

Programatica:
The early years

A personal recollection

Mark P Jones, OGI

Prugramatica [Separation Project] ;IEIEI

File Edit View Project Build Debug Tools Options Window Help
[Programatica Dema : -
- 1 £ . o
v O E'D??r;“rz[jdzré'u“rie |What's new in Programatica 3.2?
[PreludeMumeric
[PreludeList :|¥Welcome to the new release of Programatical Here's a quick overview of some of
[PraludeText 2| the new features we've added, including the new mechanisms for liahility and
contract mananemant Furthar dataile can be foonf at aﬂ'-_lll-' time under the He|p
-2 [3 Preludelo | menu or b We hope you'll enjoy this new
Standard Libraries : | .y . a1
¢ [Manad Transfarmers release ! Ugl ']lll']th']
[MonadT | Of course,) es that vou've come to expect
: : Build 2322 January 16, 2003
[EnvT A from previi
[sStateT : (C) Pacific Software Research Center
[MayheT : *FL Oregon Eraduate Institute ard,
[contT : - skt ") Hugs;
- , ® L OK to all of the most popular
? m—%pﬁramn L, the ‘kers, and space invader game
Ermony }
consoles
@[] Algotithms : " _ - B
@] RegFile : & Hotsyne with your PDA using ProofConduit;
& 3 ChipModel * Atomatic update and maintainence wia programatica.com's unigue "we'll
: be back" service;
® Polymorphicality analysis with Prograrmatica's uniquely approximate
pseudowobble auto variance;
¢ £100 mail-in rebate on grocery purchases over 34500 at =

.Prugramatica [Separation Project]

File Edit ‘U‘ew Prqut:t Eulld Dehug Tools Dptluns Window

1 F'I’I:IQI’EIFI"IEITIEQ “emn \
§ [standard b, ™a
D F'relude b

PITTITTTTTeecy

Prﬂude} R
3

n 0
C VI

PrOJect |
source c¢

4'.4.; * I 3 J_'.EI'ﬂE..

@] 5t

Iy AT ArIe S

&] Monad Transformers
@] Separation Model

@] Memory|

@] Algorithms

@] RegFile

& [Chiphodel

...........................

forq

t;nn

==y SJ.I':‘lIJlE memory ADR

what would yuu lik~"

Context senS|t|ve
online help system

scripting;

prererences,

DIJGLU PTUTIICT,

NothingToDeclare™,

ahstract type Memory = Addr -> Word

: the empty memory is initialized to all zeros:

tﬂt?

i Memory

Text edltor with syntax coloring,
autocomplete, spell-as-you-type,

1t-and-click diagnostics

.'_,iflil: ation:
i, ’ |
type-as-you-type, e
;; Fild LIt Description
§§ Memary.hs 23 Mon-exhaustive pattern match -
24 Cerificate expired

“IMemaory.hs

Prugramatica [Separation Project] - |I:I|E|
File Edit View Project Build Debug Tools Options Window Help

1 Programatica Dema
@] Standard Prelude
D FreludeCore

Ml /** Implementation of a simple memory ADT.

*

D ErEEE LT EE * @suthor Programstica Tesm
[FreludeList * @dversion May 23, Z000
[PreludeTesxt : !
D Prajudelo Jmodule Memory where
@] Standard Libraries
@] Monad Transformers | import Addr
@] Separation Model i import Word
@ 3 Mermary! :
@[] Algorith| Edit act type Memory = Addr -> Word
@ [RegFild Browse Names
@ [Chiphia Browse Types e empty memory is initialized to all =zeros:
Browse Classes :: Memory
Report = Yaddr -> intZword O
= mding from memory is just function application:
Compile :: Memory - Addr -> Word —
Debug b= R e o o
File Ling Description
Properties hs 23 Mon-exhaustive pattern match -
AMemory.hs 24 Cerificate expired -

Prugramatica [Separation Project] - |I:I|E|

File Edit View Project Build Debug Tools Options Window Help
Programatica Dermao |4
?ljgﬂtaﬂdard Pre Kl /%% Twnlewmentationn of a :=E'i'|"r1'|:1]n= ettt AT
) P & Programatica Session [Prelude] - 0| x|
reldae
Lession Edit VYiew Window Help
D F'I'E|LIE|E|1‘ [V Lo & LT L mray w e =i [_I
[Preludel |preludes sum 22
D PreludeT| g5 Prugramatlca Session [Memory] - |EI|E|
D Freludelt| (267 reducti Session Edit View Window Help 5;

————
@ [Standard Lit |preludes n + | ¢ |
@] Monad Tran:| g5 _q (1 name listed) |
@ [Separation i (25 reductio: Memory>= read [write empty 0 1) 1
> CTmemory 0
: Prelude> :set .
@-Eﬂﬁ@unmﬁ Memory> read [write ewmpty 0 1) 0
'E"ljF{EgFiIE Prelude= f -c.::- 1
@ 3 chiphod Prelude> writ

Memory> read [write [(write 0 23 empty) 0 1) 0O
Prelude= clo:

ERROR: Type error in application

Prelude> _ *** Expression : write O 23 empty
56473 cells allocal | *** Term : empty
A |*** Type : Memory
reg|*** Does not match : Int
: Memory> read [write [(write empty 0 23) 0 1) 0O
AMerr | 1
Merr

Memory>

14343 cells allocated, 45654 reductions

#|n it's time, Programatica was the most
sophisticated program development
environment on the market;

#“It scares me to think that we nearly
ended up In a world dominated by Java
technology ... Programatica was a
godsend; we couldn’'t have made the
transition to Haskell without 1t ...”

James Gosling, Microsoft CEO, Wall Street Journal
March 2007

#Back then:

m Priorities: Time to market, raw
functionality, ...

= Non-issues: reliability, security, robustness,
accountability, ...

= Formal methods: academic toys, expensive,
won't scale, irrelevant, ...

#Programatica was part of the new wave:
“Programming as If correctness mattered”

The Programatica Vision:

Build a program development environment that
supports and encourages its users in thinking
about, stating, and validating key properties.

Enable programming and validation to proceed
hand Iin hand, using properties to link the two.

Allow users to realize benefits gradually by
choosing between varying levels of assurance.

Prugramatica [separation Project] : -0 x|

| Frogramatica Demo

File Edit View Project Build Debug Tools Options Window Help
| -
bl —— reading fromw mewory is just function application: —

@ [Standard Prelude
@ [Standard Libraries
@ [Monad Transfarmers
@ [] Separation Made|

© 3 emory

@] Algarithms

@] RedFile

g read 1 Memory —> Addr - Word

; read wem addr = mem addre

ﬁ propexrty ReadEmpty = A1l (a::Addr).

read empty a == 0

i

Property statements as an

rion extension:

Ir -> Word -> Memory

addr==addr' then wal else mem addr'

Integral part of source code.

ﬁ property Beadlirite = All (a::Addr).

E property WritelWrite = All (a::addr).

A1l (w::Word) .
A1l (m::Memory) .

read (write m a W a == w

All (w,w' :: TWord).
A1 (m::Memory) .

write [(write m a w') a W = wrikte m a w

The Language of Properties:

#®Properties expressed using:
s Standard logical constructs and primitives;

= The same syntactic conventions as executable
code.

#1n short, a property notation that was
Immediately familiar to programmers:.

property ReadWrite
= AlIl a v m.
read a (write a v m) ===

[roqramatica [Separation Projec et]
File Edit View Project Duikl Debug Tooks Options Window

il

Type checking

Random test
generator

User supplied,
domain-specific
toolsets...

Model checker

Instrumenting
compiler

Interactive
proof editor

NP L
N 7/

The “Knob” |

Ve

Prosper \
]
HOL 2001
\7 Isabelle
Prover

hi

Prugramatica [Separation Project]
File Edit Yiew Project Build Debug Tools Options Window

=10] x|

1 Programatica Dermo
@] Standard Prelude
@ [Standard Libraries
@] Monad Transformers
@ [Separation Model
@] Memary
@] Types
@ [values
@ [Properties|
@] Algorithms
@] ReaFile
@] ChipMadel

1
I

propexrty ReadEwpty = All a::Addr. []
Writ

Jwrit

propexrty ReadlWrite = All (=a::Addr).

propexrty WriteWrite = A11 (a::Addr). [] []

Help
fread :: Memory - Addr -> Word]
read memwm addr = mem addr

read ewmpty a == 0

These property statements have
been annotated with certificates...

ddr'

A1l f(w::Word) .
all

read [(write m a wW)

[ro: :Memory) .

a ==

A1l j(w,w' :: Word).
A1l (rm::Memory) .
Write [write m a W'] a W = wWwrite m a w

Prugramatica [Separation Project]
File Edit View Project Build Debug Tools Options Window

1 Programatica Demao
@ [Standard Prelude
@ [Standard Libraries
@] Monad Transformers
@] Separation Model
@] Memary
@] Types
@] values
©- [Properties|
@ [Algorithrms
@] RegFile
@] ChipMadel

1
k

write memwm addr wal

= Yaddr' -= if addr==_lse wem addr '

propexrty ReadWrite = All (a::Addr).

read mem addr = mem addre

propexrty ResadEmpty = All a::Addr. E‘ Edit Certificate

read ewpty a Update

: Copy
il -— writing to memory is function ext cut
Jrrite i Memory -3 Addr -3 g

: Y Delste

A1l (w::Word) .
A1l (m::Memory) .

read [(write m a w) a == w

propexrty WriteWrite = A1l [(a::Addr). I] I]

A1l j(w,w' :: Word).
A1l (m::Memory) .

Write [wWrite mw a Ww') & W = Wwrite m a ™

=10l x|

Help
== reading IrLOm WMEmOry 15 JUSh IUNCLION Applicacion: -
fread :: Memory -3 Addr -3 Word B

Prugramatica [Separation Project]
File Edit View Project Build Debug Tools Options Window

1 Programatica Demao
@ [Standard Prelude
@ [Standard Libraries
@] Monad Transformers
@] Separation Model
@] Memary
@] Types
@] values
©- [Properties|
@ [Algorithrms
@] RegFile
@] ChipMadel

1
k

Eépruperty ReadEmpt

;E—— Writing to men
E Write I U

Hwrite mem addr ws

=

Eipruperty FeadWrit

éépruperty Writelhri

Type:
Author:
Signature:
Status:

Created:
Modified:

Accessed:

- I& Certificate Yiewer
sfread mem addr = n

=10 |

Jape editor session
Mark P Jones impj)
none given

Incomplete

Mar 23, 2001 3:23:12 PM
Mar 28, 2001 6:32:15 AM
Dec 25, 2006 11:16:02 AM

OK

Cancel Apphy

WrEite

[WELTE I a W)] a

=10l x|

m addr'

™ — WE1Ce I & T

Help
== reaalng Trom MEMOr Y 1S jusE Tuncoion aplecaEan: —
N read it I 3

Certificates:

Certificates were “embedded objects” In
source documents.

Certificates were not part of the language:
They were not named or typed;
They were not propagated between modules.

Programatica could be configured to support
many different certificate types.

They were queried and invoked through a
generic interface/API: the “validation bus”.

The Validation Bus:

Property translation and subsetting
Property propagation and theory formation

Query and invocation mechanisms

Programatica < > External Tools

Status reporting and auditing

Embedded display and editing

Encapsulated sessions and state

Property Management:

Programatica’s property management facilities
provided the link between property
statements and certificates;

Programatica supported:
Pay-as-you-go. Zero or more certificates for each
property;
#® Mix-and-maitch:. Different types of certificate could
be used together in any given program.

The tools helped users (and their managers)
to understand the extent to which properties
had been validated: “where is the knob”?

Prugramatica [Separation Project]
File Edit View Project Build Debug Tools Options Window

1 Programatica Demao
@ [Standard Prelude
@ [Standard Libraries
@] Monad Transformers
@] Separation Model
@] Memary
@] Types
@] values
¢ CJProperties|
@ ./ ReadEmpty
() Readwrite
e T ritebyrite
@] Algorithms
@ [RegFile
@ [ChipMaodal

Help
b read :: Memory -3 Addr -3 Word B
[Key:
pxi
v At least one “valid” certificate;
|= ! Certificate invalid, or proof
Incomplete;
=
O No certificates provided,
= Parameterized property.
all ;[m: :Memory) .
Write [wWrite mw a Ww') & W = Wwrite m a ™

=10l x|

Prugramatica [Separation Project]
File Edit View Project Build Debug Tools Options Window

|gramatica Dermo
Standard Prelude
Standard Libraries
mMonad Transformers
Separation Model
I3 Memary
@] Types
@ [values
@] Propeties

© ./ ReadEmpty

O

() Readwrite
@ T write\irite
1 Algorithms
3 RegFile
3 Chiptodel

1
I

Jape:pmnfcmﬂpmgépruperty ReadEwpty = A1l a::Addr.

f —-— Writing to wemory is function extension:
Juwrite

Jurite mem addr wal

;Epruperty FeadiWrite = A1l [(a::Addr).

=10l x|

Help
-— the empty mewory is initialized to all zeros: =
i empty :: Memory
Aempty = Yaddr -> intZword O
E -— reading from memory is just function application:
E read 11 Memory —-> Addr -> Word
i read mem addr = mem addre

read empty a == 0

i1 Memory —»> Addr - Word -»> Memory

= Yaddr' -> if addr==addr' then wval else mem addr'éﬁ

A1l (w::TWord) .
Bl (mw::Memory) .
read

[WEite m a W a == W

Prugramatica [Separation Project]
File Edit View Project Build Debug Tools Options Window

|gramatica Dermo
Standard Prelude
Standard Libraries
mMonad Transformers
Separation Model
I3 Memary
@] Types
@ [values
@] Propeties

© ./ ReadEmpty

() Readwrite
@ T writedirite

1

+

1 Algarithms
3 RegFile
3 ChipModel

=10l x|

Help

a[-- reading Irom mMEmMOLy 45 JUSG IUNCLION AppliCAabion: -
t read i Memory —> Addr -> Word B

B Jdape; proof comple

Sty found countern
I ProsperHOL: old ¢ |property ReadWrite = All (a::Addr).

Nurite

E read mem addr = mem addr

Eépruperty FeadEwpty = A1l a::Addr. [3

read empty a == 0O

il -— writing to mwemory is function extension:

11 Memory —» Addr - Word - Memory
write mem addr wval
= Yaddr'

-= if addr==addr' then wval else mwew addr

A1l (w::Word) .
A1l (m::Memory) .
read

[WwEite m a W) a == w

property WriteWrite = A1l (a::Addr). [j u

A1l (w14’
all

WEite

1 Tord) .
[m: :Memory) .

([rite m a W'] a W = write mw a w

**% STOP:

Oz000000a

[Oz00000000, 0x0000000:E , Ox00000000 , 8038cE40)

IRQL HMOT_LESE 0OR EQUAL*** Addresz 2032cZ40 has basze at 2022c000 - Nt f= BYE

CPUIL: Germaine Intel

11l Base
20100000
20000100
S0Zaa000
S0zZb32000
S0ZbdA000
2312000
3452000
2352000
£947c000
£2370000
3490000
fa0f00on
aldooooo
felc2000
felOs000
fa0s0000

DateStup
33654Eh £
Z234d3akt3
33013ecb
ZF36015af
33dE844dhe
Flecec8d

- HName

ntoskrnl exe
atbapi.=sy=s
epst _mpd
CLASSZE _ 5TE
Biwwid. svy=
Floppsy. 8BTS

ESechD 575

.33 irgl:1f SYSVEDR Oxf00005&5

11l Base Dateltmp

S001a000
S0007000
S0ZbE000
2032c000
S03e4000
f2Leo2000
f95calln

33247 £88
23248043
336018aZ
F356dE3T
33d84E553
Flecec3n
235es0cf

Name

hal dll
SCEIPORT.SYE
Dizk. =vy=
Ntf=. =v=
NTice.=sys=s
Null. 555

Address dword dump Build [1314] - Name

B0lafcz4 280149905 20149905 ff8ech8c B01Z9ciZc f£8e=cb94 S0EZ5c000 - MNtfs. 5TE
B0lafciZc 801Z9cZc 2012Z29czZzc ff8ecbh94 00000000 f££f8=ecb34 20100000 - ntoskrrnl.exe
B0lafc3d S01240£f2 20124£f0Z ff8ecdfd ff8ecfc0 ££8=6c58 20100000 - ntoskrnl.exe
B0lafctbd S01Z4f1l6 S20124f1l6 ffS8ecfel ff8efc3c S015acTe 20100000 - ntoskrrnl.exe
B0lafcsd 8015acye 2015acYe ffSecdfd ff8ecfcl0 ££8=6c58 20100000 - ntoskrnl.exe
20lafc?0 S801259kda 20125%kbda 00000000 20082000 S010&8£fcO 20100000 - ntoskrrnl.exe

Bestart and set the recovery options in the system control panel

or the /CRASHDEETIG system start option.

Contact your system administrator or technical support groap.

If this message reappears,

The Real Programaticaz:

#There really is a Programatica project at
oGl ...

#The team includes: Jim Hook (PI), Mark
Jones, Dick Kieburtz, John Launchbury,
Tim Sheard, Peter White, Bill Harrison,
and Andy Moran.

#Peter White is also our first “Customer”.

The Road to Programatica:

We are currently building Programatica, version 1

It will look quite different to the mockups |
showed earlier ...

But the basic vision and concepts are the same!

Our design & development efforts are informed
0y ongoing experiments to help us understand
now we will use the Programatica tools In
oractice ...

Example: Modeling a Crypto-Chip

1 Alg,
)ﬁalit " Alg, > Me?—
1 Algg

#0ne chip, multiple channels;
#Channels may use different algorithms;
Separation of channels GUARANTEED.

High-level view:

Map channels to
algorithms

_ el

chip -: (Channel— Alg)—
| Packet]— [Packet]
AN

Packet Filter

type Packet = (Channel, Data)

A

Channel Id Payload

Separation of Channels:

All (algs :: (Channel—Alg)).
All (select :: (Channel—Bool)).
All (ps :: [Packet]).
filter (select . fst) (chip algs ps)

chip algs (filter (select . fst) ps)

Alg, Alg,
J%A'Qz%% —%EA'%%%.*
Algs Algs

Separation of Channels:

This law guarantees that:

#Outputs do not depend on inputs to
other channels.

#Channels do not generate spurious
outputs.

Alg, Alg,
J%Algz%% —%Emz%%.*
Algs Algs

Putting Programatica to Work:

#0ur goal Is to build tools that will help
to establish and automate validation of
properties like this.

#\We have described the non-interference
property at a high-level,

#But we want to model the chip at a
level that Is closer to its implementation
on silicon.

Building the Model (1): =&

We developed an executable model of the
chip as a short Haskell program:

MemMonad

| %

Alg (algorithms)

Generic
_ Components
FM (finite maps)
L Appllpgtlon
Specific
ChipModel Components

Building the Model (2): -

We annotated t
... and quickly s

ne model with properties ...

potted bugs in our code!

Just writing properties had heightened our
thinking about correctness ...

Properties of off-the-shelf components

L !

Properties of internal components

1 !

Properties that guarantee more secure

and reliable software

Building the Model (3): «(\}):

We built a quick prototype for parsing and
type checking properties ...

Al locM -
property AllochMem Arguments in the wrong order!

= forall ws m.
Iet = allocMem ws m

in forall a.

Undefined symbols!

iIT (r "includes™ a)
then readMem a m® == Ws!!(a<:)1;:
readMem a m == readMem a @

else readMem a m®" == readMem a m

... and immediately found bugs in our
specifications!

Building the Model (4): ~ «({)»

We recast the channel separation property
IN an iImperative style using monades.

A serious bug was uncovered, the result of
failing to zero temporary storage after each
packet (or of using absolute addresses...)

Bug detection and feedback to the designers!

Building the Model (5):

We proved channel separation by hand (and
type checked the proof by machine):

NP
N 7/
Io@hi

 New Insights into the pragmatics of
designing and using a suitable logic;

e Detalls of interpretation must be pinned
down (e.qg., sets or pointed domains?) ...

Alg,

E Alg,
J_
Alg,

Rl &

BTt

Building the Model (6): (%"

We are formalizing the model in HOL and
redoing the proof in this setting:

e To obtain more rigorous proofs (and debugged
code!) for channel separation;

e To develop technigues for automating the
translation into HOL;

e To determine conditions under which specs can
be faithfully embedded in HOL.

Key Points:

A new kind of program development environment
that encourages thinking about program correctness.

A flexible and expressive notation for modeling, and
for rapid prototyping. (Executable models!)

Properties can be used to state key properties of
software systems. Certificates can be used to attach
supporting evidence of validity.

Writing properties is easy, and proceeds hand in
hand with programming.

The quality of validation can be increased as higher
levels of assurance are required:
= From type checking ...
= ... through automated test case generation ...
= ... to full-blown theorem proving.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	The Programatica Vision:
	Slide Number 10
	The Language of Properties:
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Certificates:
	Slide Number 17
	Property Management:
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	The Real Programatica:
	The Road to Programatica:
	Example: Modeling a Crypto-Chip
	High-level view:
	Separation of Channels:
	Slide Number 29
	Putting Programatica to Work:
	Building the Model (1):
	Building the Model (2):
	Building the Model (3):
	Building the Model (4):
	Building the Model (5):
	Building the Model (6):
	Key Points:

