

Prior Related Work

• Sunrise, total correctness for small imperative language,
like subset of Pascal including mutually rec. procedures

• Bali, formalizes aspects of Java in Isabelle/HOL,
including dynamic binding, exceptions, side-effects

• Extended Static Checking (ESC), super-lint for Java,
checks array bounds, nil dereference, synchronization

3

4/24/2011

4

Sunrise:
Structure of Approach

Operational
Semantics Definitions

Syntax
Definitions

Proof of Axioms, Rules

Axiomatic Semantics is Sound

Correctness
Specifications

Definitions

Proof of VCG

 VCG is Sound

VCG
Definitions

Program with Annotations

VCG

Verification Conditions

Proof of VC’s

 Program is Totally Correct

Verification Use

4/24/2011

Process and Advantages of Verification

• Programmer iteratively writes design/code with
annotations about intended behavior; reveals flaws

• Tool automatically resolves most of verification,
resorting to programmer for remaining issues

• Many common programming errors prevented absolutely
• Verification implies significantly higher reliability
• Eases but does not replace testing; Only part of a wider

high-confidence software engineering methodology 5

4/24/2011

Foundations of Semantics of Languages

• Most such previous VCG tools were not formally verified
– … hence proofs of programs were suspect!

• Need formal proof of soundness of VCG tool
• … based on formal semantics of the programming language
• Lambda Calculus is a prototypical programming language
• A laboratory for examining general language issues
• … including the nontrivial Church-Rosser property 6

4/24/2011

Prior Proofs of Church-Rosser Theorem

• Shankar, 1988, Boyer-Moore (nqthm), name-carrying syntax
• Huet, 1994, Coq, de Bruijn syntax
• Rasmussen, 1995, Isabelle-ZF, de Bruijn syntax
• Vestergaard/Brotherston, 2001, Isabelle-HOL,

name-carrying syntax

7

4/24/2011

Raw Lambda Calculus Syntax

λ-calculus syntax:
variables (var): x, y, z, ...
terms (term1): Λ1 ::= var | Λ1 Λ1 | λvar.Λ1

(variable, application, abstraction)
substitutions (subst1): Σ1 ::= [] | (var := Λ1) :: Σ1

(nil, cons of (var, term) pair) - a simultaneous substitution
Typical meta-variables of types: term: t, u, M, N, L subst: s var set: r

val _ = Hol_datatype

` term1 = Var1 of var

| App1 of term1 => term1

| Lam1 of var => term1 ` ;

Hol98 automatically proves term 1) structural induction, 2) function existence,
3) cases, 4) constructors distinctiveness, and 5) constructors one-to-one

8

4/24/2011

Functions on Raw Lambda Calculus Syntax

Functions on λ-calculus syntax:
HEIGHT1: Λ → num Height of term, var is 0, else 1+components
FV1: Λ → var set Set of free variables of term
_1

v_: var → Σ → Λ Application of a substitution to a variable
1: Λ → Σ → Λ Proper application of a substitution to a term

HEIGHT1 and FV1 are defined by primitive recursion on the structure of terms
1

v is defined by list recursion on the structure of the substitution
1 is defined by primitive recursion on the structure of terms, making use of the

simultaneous substitution to add new bindings to properly avoid capture. 9

4/24/2011

Substitution

Definition of substitution: (Complete)
x1 s = x1

v s
(t u) 1 s = (t1

v s) (u1
v s)

(λx. t) 1 s = let x’ = variant x (FVsubst1 s (FV1 t – {x})) in
λx’. (t1 ((x := x’) :: s))

where

FVsubst1 s r = ∪ (image (FV1 SUB1 s) r)
SUB1 s x = x1

v s

“Naïve” substitution is easy and simple but NOT CORRECT:
(λx. t) 1 s = λx. (t1 s) 10

4/24/2011

Constructors One-to-One Property

Almost right, but constructors one-to-one property says that
(λx1. t1 = λx2. t2) ⇔ (x1 = x2) ∧ (t1 = t2)

But we want, for example, λx. x = λy. y. Just which name is
used for the variable should be immaterial, as long as names
are changed consistently.

This one-to-one property is too discriminating. We want to
create a variant of this calculus to blur such distinctions.

The exact blurring we wish is called alpha-equivalence. 11

4/24/2011

Alpha-Equivalence

• Church represented as semantic reduction: t →α t’
• More modern approach (Barendreght, Abadi/Cardelli, …)

is to identify equivalent terms at syntactic level
• Alpha-equivalence: relation on terms; e.g., λx. x ≡α λy. y.
• Design issue: How to define ≡α?

– Others used substitution (1); is it deceptively complex?
– We used contextual alpha-equivalence, where the

contexts are lists of variables denoting bindings present 12

4/24/2011

Real Lambda Calculus

• Real lambda calculus formed as quotient of raw lambda
calculus by alpha-equivalence:

Λ = Λ1 / ≡α

• New type “term” made by new HOL package for quotients
• Produces two mapping functions between term and term1:

_ : Λ1 → Λ _ : Λ → Λ1

a. a = a ∧ r r’. r ≡α r’ ⇔ (r = r’)
• Term constructor functions redefined in Λ using map fns

E.g., Lam x t = Lam1 x t , which is λx. t = λx. t
13

4/24/2011

Recreating Function Definitions in the
Real Lambda Calculus

• Functions are defined first in Λ1 and then recreated in Λ
• BUT, not every function definable in Λ1 can be recreated!
• Functions must respect alpha-equivalence, e.g.,

t1 ≡α t2 ⇒ FV1 t1 = FV1 t2

t1 ≡α t2 ∧ s1 ≡α
subst s2 ⇒ (t11 s1) ≡α (t21 s2)

• 1) Prove function respects alpha-equivalence (arb. complex)
• 2) Define new function using _ and _

• 3) Prove as theorem in Λ the same form as definition in Λ1 14

4/24/2011

Recreated Properties in the
Real Lambda Calculus

• Now we have the one-to-one property
(λx1.t1 = λx2.t2) ⇔ (t1 [x1 := x2] = t2) ∧ (t2 [x2 := x1] = t1)

• All other properties and definitions of Λ1 are recreated in Λ,
except for function existence

• More general term height induction principle:
 P. (x. P x) ∧

(t u. P t ∧ P u ⇒ P (t u)) ∧
(t. (t’. HEIGHT t = HEIGHT t’ ⇒ P t’) ⇒ x. P (λx. t))
⇒
(t. P t) 15

4/24/2011

Barendregt Variable Convention (BVC)

• Barendregt’s Lambda Calculus: It’s Syntax and Semantics
• The BVC states that in any proof, one can assume that all

bound variables are different from all free variables
• Then substitution is simple (naïve), and proofs are elegant
• Controversial; some have suggested the BVC is incomplete
• We have found a mechanization within the security of HOL

that (partially) justifies the BVC —
A new HOL tactic to shift abstractions away from capture,
used along with height-based induction 16

4/24/2011

Semantics of Reduction in Lambda Calculus

• Define β as relation on terms such that for all M, N ∈ Λ,
β ((λx. M) N) (M [x := N])

• A relation R on Λ is compatible (with the operations) if
for all M, M’, Z ∈ Λ, x ∈ var,

R M M’ ⇒ R(Z M)(Z M’) ∧ R(M Z)(M’ Z) ∧ R(λx.M)(λx.M’)
• Given relation R, R induces reduction relations:
• →R one step R-reduction compatible closure of R
• R R-reduction reflexive, transitive closure of →R

• =R R-equality equivalence relation generated by R
17

4/24/2011

Diamond Property and
Church-Rosser Property

• satisfies diamond property (◊) if
∀M M1 M2. MM1 ∧ MM2 ⇒ ∃M3. M1M3 ∧ M2M3

• R is Church-Rosser if R ◊ ; want to prove β ◊ 18

M2M1

M3

M

4/24/2011

The Church-Rosser Theorem

• Original by Church-Rosser (1936); Schroer (1965) 627 pgs
• Greatly simplified proof found by Martin-Löf (1972),

based on ideas of Tait
• Elegant presentation by Barendregt (1981) using the BVC
• Define parallel reduction () inductively by the rules

MM’ , N N’
MM M NM’ N’

MM’ MM’ , N N’ .
λx. M λx. M’ (λx. M) N M’ [x := N’]

19

4/24/2011

Proof of the Church-Rosser Theorem

• Theorem: For all relations , ◊ ⇒ * ◊
• Theorem: satisfies the diamond property (◊)
• Theorem: β is the transitive closure of (β = *)

• Theorem: β is Church-Rosser.
Proof: by definition of Church-Rosser and above theorems

20

4/24/2011

HOL Proof of the Church-Rosser Theorem

• 6 main HOL theories (+ 2 auxiliary)
• 3 new types
• 73 new definitions
• 302 theorems proved
• 0 new axioms (secure, conservative extension of HOL)
• 22,252 lines of Standard ML code (including comments)
All theory scripts and associated code, including the new

quotient library and mutual recursion tools, are available at
http://www.cis.upenn.edu/~hol/lamcr/

21

4/24/2011

Conclusions

• Separation of concerns is simpler: alpha-equivalence and
beta-reduction analyzed in two distinct layers.

• Creating the real lambda calculus as a quotient relied on the
proof that substitution respected alpha-equivalence. This
proof for a complete substitution function is new.

• We have justified the controversial BVC for this CR proof.
• As the lambda calculus is an archetype of programming

languages, this proof is a prototype for general foundations.
• Soli Deo Gloria. 22

	Program Verification�and the Church-Rosser Theorem
	The Need for Practical Verification
	Prior Related Work
	Sunrise:�Structure of Approach
	Process and Advantages of Verification
	Foundations of Semantics of Languages
	Prior Proofs of Church-Rosser Theorem
	Raw Lambda Calculus Syntax
	Functions on Raw Lambda Calculus Syntax
	Substitution
	Constructors One-to-One Property
	Alpha-Equivalence
	Real Lambda Calculus
	Recreating Function Definitions in the�Real Lambda Calculus
	Recreated Properties in the�Real Lambda Calculus
	Barendregt Variable Convention (BVC)
	Semantics of Reduction in Lambda Calculus
	Diamond Property and �Church-Rosser Property
	The Church-Rosser Theorem
	Proof of the Church-Rosser Theorem
	HOL Proof of the Church-Rosser Theorem
	Conclusions

