
Building a
High-Assurance
Separation Kernel
using Programatica

Mark P Jones

High Confidence Software & Systems
March 2005

The Oregon Separation Kernel:

Osker

Native Apps POSIX
POSIX Apps

Linux
Linux Apps

Linux
Linux Apps

Hardware

Runtime System

A working µ-kernel implementation with very
high assurance of separation between domains

(interference only as permitted by explicit policy)

How do you build things like this?
Good design, good architecture

Sound engineering, informal reasoning

Cope with an abundance of small details

Rely on behavior of underlying platform

The Programatica Approach:
“Programming as if properties matter”

How do we build things like this?
Good design, good architecture

Reuse the good ideas!
Monads, ADTs: “separation by construction”

How do we build things like this?
Good design, good architecture

Sound engineering, informal reasoning
Capture specifications/programmer expectations as
embedded properties (“Extreme Formal Methods”)
Integrate with (formal & informal) validation tools

How do we build things like this?
Good design, good architecture

Sound engineering, informal reasoning

Cope with an abundance of small details
Raise the level of abstraction
Leverage types: “mostly types, a little proving”

How do we build things like this?
Good design, good architecture

Sound engineering, informal reasoning

Cope with an abundance of small details

Rely on behavior of underlying platform
“Trusted hardware” … but trusted to do what?
Formalize and document assumptions

Ingredients:
Programatica:

Certification

Haskell:
Modeling, implementation, tractable reasoning

L4:
Keeping it real

House:
Feasibility, prototyping

Programatica

Develop methodologies, tools, and foundations to
support the construction and certification of high-
assurance systems

Integrate a broad and open spectrum of assurance
techniques (code review, testing, formal methods, …)

Support evolving code, evidence, and assurance
requirements (e.g., track dependencies, revalidate, …)

Apply to assurance of security properties in complex
software artifacts of engineering significance

Programatica Goals:

The Programatica Vision:

Instrumenting
compiler

Random
test generator

Automatic Decision
Procedures

Interactive
Proof Editor

Model
Checking

User supplied,
domain-specific
toolsets...

Type
checking

Execute
& test

Code review

Theorem
Proving

lo hi
assure-o-meter

Reporting,
Analysis,

Management

Program Development

Environment
& Property Certification

The Programatica Browser:

Model Checking of Monadic Code

Isabelle
Logical framework, tactic-based theorem prover

Testcases
Individual test cases / regression testing

QuickCheck
Random testing

Alfa
Interactive proof editor based on type theory

Plover
The P-logic verifier

“I say so”
A person signs their name by an assertion

implemented,
automated,
maturing

hand
translation

new
development

Programatica Servers:

Early Case Study:
Based on a Hypothetical Crypto Chip Design

Modeled in Haskell (~260 LOC)

GUARANTEED separation between channels

Alg1

Alg2

Alg3

Conceptual View

Upper Engine

Shared Memory

Lower Engine

Registers RegF

RegF

RegF
RegF

Algorithm

Alg

Alg

Alg

Implementation

assert Separation

= All algs :: Algs.

All select :: (ChannelId → Bool).

{ filter (select . fst) . chip algs }

===

{ chip algs . filter (select . fst) }

Alg1

Alg2

Alg3

Alg1

Alg2

Alg3

=
The Separation Property:

Concluded with formal proof using the Alfa server

Haskell

Haskell:
An expressive, purely functional programming
language

A semantically rich, formal modeling language

A “(semi-) formal method”

Design Document:

Executable Model:

Why Haskell?
Purity: the result of a function depends only on the
argument value (i.e., no hidden dependencies)

Polymorphic types: powerful and expressive;
parametricity provides "theorems for free"

Formal semantics: a foundation for meaningful
assurance guarantees

Powerful abstract datatypes: e.g., modular, scalable
encapsulation and reasoning about effects using monads

Scalability:

µ-kernel vs. monolithic kernel

Haskell as a high-level language

“mostly types, …”

Note: Diagram not to scale … ☺

Future Prospects:
Performance is not a primary goal … but it is
an issue:

Paths through a µ-kernel must be short and fast
Runtime system assurance: e.g., garbage collection

On the table:
Mechanisms for efficient construction and
manipulation of data structures at the bit-level
Small size provides opportunities for aggressive
optimization and whole program analysis
Default to strict instead of lazy evaluation

L4

What is L4?
L4 is a “second generation” µ-kernel design

Original Design: Jochen Liedtke
Original goal: To show that µ-kernel based systems
are usable in practice with good performance

Keep it simple:
Original API had just 7 system calls dealing with key
abstractions:

Address spaces: Memory protection
Threads: Concurrency
IPC: Inter Process Communication

Why Pick L4?
L4 is industrially and technically relevant

Multiple working implementations (Pistachio, Fiasco, etc…)
Multiple supported architectures (ia32, arm, powerpc, mips, sparc, …)
Already used in a variety of domains, including real-time, security,
virtual machines & monitors, etc…

Why Pick L4?
L4 is industrially and technically relevant

L4 is small enough to be tractable
Original implementation ~ 12K executable
Recent/portable/flexible implementations ~ 10-20 KLOC C++

Why Pick L4?
L4 is industrially and technically relevant

L4 is small enough to be tractable

L4 is real enough to be interesting
For example, we can run multiple, separated instances of Linux
(specifically: L4Linux, Wombat) on top of an L4 µ-kernel

Why Pick L4?
L4 is industrially and technically relevant

L4 is small enough to be tractable

L4 is real enough to be interesting

L4 is a good representative of the target domain and
a good tool for exposing core research challenges

Threads, address spaces, IPC, preemption, interrupts, etc… are core
µ-kernel concepts, regardless of API details
It should be possible to retarget to a different API or µ-kernel design

House

An OS in Haskell!?
OS implementations involve:

low-level data structure manipulation, “bit twiddling”
asynchronous interrupts, MMU, DMA, IO ports, …

Haskell may not be your “typical systems
programming language” …

But details like these are within reach …

Page Table Maintenance:
type PAddr -- physical addresses
type VAddr -- virtual addresses
type PageMap -- page map references

data PageInfo = PageInfo { pAddr :: PAddr,
writeable:: Bool,
dirty :: Bool,
accessed :: Bool }

setPage :: PageMap → VAddr → Maybe PageInfo → H Bool
getPage :: PageMap → VAddr → H (Maybe PageInfo)

assert {do setPage pm va pi; getPage pm va}
===

{do setPage pm va pi; return pi}

House:

Concurrent threads
Asynchronous exceptions
Garbage collection

Address space management
Hardware interrupts/faults
Initial memory configuration

Run a.out executables
Page fault and syscall handlers
Haskell window system and applications
Cooperating concurrent processes
Device drivers (keyboard/mouse/text video/

graphics video/network)

GHC RTS

House

hOp

Haskell

C

C

x86

On Bare Metal:

Relating Osker & House:

House
Impl.

Osker
Model Different Shapes

⇔
Different Interfaces

Interface
=

Signature + Properties

Modular Construction:

House
Impl.

x86

Osker
Model

HW

Modular Construction:

HW

Osker
Model

x86

House
Impl.Common

“UserSpace”
Interface

execContext :: PageMap → Context → H (Interrupt, Context)

assert All m, pm, pa, c.
m ::: NotMapped pm pa

==> m ::: Commutes {readPhys pa} {execContext pm c}

Modular Certification:

HW

Osker
Model

x86

House
Impl.

` H

U ` S

X ` UH ` U

` X

H = Properties of HW model
U = Properties of Userspace interface
S = Osker separation properties
X = Properties of x86 hardware

Compositional certification

Consistency checking on U

Design input on X

Combining Osker & House:

HW

Osker
Model

x86

House
Impl.

x86

Osker
Model

A First Implementation
of Osker on Bare Metal

Standard C code, …
#define wait 1
#define sync 2
#define src 3
#define dest 4

extern void lock(), sender(), receiver();

void start() {
fork(sync, lock);
fork(src, sender);
fork(dest,receiver);
stop();

}

void lock() {
for (;;) {

recv(0, wait);
send(getSender(), wait);

}
}

#define LOCK(x) send(sync, wait); \
x; \
recv(sync, wait)

void sender() {
LOCK(printf("I am the sender\n"));
int i;
for (i = 0; i<10; i++) {

setMsg(i);
send(dest, wait);
LOCK(printf("I just sent %d\n", i));

}
stop();

}

void receiver() {
int total = 0;
LOCK(printf("I am the receiver\n"));
for (;;) {

int x;
int s;
recv(src, wait);
x = getMsg();
s = getSender();
total += x;
LOCK(printf(“Received %d from %d,

total is %d\n", x, s, total));
}
stop();

}

Osker
system calls

#defines

printf()

malloc(), protected execution
(divide by zero, segment violation,

time slice exhausted, etc…), …

Standard tools, …
#define wait 1
#define sync 2
#define src 3
#define dest 4
extern void lock(), sender(), receiver();

void start() {
fork(sync, lock);
fork(src, sender);
fork(dest,receiver);
stop();

}

void lock() {
for (;;) {

recv(0, wait);
send(getSender(), wait);

}
}

#define LOCK(x) send(sync, wait); \
x; \
recv(sync, wait)

void sender() {
LOCK(printf("I am the sender\n"));
int i;
for (i = 0; i<10; i++) {

setMsg(i);
send(dest, wait);
LOCK(printf("I just sent %d\n", i));

}
stop();

}
void receiver() {

int total = 0;
LOCK(printf("I am the receiver\n"));
for (;;) {

int x;
int s;
recv(src, wait);
x = getMsg();
s = getSender();
total += x;
LOCK(printf(“Received %d from %d,total is %d\n", x, s, total));

}
stop();

}

a.out
executable

gcc

Compile, boot, and run:

gcc
a.out

executable

grub

void sender() {
LOCK(printf("I am the sender\n"));
int i;
for (i = 0; i<10; i++) {

setMsg(i);
send(dest, wait);
LOCK(printf("I just sent %d\n", i));

}
stop();

}
void receiver() {

int total = 0;
LOCK(printf("I am the receiver\n"));
for (;;) {

int x;
int s;
recv(src, wait);
x = getMsg();
s = getSender();
total += x;
LOCK(printf(“Received %d from %d,total is %d\n", x, s, total));

}
stop();

}

#define wait 1
#define sync 2
#define src 3
#define dest 4
extern void lock(), sender(), receiver();

void start() {
fork(sync, lock);
fork(src, sender);
fork(dest,receiver);
stop();

}

void lock() {
for (;;) {

recv(0, wait);
send(getSender(), wait);

}
}

#define LOCK(x) send(sync, wait); \
x; \
recv(sync, wait)

One Source, Many Uses:

Design Document:

Executable Model:

Certification Target:

Practical Implementation:

One Source, Many Uses:

Our Design Document

is also

Our Executable Model

and also

Our Certification Target

and also

Our Running Implementation

Why “House”?

the “Haskell Users Operating
System Environment”

Why “House”?

… than if you only have Windows …

You are more secure in a House …

Next Steps

Next Steps:
OS Model: Continuing transition to a more
accurate/more complete (and more complex) L4 API

Hardware Model: Extensions to describe interrupts
and hardware concurrency mechanisms

Establish formal separation property

Continued evolution of bare metal implementation

Hardware

OS

Runtime

Osker Model

Test Apps

Hardware…

hOP/HBM

Osker Model

Test Apps

Hardware
µ-HBM

Osker

Real Apps

2 31

Increasing RTS Assurance:
House illustrates that we can run Haskell programs on
a very thin OS layer, obeying a small set of properties

The runtime system (RTS) is large, complex, and
written in C, which makes it hard to build confidence in
the overall system

We need high-confidence versions of two main
services:

Pre-emptive concurrency (needed for interrupt handling)

Garbage collection (possibly real-time)

Possible approaches to high-
confidence concurrency:

Model RTS in Haskell
Prove key properties about the model;
Transfer results back to C code.
(The Galois “Haskell on Bare Metal” project is pursuing this.)

Remove pre-emptive concurrency from the RTS:
Leverage Osker concurrency, handle interrupts explicitly
Use a language subset for which we can accurately bound
execution times

Develop ad-hoc proof of correctness for
conventional GC using recently developed
separation logics.

Rewrite the Osker model in a language variant
with a region-based type system

Should require only simple RTS ⇒ relatively easy to
validate

Possible approaches to high-
confidence garbage collection:

