
Programatica Summary

James Hook
OGI School of Science & Engineering
Oregon Health & Science University

Programatica Team

� James Hook
� Mark Jones
� Richard Kieburtz
� Tim Sheard
� John Launchbury

� Peter White
� Bill Harrison
� Sylvain Conchon
� Thomas Hallgren
� Mark Tullsen
� Iavor Diatchki
� Nathan Linger

PacSoft

� Focus on Domain-specific language
technology
� DSLs for Hardware design (Hawk)
� Spin-off Galois Connections continues to apply

DSLs in high-assurance domains

� Programatica leverages Haskell enriched by
properties for modeling and implementing
software “as if correctness matters”

Programatica Vision

� Concise, Executable (Formal) Models and
Systems expressed in Haskell

� Systematic identification of domain-relevant
properties

� Integration of evidence for properties from
external tools (some new, some existing)
including testimonial (“Mark says so”), test,
model checking and theorem provers

� Query and Navigation of evidence

Status: Modeling

� Modeling a non-trivial secure system
� Developed a model of Spook: a POSIX compliant

operating system supporting strict separation
� White has coded over 12k lines of Haskell
� Separation property can be expressed in

Programatica
� Spook architecture isolates “tricky bits” so that

separation in 90% of the model is established via
Haskell type checking

� White presentation following lunch

Status: Semantics

� Folklore:
� Haskell has a straightforward semantics; all of the

hard parts have been addressed in published
papers

� Reality:
� While the hard parts were well studied, the

integration was not
� Particularly critical is the characterization of the

fine control of evaluation (laziness)
� Consequence:

� We will deliver a formal definition of Haskell
(See supplementary materials: Harrison; to appear MPC02)

Status: Logic

� Haskell is a powerful modeling language
� Pun between inductive lists and coinductive

streams is powerful, natural
� Expressive power is sufficient to encode

concurrency (among other things)
� Modeling idioms in hardware and security

exploit this power
� Support for these idioms has led to a modal

mu calculus for Haskell (Kieburtz, talk to
follow, supplemental materials)

Status: Tools

� Extensible tools for parsing, type checking,
and navigating Haskell

� First implementation of recursive modules
fully compliant with report

� Prototype integration with Alfa proof editor
� Free theorem generator (theorems from

types via parametricity)
� Prototype P-logic proof engine in Stratego

Poirot:
The evidence manager

� An Herculean task
� Evidence manager integrates certificates from

various sources (heterogeneous, auditable
evidence)

� Supports queries on the heterogeneous
evidence base (traceability)

� Core tool for achieving the “programatica
vision” of software development

� Evidence manager gives “the knob”
� Status: Early stand-alone prototype; not yet

integrated with P-logic or other tools

Next Steps

� Continue Spook development: focus on
having non-trivial interprocess
communication

� Complete Haskell definition
� Improve support of P-logic
� Integrate P-logic with Haskell front-end
� Integrate P-logic into Poirot

Long Term
� Programming as if properties matter

� Developing the properties is part of developing the
code

� Spook
� Properties of interest are domain-relevant, high-

level, global properties
� Poirot

� Integrating and evaluating evolving,
heterogeneous evidence

� Poirot for other languages
� http://www.cse.ogi.edu/PacSoft/conf/jvw02/

� Tools

	Programatica Summary
	Programatica Team
	PacSoft
	Programatica Vision
	Status: Modeling
	Status: Semantics
	Status: Logic
	Status: Tools
	Poirot: The evidence manager
	Next Steps
	Long Term

