Program Verification and the Church-Rosser Theorem

Peter Vincent Homeier National Security Agency homeier@saul.cis.upenn.edu

The Need for Practical Verification

2

- Reliability is critical for some applications
- For qualitatively superior reliability, verification is necessary
- For credible proofs, mechanical verification is necessary
- Goal is a tool to support human construction of software designs and code that are proven consistent with specs
- Desired result is code verified to perform as specified

Prior Related Work

3

- **Sunrise**, total correctness for small imperative language, like subset of Pascal including mutually rec. procedures
- **Bali**, formalizes aspects of Java in Isabelle/HOL, including dynamic binding, exceptions, side-effects
- **Extended Static Checking (ESC)**, super-lint for Java, checks array bounds, nil dereference, synchronization

Process and Advantages of Verification

- Programmer iteratively writes design/code with annotations about intended behavior; reveals flaws
- Tool automatically resolves most of verification, resorting to programmer for remaining issues
- Many common programming errors prevented absolutely
- Verification implies significantly higher reliability
- Eases but does not replace testing; Only part of a wider high-confidence software engineering methodology 5

Foundations of Semantics of Languages

- Most such previous VCG tools were not formally verified – … hence proofs of programs were suspect!
- Need formal proof of soundness of VCG tool
- ... based on *formal semantics* of the programming language
- Lambda Calculus is a prototypical programming language
- A laboratory for examining general language issues
- ... including the nontrivial Church-Rosser property

Prior Proofs of Church-Rosser Theorem

• Shankar, 1988, Boyer-Moore (nqthm), name-carrying syntax

7

- Huet, 1994, Coq, de Bruijn syntax
- Rasmussen, 1995, Isabelle-ZF, de Bruijn syntax
- Vestergaard/Brotherston, 2001, Isabelle-HOL, name-carrying syntax

Raw Lambda Calculus Syntax

8

λ-calculus syntax:

variables (var): *x*, *y*, *z*, ... terms (term_{*i*}): Λ _{*i*} ::= var $|\Lambda$ _{*I*} Λ _{*i*} $|\Lambda$ var. Λ _{*i*} (variable, application, abstraction) substitutions (subst_{*i*}): Σ_1 ::= [] | (var := Λ_1) :: Σ_1 (nil, cons of (var, term) pair) - a *simultaneous* substitution Typical meta-variables of types: term: *t*, *u*, *M*, *N*, *L* subst: *s* var set: *r*

```
val = Hol_{\text{datatype}}` term1 = Var1 of var
                 | App1 of term1 => term1
                  | Lam1 of var => term1 `;
```
4/24/2011 Hol98 automatically proves term 1) structural induction, 2) function existence, 3) cases, 4) constructors distinctiveness, and 5) constructors one-to-one

Functions on Raw Lambda Calculus Syntax

Functions on λ-calculus syntax:

HEIGHT_{*i*}: $\Lambda \rightarrow$ num Height of term, var is 0, else 1+components FV_i : $\Lambda \rightarrow \text{var}$ set Set of free variables of term $\Box I^{\nu}_{I}$: var $\rightarrow \Sigma \rightarrow \Lambda$ Application of a substitution to a variable \Box **₁**: $\Lambda \rightarrow \Sigma \rightarrow \Lambda$ *Proper* application of a substitution to a term

HEIGHT₁ and FV₁ are defined by primitive recursion on the structure of terms \mathbf{I}_I^{ν} is defined by list recursion on the structure of the substitution

 \mathbf{I}_i is defined by primitive recursion on the structure of terms, making use of the simultaneous substitution to add new bindings to properly avoid capture.

Substitution

Definition of substitution: (Complete)

$$
x \square_I s = x \square_I^v s
$$

\n
$$
(t u) \square_I s = (t \square_I^v s) (u \square_I^v s)
$$

\n
$$
(\lambda x. t) \square_I s = \text{let } x' = \text{variant } x \text{ (FVsubst}_I s \text{ (FV}_I t - \{x\}) \text{) in}
$$

\n
$$
\lambda x'. (t \square_I ((x := x') :: s))
$$

where

 FV subst_{*I}* $s r = U$ (image (FV *_I* \Box SUB_{*I*} *s*) *r*)</sub> $\text{SUB}_I s x = x \square_I^v s$

"Naïve" substitution is easy and simple but NOT CORRECT:
 $(\lambda x. t) \Box_1 s = \lambda x. (t \Box_1 s)$

$$
(\lambda x. t) \Box_I s = \lambda x. (t \Box_I s)
$$

Constructors One-to-One Property

Almost right, but constructors one-to-one property says that

$$
(\lambda x_1, t_1 = \lambda x_2, t_2) \iff (x_1 = x_2) \land (t_1 = t_2)
$$

But we want, for example, λx . $x = \lambda y$. *y*. Just which name is used for the variable should be immaterial, as long as names are changed consistently.

This one-to-one property is too discriminating. We want to create a variant of this calculus to blur such distinctions.

The exact blurring we wish is called *alpha-equivalence*.

Alpha-Equivalence

- Church represented as *semantic reduction*: $t \rightarrow \alpha t'$
- More modern approach (Barendreght, Abadi/Cardelli, ...) is to *identify* equivalent terms at *syntactic* level
- Alpha-equivalence: relation on terms; e.g., $\lambda x. x \equiv_{\alpha} \lambda y. y.$
- Design issue: How to define \equiv_{α} ?
	- Others used substitution (\square_{1}) ; is it deceptively complex?
	- We used *contextual alpha-equivalence*, where the contexts are lists of variables denoting bindings present

Real Lambda Calculus

• Real lambda calculus formed as quotient of raw lambda calculus by alpha-equivalence:

$$
\Lambda = \Lambda_I / \equiv_\alpha
$$

- New type "term" made by new HOL package for quotients
- Produces two mapping functions between term and term1: L_{-} : $\Lambda_{1} \rightarrow \Lambda$ $\qquad \qquad \boxed{}$: $\Lambda \rightarrow \Lambda_{1}$

 $\mathcal{B}a. \lfloor a \rfloor = a \quad \wedge \quad \mathcal{B}r \ r^\prime. \ r =_{\alpha} r^\prime \Leftrightarrow (\lfloor r \rfloor = \lfloor r^\prime \rfloor)$

• Term constructor functions redefined in Λ using map fns E.g., Lam x $t = \lfloor \text{Lam}_1 x \cdot \lceil t \rceil \rfloor$, which is λx . $t = \lfloor \lambda x \cdot \lceil t \rceil \rfloor$

13

Recreating Function Definitions in the Real Lambda Calculus

- Functions are defined first in Λ*¹* and then recreated in Λ
- BUT, not *every* function definable in $Λ$, can be recreated!
- Functions must respect alpha-equivalence, e.g.,

$$
t_1 \equiv_{\alpha} t_2 \implies \text{FV}_1 t_1 = \text{FV}_1 t_2
$$

 $t_1 \equiv_{\alpha} t_2 \land s_1 \equiv_{\alpha}^{\text{subst}} s_2 \implies (t_1 \square_1 s_1) \equiv_{\alpha} (t_2 \square_1 s_2)$

- 1) Prove function respects alpha-equivalence (arb. complex)
- 2) Define new function using $\lfloor _ \rfloor$ and $\lceil _ \rceil$
- 3) Prove as theorem in Λ the same form as definition in Λ ₁

Recreated Properties in the Real Lambda Calculus

• Now we have the one-to-one property

 $(\lambda x_1 \cdot t_1 = \lambda x_2 \cdot t_2) \Leftrightarrow (t_1 \square [x_1 := x_2] = t_2) \wedge (t_2 \square [x_2 := x_1] = t_1)$

- All other properties and definitions of Λ , are recreated in Λ , *except* for function existence
- More general term height induction principle:

```
 P. (x. P x) ∧
       (\forall t \ u. P t \wedge P u \Rightarrow P (t u)) \wedge(\forall t. (\forall t'. \text{HEIGHT } t = \text{HEIGHT } t' \implies P t') \implies \forall x. P (\lambda x. t))⇒
       \Rightarrow (\ti, P t) 15
```
Barendregt Variable Convention (BVC)

- Barendregt's *Lambda Calculus: It's Syntax and Semantics*
- The BVC states that in any proof, one can assume that all bound variables are different from all free variables
- Then substitution is simple (naïve), and proofs are elegant
- Controversial; some have suggested the BVC is incomplete
- We have found a mechanization within the security of HOL that (partially) justifies the BVC — A new HOL tactic to shift abstractions away from capture, $\frac{16}{16}$

Semantics of Reduction in Lambda Calculus

- Define β as relation on terms such that for all $M, N \in \Lambda$, $β$ ((λ*x*. *M*) *N*) (*M* \Box [*x* := *N*])
- A relation *R* on Λ is *compatible* (with the operations) if for all *M*, *M*', $Z \in \Lambda$, $x \in \text{var}$,
- $R M M' \Rightarrow R(Z M)(Z M') \wedge R(M Z)(M' Z) \wedge R(\lambda x.M)(\lambda x.M')$
- Given relation *R*, *R* induces reduction relations:
- \rightarrow_R one step *R*-reduction compatible closure of *R*
-
-

 $\hat{\sigma}_R$ *R*-reduction reflexive, transitive closure of \rightarrow_R

 $=$ _R R-equality equivalence relation generated by $\hat{\sigma}_R$

Diamond Property and Church-Rosser Property

• \otimes satisfies diamond property $(\otimes \otimes \wedge)$ if $\forall M M_1 M_2 \ldots M \forall M_1 \wedge M \forall M_2 \Rightarrow \exists M_3 \ldots M_1 \forall M_3 \wedge M_2 \forall M_3$

• *R* is Church-Rosser if $\hat{\sigma}_R \odot \hat{\sigma}$; want to prove $\hat{\sigma}_B \odot \hat{\sigma}$ 18

The Church-Rosser Theorem

 \blacksquare $[x := N']$

- Original by Church-Rosser (1936); Schroer (1965) 627 pgs
- Greatly simplified proof found by Martin-Löf (1972), based on ideas of Tait
- Elegant presentation by Barendregt (1981) using the BVC
- Define parallel reduction (\mathcal{X}) inductively by the rules

$$
\frac{M \mathrel{\hat{\times}} M' \ , \quad N \mathrel{\hat{\times}} N'}{M \ N \mathrel{\hat{\times}} M' \ N'}
$$

19

4/24/2011

M M M N M' N'

Proof of the Church-Rosser Theorem

- **Theorem:** For all relations $\forall \xi, \forall \psi \odot \Diamond \Rightarrow \forall \xi * \odot \Diamond$
- **Theorem:** \forall satisfies the diamond property (\forall \otimes \Diamond)
- **Theorem:** ϕ_{β} is the transitive closure of $\phi_{\beta} = \phi_{\beta}$ = ϕ_{β} = ϕ_{β})
- **Theorem:** β is Church-Rosser. **Proof:** by definition of Church-Rosser and above theorems 20

HOL Proof of the Church-Rosser Theorem

- 6 main HOL theories (+ 2 auxiliary)
- 3 new types
- 73 new definitions
- 302 theorems proved
- 0 new axioms (secure, conservative extension of HOL)
- 22,252 lines of Standard ML code (including comments)

All theory scripts and associated code, including the new quotient library and mutual recursion tools, are available at http://www.cis.upenn.edu/~hol/lamcr/ 21

Conclusions

- Separation of concerns is simpler: alpha-equivalence and beta-reduction analyzed in two distinct layers.
- Creating the real lambda calculus as a quotient relied on the proof that substitution respected alpha-equivalence. This proof for a complete substitution function is new.
- We have justified the controversial BVC for this CR proof.
- As the lambda calculus is an archetype of programming languages, this proof is a prototype for general foundations.

• *Soli Deo Gloria*.
-