

Programatica:
The early years

A personal recollection

Mark P Jones, OGI

Point-and-click diagnosticsText editor with syntax coloring,
autocomplete, spell-as-you-type,

type-as-you-type, …

Source code browsers,
visualization tools, …

Compilation,
packaging wizard, …
Project management,
source code control, …

Source level
debugging, …

Application Wizard, GUI
form builder, time and

space profiler,
NothingToDeclareTM, …

Configuration, customization,
scripting, preferences, …

Context-sensitive,
online help system

In it’s time, Programatica was the most
sophisticated program development
environment on the market;

“It scares me to think that we nearly
ended up in a world dominated by Java
technology … Programatica was a
godsend; we couldn’t have made the
transition to Haskell without it …”

James Gosling, Microsoft CEO, Wall Street Journal
March 2007

Back then:
 Priorities: Time to market, raw

functionality, …
 Non-issues: reliability, security, robustness,

accountability, …
 Formal methods: academic toys, expensive,

won’t scale, irrelevant, …

Programatica was part of the new wave:
“Programming as if correctness mattered”

The Programatica Vision:
Build a program development environment that
supports and encourages its users in thinking
about, stating, and validating key properties.

Enable programming and validation to proceed
hand in hand, using properties to link the two.

Allow users to realize benefits gradually by
choosing between varying levels of assurance.

Property statements as an
integral part of source code.

The Language of Properties:
Properties expressed using:
 Standard logical constructs and primitives;
 The same syntactic conventions as executable

code.

In short, a property notation that was
immediately familiar to programmers:

property ReadWrite

= All a v m.

read a (write a v m) === v

Instrumenting
compiler

Type checking

Random test
generator

Interactive
proof editor

Model checker

Prosper

Isabelle

HOL 2001

Prover

User supplied,
domain-specific
toolsets…

The “Knob” lo hi

These property statements have
been annotated with certificates…

Certificates:
Certificates were “embedded objects” in
source documents.

Certificates were not part of the language:
They were not named or typed;
They were not propagated between modules.

Programatica could be configured to support
many different certificate types.

They were queried and invoked through a
generic interface/API: the “validation bus”.

Programatica External Tools

Property translation and subsetting

Property propagation and theory formation

Query and invocation mechanisms

Status reporting and auditing

Embedded display and editing

Encapsulated sessions and state

The Validation Bus:

Property Management:
Programatica’s property management facilities
provided the link between property
statements and certificates;

Programatica supported:
Pay-as-you-go: Zero or more certificates for each
property;
Mix-and-match: Different types of certificate could
be used together in any given program.

The tools helped users (and their managers)
to understand the extent to which properties
had been validated: “where is the knob”?

Key:

At least one “valid” certificate;

Certificate invalid, or proof
incomplete;

No certificates provided;

Parameterized property.

The Real Programatica:

There really is a Programatica project at
OGI …

The team includes: Jim Hook (PI), Mark
Jones, Dick Kieburtz, John Launchbury,
Tim Sheard, Peter White, Bill Harrison,
and Andy Moran.

Peter White is also our first “Customer”.

The Road to Programatica:
We are currently building Programatica, version 1

It will look quite different to the mockups I
showed earlier …

But the basic vision and concepts are the same!

Our design & development efforts are informed
by ongoing experiments to help us understand
how we will use the Programatica tools in
practice …

Split

Alg1

Alg2

Alg3

Merge

Example: Modeling a Crypto-Chip

One chip, multiple channels;
Channels may use different algorithms;
Separation of channels GUARANTEED.

High-level view:

chip :: (Channel→ Alg)→
[Packet]→ [Packet]

type Packet = (Channel, Data)

Map channels to
algorithms

Packet Filter

Channel Id Payload

All (algs :: (Channel→Alg)).

All (select :: (Channel→Bool)).

All (ps :: [Packet]).

filter (select . fst) (chip algs ps)

==

chip algs (filter (select . fst) ps)

Alg1

Alg2

Alg3

Alg1

Alg2

Alg3

=

Separation of Channels:

This law guarantees that:
Outputs do not depend on inputs to
other channels.
Channels do not generate spurious
outputs.

Alg1

Alg2

Alg3

Alg1

Alg2

Alg3

=

Separation of Channels:

Our goal is to build tools that will help
to establish and automate validation of
properties like this.

We have described the non-interference
property at a high-level;

But we want to model the chip at a
level that is closer to its implementation
on silicon.

Putting Programatica to Work:

Building the Model (1):

Memory

MemMonad

StateMonad

Alg (algorithms) ChipModel

FM (finite maps)

Generic
Components

Application
Specific
Components

We developed an executable model of the
chip as a short Haskell program:

lo hi

Building the Model (2):
We annotated the model with properties …

lo hi

Just writing properties had heightened our
thinking about correctness …

Properties of off-the-shelf components

Properties of internal components

Properties that guarantee more secure
and reliable software

… and quickly spotted bugs in our code!

Building the Model (3):
We built a quick prototype for parsing and
type checking properties …

lo hi

… and immediately found bugs in our
specifications!

Arguments in the wrong order!

Undefined symbols!

property AllocMem

= forall ws m.

let (m’, r) = allocMem ws m

in forall a.

if (r `includes` a)

then readMem a m' == ws!!(a-l) &&

readMem a m == readMem a initMemory

else readMem a m' == readMem a m

Building the Model (4):
We recast the channel separation property
in an imperative style using monads.

lo hi

A serious bug was uncovered, the result of
failing to zero temporary storage after each
packet (or of using absolute addresses…)

Bug detection and feedback to the designers!

Building the Model (5):
We proved channel separation by hand (and
type checked the proof by machine):

lo hi

Alg1

⊥

Alg3

Alg1

⊥

Alg3

≠

• New insights into the pragmatics of
designing and using a suitable logic;

• Details of interpretation must be pinned
down (e.g., sets or pointed domains?) …

Building the Model (6):
We are formalizing the model in HOL and
redoing the proof in this setting:

lo hi

• To obtain more rigorous proofs (and debugged
code!) for channel separation;

• To develop techniques for automating the
translation into HOL;

• To determine conditions under which specs can
be faithfully embedded in HOL.

Key Points:
A new kind of program development environment
that encourages thinking about program correctness.

A flexible and expressive notation for modeling, and
for rapid prototyping. (Executable models!)

Properties can be used to state key properties of
software systems. Certificates can be used to attach
supporting evidence of validity.

Writing properties is easy, and proceeds hand in
hand with programming.

The quality of validation can be increased as higher
levels of assurance are required:
 From type checking …
 … through automated test case generation …
 … to full-blown theorem proving.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	The Programatica Vision:
	Slide Number 10
	The Language of Properties:
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Certificates:
	Slide Number 17
	Property Management:
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	The Real Programatica:
	The Road to Programatica:
	Example: Modeling a Crypto-Chip
	High-level view:
	Separation of Channels:
	Slide Number 29
	Putting Programatica to Work:
	Building the Model (1):
	Building the Model (2):
	Building the Model (3):
	Building the Model (4):
	Building the Model (5):
	Building the Model (6):
	Key Points:

