Integrating
Programming,
Properties, and
Certification

Tutorial

Mark P. Jones
Pacific Software Research Center (PacSoft)

OGI School of Science & Engineering
Oregon Health & Science University

SCHOOL OF
SCIENCE &
ENGINEERING

Current Team Members:

James Hook
Mark Jones
Dick Kieburtz
John Matthews
Andrew Tolmach
@ Peter White

Bill Harrison

Thomas Hallgren
#® Amber Telfer

Programatica Goals:

@ Develop architecture and tools to support
construction and certification of high-assurance
systems

@ Integrate a broad (and open) spectrum of
assurance techniques (code review, testing,
formal methods, ...)

@ Application focus: assurance of security
properties (e.g., separation) in complex
software artifacts of engineering significance.

Building High-assurance Software:

There are many ways to increase assurance:

Test programs on specific cases

Test programs on randomly generated test cases
derived from expected properties

Peer review

Use algorithms from published papers

Reason about equational properties

Reason about meta-properties (e.g., using types)
Use theorem provers to validate (translated) code

Each one can contribute significantly to increased
reliability, security, and trustworthiness

Evidence: A Unifying Feature

There are significant differences in the
applicability, assurance, and technical
details of each of these techniques.

#But there is a common feature:

= Each one results in some tangible form of
evidence that provides a basis for trust

Examples of Evidence:

There are many kinds of evidence:
= An (input, expected output) pair for a test case

= A property statement, and heuristics for guiding the
selection of "interesting" random test cases

= A record of a code review meeting

= A citation/URL for a published paper or result
= An equational proof

= A type and the associated derived property

= A translation of the source program into a suitable
theory and a user-specified proof tactic

In Programatica, each different kind of evidence
is stored with the program as a certificate

Evidence and Certificates:

The certificate abstraction allows users to:

= Capture evidence of validity (in many different
forms) and Collate it with source materials

= Combine of evidence from different sources

* Track dependencies and detect when
evidence needs to be revalidated because of
changes in the source code

= Manage evidence by analyzing and reporting
on what has been established, identifying
weaknesses, guiding further effort, etc...

The Programatica Vision

e v [Seguaration Projec] _iol x|
Flﬂmmmmmuﬂmm .
23 Frogramatica Demo : —— —_— — 5
rend > aAdde => word
rend mem

= QP
&= 3 aigaitn
& [RegFile

& [Criphodsl

ALL a::hddr.
fead empty a

property PeadEnpry

am Dev

wrire 2 Memory -
wrive mem addr val

Imee t

nv;r(mmen

u

se mem addr’

AL (a;:addr)
ALL (4
ALl

uEite [Write m & W'] & W = write m a w [

Property Writeri

The Programatlca Vision:

FIGEGI

View Project Duild Debug moms

=18 X
Halp

| User supplied,
ChTeZEfn g<;/ﬁ Qgram Development = domain-specific
e &- - toolsets...
Execute / Pr0perty Cuelstlﬁcatlon F———- Interactive
& test E Proof Editor
nvn'(mment

Random \k Theorem
Proving

test generator

Code review

Model
Checking

Instrumenting Automatic Decision

compiler

Procedures

The Programatlca Vision:

Type <=1

ﬁ checking

& test
A

Random

tgst generator

(o)

A

Execute /

Code review

=

rogram Developme t

Pri;berty G:etstlﬁcatlon —————" Interactive

> User supplied,
domain- spemﬁc

8

Proof Editor
Enwro;nment Q
- \ Theorem
Proving
A
Model
Checking
Instrumenting Automatic Decision 3
compiler Procedures "
A &
‘ ‘ Reporting,

> Analysis,
Management

assure-o-meter

Modular Construction

The modular design and construction of computer
systems ...

Generic/Library
Components

Specific
Components

@ %j V Application

Modular, Automated Certification

.. should be reflected in modular certification
processes that are used to validate them:

Specific
= [= Components

] m= R ey Generic/Library
— 7 —r :
@ - Components =
@ %j V Application

Systems Change:

Modularity minimizes the impact of change

Generic/Library
Components

CHANGED

% Application |
@ V PPICAtio |

Specific
§> Components

Systems Change:

Modularity minimizes the cost of recertification

- = =) Generic/Library
—r f — :
@ - Components =
5 .. | 9/ CHANGED|
@ %j V Appli_c_ation

Specific g

& —) = Components

Systems Change:

Modularity minimizes the cost of recertification
(automatlon helps too ...)

] =) Generic/ L|brary
— ft —
@ - Components
5 .. | 4 CHANGED|
@ %j V Appll_c_atlon
Specific g

& —) = Components

Assurance Requirements Change:

Minimize cost during early stages of
development

&0 Generic/Library

@ - Components
@ %j V Appll_c_atlon
Specific g

) = Components

Assurance Requirements Change:

Invest more in validation as overall
design begins to stabilize

= B Generic/Libraryi
- Components

%j Application
@ A 4 PPIeation

Specific
= [= Components

Assurance Requirements Change:

Increase assurance as development
begins to mature

= =] =] E Generic/Library
A f - A |
@ - Components

= g

Specific
A A Components

%j V Application

Assurance Requirements Change:

Maximize assurance before final

deployment
a E = =] = Generic/Library
@ S Components |
=)

Specific
2 N =3 Components

%j V Application

Programatica Components:

#®A semantically rich, formal modeling
language (Haskell)

#®An expressive programming logic that
can be used to capture critical program
properties (P-logic)

A toolset for creating, maintaining, and
auditing the supporting evidence
(pfe,cert,...)

Sample Applications:

#Channel separation for a (hypothetical)
crypto chip design

Running example in this talk

#Domain/process separation in Osker, the
"Oregon Separation Kernel”

#Preliminary Experiments in the context of
Trusted Web Server work at Galois
Connections

Example: Modeling a Crypto-Chip

An example based on a hypothetical crypto-chip
design
@ Conceptual view:

| Alg,

|

| Algs

#® One chip, multiple channels
Channels may use different algorithms
#® GUARANTEED separation between channels

Basic architecture:

=)

Upper Engine

i1
Shared Memory Registers -
i1 i1

*RegF

Lower Engine

~RegF

>

~RegF

1I

~RegF

Algorithm

Basic architecture:

=)

1

1L

Receive packets, save
in shared memory.

Lower Engine

=)

Registers ~——RegF| | A

1I RegF| | A
“RegF| | A
~RegF

1I

Algorithm

Basic architecture:

=)

1I

Load saved registers &
algorithm for channel.

Shared Memory

1L 1L

Lower Engine

>
l

RegF| | Alg
RegF

Alg
RegF

=)

1T
O mgrtm

Basic architecture:

=)

Upper Engine

Invoke lower engine
to process packet.

1I

4
<

1 1

~RegF

=)

~RegF

>

~RegF

~RegF

1
o Agritm

Basic architecture:

=)

Save register set, if
lower engine completes

successfully.

Upper Engine

1I

Shared Memory

1L

Registers |
1L

Lower Engine

1I

Algorithm

RegF

=)

RegF

>

RegF

' ' . Zero out shared
Basic architecture: |oierwt

j> Upper Engine

U 1!

Shared Memory - JReaF| [Alg
3 ﬁ "RegF| | Alg
Lower Engine 1RegF| | Alg

'RegF

1I

Algorithm

Basic architecture:

=)

Ll

1L

Pass processed packet
data to output.

Lower Engine

=)

Registers ~——RegF| | A

1I RegF| | A
“RegF| | A
~RegF

1I

Algorithm

Building the Model:;

We developed an executable model of the
ch1 p as a Haskell program: (~260 LOC)

Memories StateMonad Generic
@ ____________________ g . Components
| MemMonad FM (finite maps)
@ %ﬁl YV Appll_c_atlon
Specific |

Alg (algorithms) ChipModel Components

"Programming as if Properties Matter"

Properties are written, parsed, analyzed, and
type-checked as an integral part of source text

Maintains consistency between code and
properties

#® Captures programmer expectations/intentions
as part of the programming process

@ Our experience: Just writing down properties
heightens thinking about correctness

Extreme Programming

Tests

)
)

#® Testing and Programming proceed hand
in hand

#®Testing reveals errors in the program

®Programming reveals errors in the test
cases

i\/7 i\/7
i\/7 i\/7
i\/7 i\/7
i\/7 i\/7

Implementation

"Extreme Formal Methods"

Specification

)
)

#Programming and Validation proceed
hand in hand

#Validation reveals errors in the program

#®Programming reveals errors in the
specification

Implementation

?7?7
N S N
N N

l\
V
l\
V

N S N
N N

Demo:

#Programatica as a Modeling and
Development Environment

(At this point in the talk, I started
switching back and forward between the
slides and a demo of the Programatica
toolset. The next few slides show
screenshots from that demo with a few
additional annotations that I hope will
convey the key ideas ...)

b4 Programatica Haskell Browser: ChipModel

|F|Ie EI|\.I'iewEI|Uﬂnduws EI|CertEI|

Module Graph I—O

3
[1-]
EH Q2| &
-] .E'
M| =
z|® =
= =
@ &
o
[

Memkonads.hs

i

=
&
-
A

‘ii
T
I
T
=
2

5
=
Z

ipMode

Im

=

= = g
HEHHEHEHHE a?

B 2|0

[=]

-

g —

("]

3

iﬁ

-

ludeTex
tected

3

ﬂ

=

File: |Chiphadel.hs

El El Module: |EhiPHDdEI

doPacket3 :: Range —» RegFile -» Stated Memory (Data.RegFile)
iHoPackets r regf' =
do we <= liftH (loadRange r) load

freed r

return (s, regf')

7

finishPacket :: Channel —* Data -» RegFile —» Statel ChipState Packet s

FinishPacket ch ws regf = inSnd (update (FM,update ch regf)) »» return (chows)

Property =
T1m | ALl =1, ALl 52, {fst (runS m s10t === {fst (runS m =207 1}

Property =

{1 alg | A1l ws , ALl regf . {doPacket alg ws regfl |}
eqfile $: Channel - ChipState —» RegFile
feafile ch state = FM, lookup (snd state) ch

Froperty =
1l statel, state?, ch | {regfile ch statel} === {reafile ch statel} [T

pzsert = é&{ E

All algs . ALl ch . ALl statel . All state
{algs chl ==
statel state? ch ==
{pick ch (chip algs statel psl} === {chip algs state? (pick c

arning: PFE server not found, Things can get =low,..

-

A program

¥ development
||Impurts EI| |ImpurieM E||

environment

Syntax coloring
and hyper linking

Embedded
property
definitions and
assertions

~Embedded

certificates

a4 Programatica Haskell Browser: Examples

|F|Ie EI|\.I'iewEI|Uﬂnduws EI|CertEI|

Module Graph I—O

3
[1-]
EH Q2| &
-] .E'
M| =
z|® =
= =
@ &
o
[

Memkonads.hs

i

FHE:|Examples,hs

El ﬁl Module: | Examples

| |Impurts EI| |Impurted By E||

fiodule Examples where

import ChipModel

import Algorithms

import qualified FumFH as FM
import Mat

count f: Alg
count bp rf =
bp cnt %

=
&
-
A

‘ii
T
I
T
=
2

5
=
Z

ipMode

Im

test tst = putSte |

iFM,update r0 cnt rf)
where chnt = 1+FM, lookup £f F0O

cntChip = chip (const count) initChip

testoazel = test (cntChip testInputl) ﬁ
testInputl = replicate 100 (0, [0, 100,500, 100070 ¢+ [Packet]

unlines . map show % tst

=
= = g
HEHHEHEHHE a?
B 2|0
[=]
-
g —
("]

3

-

ludeTex

iﬁ

3

tected

nﬁ
§|

Here's a program
that contains a
simple test case
certificate ...

a4 Programatica Haskell Browser: Examples Bx
I
|F|IEEI|WEWEI|UHnduwsEI|CertEI| L€t S Change the
[Module Graph]—C) File: |Exanples.hs | Code that iS
Files ol e | Module: (Examples Imports [E| Imported By [E .
[E= | | | | belng tested ...
fiodule Examples where Ir-l
import ChipModel - x
import Algorithms =
import qualified FunFM as FH : :
inport Nat Edit Examples in Examples.hs
FunFM.hs bount 1+ Alg module Examples where |
—MemMonads.hs ount bp rf = import Chipflodel
bp ent § import Algorithms
(FM,update ri cnt rf) import qualified FunFM as FH
where cht. = 1+FM, lookup rf r0 import. Nat

3|2
=
Tz
xRN
]
=
-
]

count 3: Alg
cntChip = chip (const count) initChip count bp rf =

Write bp cht &

Done (FM,update r0 cnt rF)
where cnt = 1+FM, lookup #f 0

5
=
Z

=
ii\liiIEEII%II%I‘W\iillgglI%I!i\i%l{fi}fﬁf
E|E Sl o (+)
(= T|= il :
o (L &
b : B
[

=3

testoazel = test (cntChip testInputl) ﬁ
: testInputl = replicate 100 (0, [0,100, 500, 1 | |entChip = chip {const count) initChip
ipMode
test tzt = putStr , unlines . map show % testoazel = test (cntChip testInputl) {-#cert:testcazel#-F
testInputl = replicate 10 (0,[0,100,500,1000]) ¢+ [Packet]
test tet = putStr , wunlines . map show $ tst

PreludeText g

UK Lancel
Protected L L | _IJ
Py |

=

ipMode

Im

= z|[m[m
!E NEE :
=
TIE
=]
=
g —
7

3

iﬁ

-

ludeTex
tected

3

nﬁ
§|

testInputl = replicate 100 (0, [0, 104 500, 100073 13 [Packet]

test tst = putStr | unlines . map show % tst

a4 Programatica Haskell Browser: Examples 1
H 1
|F|IEEI|WEWEI|UHnduwsEI|CertEI| PI’Ogl’amatlca S
fModule Graph|—C) [| File: [Exanples.hs | dependency
-@—@ El ook | Module: |E><amPIES | |Impurts EI| |Impurted By E|| Ch e Ck|n
hndule Examples where Bl g_
}mpnr‘t Ehlqudel meChanlsmS
import Algorithms
import qualified FunFM as FH deteCt that there
--FM.hS import Mat
21 Al
—MemMonads.hs EEE:E bp PFE= ; have been
t .
(FH.update r0 cnt. rf) changes in parts
-Hat.hs where cnt = 1+FH, lookup rf rO
of the program
Stahs cntChip = chip (const count) initChip that mlg ht affect
Modules testcasel = test (cntChip testInputl) ﬂ the Valldlty Of

the certificate.

So it is marked
with a "?" ...

a4 Programatica Haskell Browser: Examples

|F|Ie EI|\.I'iewEI|Uﬂnduws EI|CertEI|

The environment

FHE:|Examples,hs

Module Graph I—O

|| provides a

El ﬁl Module: | Examples

ftmvors Sfmeorea & | symmary of the

fiodule Examples where

import ChipModel

import Algorithms

import qualified FumFH as FM
import Mat

3
[1-]
EH Q2| &
-] .E'
M| =
z|® =
= =
@ &
o
[

count f: Alg
count bp rf =
bp cnt %
(FM,update r0 cnt rf)
where chnt = 1+FM, lookup £f F0O

Memkonads.hs

i

cntChip = chip (const count) initChip

testoazel = test (cntChip testInput

certificate, which
indicates that it
needs
revalidating

=
%?ﬁﬁﬁ
AR Y
72
=

testInputl = replicate 10 (0, [0, 104

2

ipMode

test tst = putStr | unlines ., map s

Im

S HEHHEHHE
S|s z|Z
@ || @ 3
5 :

("]

=3

ludeText

B x
Field Value [
Certificate testcasel . TestCase
Current Status Meeds revalidation (source changed)

Marked valid on Thu Apr 22 21:55:36 PDT 2004
Test (identifier of type 10 {})) testcasel

Created by mpj

fhout this certificate type Test cases for regression testing

Validate Edit. View diagnostic output Remove

3|2

tected

L

ﬂ

=J

a4 Programatica Haskell Browser: Examples Bx
|F|IEEI|WEWEI|UHnduwsEI|CertEI| We Can See the
Module Graphl—) | [[| Files [Exaneles.hs || output from the
Files El ﬁl Module: |Examples | |Impurts EI| |Impl:lrtEd By ?| ﬂ I"St tlme the test

fiodule Examples where
import ChipModel
import Algorithms

bl

2182

-

%] =
=]
-
-
=
%)

import qualified FumFH as FM

Was run ...

import Mat
FunFk.hs ount ¢: Alg
—MemMonads.hs count. bp rf =
bp cnt %

(Fi,update r
whers ot = 1+FH, lookuy
Protected.hs

State hs cntChip = chip (const oo

testoazel = test (cntChi

testInputl = replicate 1
ipMode
test tst = putStr . unli

=3

=
ii\liiIEEII%II%I‘W\iillgglI%I!i\i%l{fi}fﬁf
E|E Sl o (+)
(= T|= il :
o (L &
b : B
[

ludeText

3|2
g
g

Thiz iz the first time thiz test haz been run,
Uzing the following output as reference to test againz in future runs,

[0l Hugz 98: Based on the Haskell 38 standard
I I Copyright (o) 1994-2003

I World Wide Webi httpidfhaskell,ora bugs
Report bugs to!: hugs—bugsihaskell,org

Hugz mode: Restart with command line option +38 for Haskell 93 mode

Type 7 for help
Examples> (0,[1,100,500,1000])
(0,[2,100,500,1000])
(0, [3, 100,500, 1000])
(0, [4, 100,500, 1000])
(0,[5.100,500,1000])
(0, [6, 100, 500, 1000])
(0, [7, Lo0, 500, 10007)
(0, (8,100,500, 10007)
(0, [9, 100,500, 1000])
(0, (10,100,500, 100073

Examples> [Leawing Hugs]

nﬁ
§|

Ll J

a4 Programatica Haskell Browser: Examples

|F|Ie EI|\.I'iewEI|Uﬂnduws EI|CertEI|

Module Graph I—O

I
=
0

bl

2182

-

%] =
=]
-
-
=
%)

-
=
-
=
=
-
[

Memkonads.hs

i

3|2
=
Tz
xRN
]
=
-
]

5
=
Z

ipMode

=
ii\liiIEEII%II%I‘W\iillgglI%I!i\i%l{fi}fﬁf
E|E Sl o (+)
(= T|= il :
o (L &
b : B
[

=3

ludeText

3|2
g
g

nﬁ
§|

=%
F“E:|Examples,hs
El El Module: |E><amPIES | |Impurts EI| |Impurted By E||

import ChipModel
import Algorithms

import Mat
count f: Alg

count bp rf =
bp cnt %

fiodule Examples where

import qualified FumFH as FM

Our attempt to
revalidate fails!

(FM,update ri
where cnt = 1+FH, looku

cntChip = chip (const oo

testoazel = test (cntChi
testInputl = replicate 1

test tst = putStr . unli

Warning: PFE =serwver not found, Things can get slow, ..
There has been changes that might affect the walidity of
the TestCase certificate Examplesdtestcazel, Re-running test,

Certificate marked invalid on Thu Apr 22 22:03:40 POT 2004
See diaghostic output for more info,

oK|

a4 Programatica Haskell Browser: Examples

|F|Ie EI|\.I'iewEI|Uﬂnduws EI|CertEI|

FHE:|Examples,hs

Module Graph I—O

3
[1-]
EH Q2| &
-] .E'
M| =
z|® =
= =
@ &
o
[

i

Memkonads.hs

El ﬁl Module: | Examples

| |Impurts EI| |Impurted By E||

fiodule Examples where

import ChipModel

import Algorithms

import qualified FumFH as FM
import Mat

count f: Alg
count bp rf =
bp cnt %

=
&
-
A

‘ii
T
I
T
=
2

5
=
Z

ipMode
test tst = putStr

Im

iFM,update r0 cnt rf)
where chnt = 1+FM, lookup £f F0O

cntChip = chip (const count) initChip

testoazel = test (cntChip testInputl) @
testInputl = replicate 100 (0, [0, 104,500, 100070 ¢+ [Packet]

. unlines . map show % tst

=
= = g
HEHHEHEHHE a?
B 2|0
[=]
-
g —
("]

3

-

ludeTex

iﬁ

3

tected

nﬁ
§|

And the
certificate icon
changes again to
reflect the
problem ...

a4 Programatica Haskell Browser: Examples

|F|Ie EI|\.I'iewEI|Uﬂnduws EI|CertEI|

Module Graph I—O

=l

[2=]

z| % 2|5 |«
= =
7 T
=
——
)
=
A

-
=
-
=
=
-
[

i

Memkonads.hs

3|2
=
Tz
xRN
]
=
-
]

5
=
Z

Iz

2

ipMode

=™
Igiwgl EE Ei\l!l!%l
=1
T|I=
=
=
2
@

=
2

-

ludeTex

3
T
8
T
=

nﬁ
?]

FHE:|Examples,hs

El ﬁl Module: | Examples

| |Impurts EI| |Impurted By E||

fiodule Examples where
import ChipModel
import Algorithms

import Mat
count f: Alg

count bp rf =
bp cnt %

import qualified FumFH as FM

If we look at the
diagnostics, we
can see that the
test now
produces
different output!

(FM,update ri
where cnt = 1+FH, looku

cntChip = chip (const oo

testoazel = test (cntChi
testInputl = replicate 1

test tst = putStr . unli

=R

The following differences were detected:
11, 20011, 20

< Exampless (0,[1.100,500,1000])
< (0,02, 100,500,1000])
0,[3,100,500,1000])
L4100, 500, 10007

L5, 100,500, 10007)

LB 00, 500, 10007)

L7 A00, 500, 1000])
L8100, 500, 10007)
L0900, 500, 10007)

0
0
0
0
0
0
0, (10,100,500, 10007)

<
<
<o
<
<
<
<
<

» Examplesr (0,[1,104,500,1000])
> 00,02,104, 500,1000]17
0.[3.104,500,1000]7)

004,104, 500,1000]7)

0[5, 104,500, 1000717
0.[6.104, 500, 100070
0.[7. 104, 500,1000]7)
0,[8,104,500,1000])

009,104, 500,1000]7)

I:Ir

>
*
>
>
¥
»
>
¥ (10,104,500, 10007

{
{
{
{
{
{
{
{

oK|

a4 Programatica Haskell Browser: Examples

|F|Ie EI|\.I'iewEI|Uﬂnduws EI|CertEI|

Module Graph I—O

3
[1-]
EH Q2| &
-] .E'
M| =
z|® =
= =
@ &
o
[

Memkonads.hs

i

=
%?ﬁﬁﬁ
AR Y
72
=

2

ipMode

Im

S HEHHEHHE
S|s z|Z
@ || @ 3
5 :

("]

=3

ludeText
tected

3|2

nﬁ
§|

FHE:|Examples,hs

El ﬁl Module: | Examples

| |Impurts EI| |Impurted By E||

import ChipModel
import Algorithms

import Mat
count f: Alg

count bp rf =
bp cnt %

test tst = putSte |

fiodule Examples where

import qualified FumFH as FM

But if we change
the program
back to the way
it was, then the
test succeeds ...

(FM,update ri
where cnt = 1+FH, looku

cntChip = chip (const oo

testoazel = test (cntChi

testInputl = replicate 1

unli

Warning: PFE =serwver not found, Things can get slow, ..
Tupe checking: Examples

There haz been no changes affecting the walidity of
the TestCasze certificate Examplesdtestcasel, Marking it as still walid,
Certificate marked valid on Thu Apr 22 22:00:00 POT 2004

oK|

a4 Programatica Haskell Browser: Examples Bx
|F|IEEI|WEWEI|UHnduwsEI|CertEI| And the
Module Graph-) ||| [| File: [Exanples.hs || certificate is valid
Fi El El Module: |E><amPIES | |Impurts EI| |Impurted By E||

= | once again!

fiodule Examples where

import ChipModel

import Algorithms

import qualified FumFH as FM
import Mat

]|])
Sz Q 1]
= || = =
M| = T
=2ls|3
- =
Z T

=

%]

count 1: Alg
MemMonads . hs count. bp rf =

bp cnt %

(FM,update r0 cht rf)
where chnt = 1+FM, lookup £f F0O

i

cntChip = chip (const count) initChip

testoazel = test (cntChip testInputl) ﬁ

testInputl = replicate 100 (0, [0, 100,500, 100070 ¢+ [Packet]
ipMode
test tst = putStr | unlines . map show % tst

=
= =|[m] el =
i! EEE 2 §?s§g
g 4| alElElz
m -

g w | T

; g £ 2

7 7

2
=
5
c
“

ludeTex

i

3
T
8
T
=

L

nﬁ
§|

b4 Programatica Haskell Browser: CertTypes

lcon Type Description

.é o Arfa Formal proof by shallow embedding of Haskell in Alfa
| say so0 A person certifies the validity of an assertion

v QuickCheck Tests run with the QuickcCheck tool
= Mono

@ Flover

ﬁ TestCase Test cases for regression testing

Proof by monotonicity

Formal proof by a dedicated Plogic prover hased on Strateqo

=

What we've seen here
looks a lot like the kind of
functionality provided by
the unit/regression
testing tools that are used
in extreme programming

Programatica generalizes
these ideas so that they
can be used with other
types of evidence too,
including testing, informal
assertions, and formal
methods ...

b4 mpjiblue:;/home/mpj
File Edit View Terminal Go Help
bash-2.05b$ cert 1ls [#] . and
Warning: PFE server not found. Things can get slow... .
Module Certificate Type Status Assertion Prog 'a matlca
Nat NatEqg Alfa Valid ..|-NatEq also prOVIdeS
Nat CongSucc Alfa valid ..|-CongSuce tOO|S to help
Nat EgNatRefl Alfa Valid .. | -EgNatRefl
Nat NotLtZero Alfa valid ..|-NotLtZero Manage the
Nat AddSucc Alfa Valid .. | -AddSucc .
Nat Peanodb Alfa Valid .. | -Peanodb Correspondlng
Nat Peano4 Alfa valid ..|-Peano4 Collect|on Of
Nat AddZero Alfa Valid .. |-AddZero .
Nat LeNatRefl Alfa valid ..|-LeNatRefl evidence
Nat LtNatSucc Alfa Valid .. |-LtNatSucc
Nat LeNatSucc Alfa Valid .. | -LeNatSucc throughOUt the
Nat LtNatPlus Alfa i.i’al::Ld ..|-LtNatPlus prOjeCt'S Ilfetlme
FunFM LookupUpdate Alfa valid .. | -LookupUpdateFM
FunfFM UpdateOther Alfa valid .. | -UpdateOtherFM
FunFM UpdateSame Alfa Valid .. | -UpdateSameFM
Memories StoreEqRange Alfa Valid . .| -5toreEqRange
Memories LookupUpdateM Alfa Valid .. | -LookupUpdateM
Memories UpdateOtherM Alfa valid . .| -UpdateOtherM
Memories Storelist Alfa Valid ..|-5torelist
Memories UpdateSameM Alfa Valid .. | -UpdateSameM Ok. SO hOW
Memories LookupInRange Alfa valid .. | -LookupInRange .
Memories LoadEgRange Alfa valid .. | -LoadEgRange does thls Work?
ChipModel CondSeparation Alfa Valid . .| -CondSeparation
ChipModel Separation Alfa Invalid ..|-Separation BaCk tO the talk
ChipModel AllGoodAlg Alfa Invalid ..|-AllGoodAlg .
ChipModel SameState Alfa Invalid ..|-SameState tO eXplaln -
ChipModel ISayCondSeparati I_say_so Valid .. | -CondSeparation]
Examples testcasel TestCase Valid | - ?

Esh-z.uslﬂ | 3

Programatica Servers:

Programatica Servers:

#A server is a Programatica plugin that
knows how to interpret the data in a
particular type of certificate

#Key to the extensible architecture
described earlier

#®Servers present a uniform API for
evidence management that is
independent of certificate type

Servers and Certificates:

Evidence —— _
Management | 3 | Registry

NS

Use of a registry enablesa certificates Server
flexible, extensible system O—

Use of servers and certificates @
permits a generic interface that

automates/hides the translation
between Programatica and any External
external tools Tool

Using QuickCheck:

#® QuickCheck is an independently developed
random testing tool (Hughes and Claessen,
Chalmers University, Sweden)

#® Haskell developer's perspective:

Haskell > | Executable || rng

program Code
gram |

property QUiCIECheCk % passed n tests: or
: Librar
annotations Yy Failed with

counterexample

Using QuickCheck with pfe:

#® Programatica implementer's perspective:

| - > | Haskell
Slicing
: program
Programatica +
source QuickCheck property
Library annotations
= [Executable | g
Code
(Slicing is a reusable -
transformation that @ Passed n tests: or
reduces the size of the !
code that is passed to Failed with

QuickCheck, and eliminates

spurious dependencies) counterexample

Using QuickCheck with pfe:

#® Programatica user's perspective:

Programatica
source

(-

The QuickCheck Server

‘= passed n tests; or

Failed with
counterexample

Integrating Multiple Servers:

#PFE currently includes servers for:
» supported assertions ("I say so")
= individual test cases
= random testing (QuickCheck)
= automated theorem proving (Plover)
m interactive proof editing (Alfa)

#(Others planned/in progress include:
s Isabelle/HOL
s Internal servers for certificate combination

Dealing with Change:

#® Our model, our specification, or both must be
revised to complete the task in hand

#® Whatever happens, some of the evidence we
have collected may no longer be valid.

Some evidence can be reconstructed
automatically, but some will be quite expensive
to reconstruct

@ In software development, change is the norm,
not the exception, so we need to handle
change as efficiently as possible.

Hashing to Detect Change:

#® When we parse a source file, we calculate a
cryptographically robust hash over the abstract syntax
of each definition

These hashes are cached within each project:
0ccl75b9c0f1b6a831c399e269772661
92eb5ffeebae2fec3ad71c777531578f
8la5fe3d544359af13848e6192eced75
445a4ca24e10824e03ef42e2el1d755d9
987dd8f5f1293857dc7932c14c7f3d80
8b3ee2a3933b9c01878bcddc298ff9e?2
bb53046df3ef7793ee7c37aec0d090d0
ad797e6f29cf558f7aeb8200563ecd3a
8959136e873441e58dcc9222777b6d47
84de7ff93b201e8c5b4cf0e006dfe848
7a5acfc765e1875a49daffd8561ae025

If we find a definition whose hash is not listed, then it
must be new/modified.

Using a Dependency Graph:

f

Properties

Using a Dependency Graph:

Properties

Using a Dependency Graph:

Properties

Benefits of Hashing:

Fine-grained dependency analysis reduces the
cost of reconstructing evidence after the
program has been maodified

By hashing over abstract syntax, we do not
flag any changes if the source text is
reformatted, if comments are changed, etc...

Re-establishing Validity:

How do we revalidate an invalid certificate?
It depends on the type of certificate

@ Typical process:

= Gather relevant data using sequent, dependencies,
and abstract syntax

= Translate to form suitable for external tool
= Save artifacts in certificate directory

= Invoke external tool

= Capture Potentially useful feedback

This could be a lot more expensive ...
@ ... but we hope it will be a lot less frequent

Separation:

Separation:

Packets are labeled for different channels

The behavior on one channel should not affect
the behavior on any other channel

» Alg,

Split Alg, erg

| Algs

Separation:

Packets are labeled for different channels

The behavior on one channel should not affect
the behavior on any other channel

Alg,

»
L

> Split Alg, erg

| Algs

Separation:

Packets are labeled for different channels

The behavior on one channel should not affect
the behavior on any other channel

» Alg,

> Split Alg, erg

| Algs

Separation:

Packets are labeled for different channels

The behavior on one channel should not affect
the behavior on any other channel

» Alg,

> Split Alg, erg

| Algs

Separation:

Packets are labeled for different channels

The behavior on one channel should not affect
the behavior on any other channel

» Alg,

Split Alg,

| Algs

erg

If we filter out blue packets before they reach

the chip ...

Separation:

Packets are labeled for different channels

The behavior on one channel should not affect
the behavior on any other channel

» Alg,

> Split Alg,

| Algs

erg

If we filter out blue packets before they reach

the chip ...

Separation:

Packets are labeled for different channels

The behavior on one channel should not affect
the behavior on any other channel

> Split

» Alg,

Alg,

| Algs

erg

... the remaining packets should flow through
as before and produce the same outputs ...

Separation:

Packets are labeled for different channels

The behavior on one channel should not affect
the behavior on any other channel

» Alg,

> Split Alg, erg

| Algs

... the remaining packets should flow through
as before and produce the same outputs ...

Separation:

Packets are labeled for different channels

The behavior on one channel should not affect
the behavior on any other channel

» Alg,

> Split Alg, erg

| Algs

... the remaining packets should flow through
as before and produce the same outputs ...

Separation:

Packets are labeled for different channels

The behavior on one channel should not affect
the behavior on any other channel

» Alg,

Split Alg,

| Algs

erg

Or we could let all of the packets through the

chip ...

Separation:

Packets are labeled for different channels

The behavior on one channel should not affect
the behavior on any other channel

Alg,

»
L

> Split Alg, erg

| Algs

Separation:

Packets are labeled for different channels

The behavior on one channel should not affect
the behavior on any other channel

» Alg,

> Split Alg, erg

| Algs

Separation:

Packets are labeled for different channels

The behavior on one channel should not affect
the behavior on any other channel

» Alg,

> Split Alg, erg

| Algs

... and only then discard the blue packets ...

Separation:

Packets are labeled for different channels

The behavior on one channel should not affect
the behavior on any other channel

» Alg,

> Split Alg, erg

| Algs

The final result should be the same: yellow and
red are independent of blue

The Separation Property:

Alg, Alg,
I%Algz%% ——%ng%%f
Alg;

This law guarantees that:

Outputs do not depend on inputs to
other channels.

#Channels do not generate spurious
outputs.

The Separation Property:

Alg, E Alg,
AIgZ I Algz
Alg;

assert Separation =
All algs :: Algs.
All select :: (ChannelId — Bool).
{ filter (select . fst) . chip algs }

{ chip algs . filter (select . fst) }

Validation and Combination:

We want to validate and combine evidence from
different sources:

Certificates carry sequents "Assume I Conclude"

that act as an interface/contract between
Programatica and any external tools.

Servers for external tools are used to test validity
(i.e., to check that a certificate's sequent is consistent
with its evidence)

Built-in servers use sequents of existing certificates to
guide the construction of new, composite certificates.

Combining Evidence:

GoodAlg, CondSeparation =
- Separation CondSeparation
GoodAlg

- Good AIg Separation

I— Separatlo

Property propagation:

Properties of imported components/ADTS

8

Properties of locally defined values

8

Properties that guarantee more secure
and reliable software

Separation Fails:

Packets are written into shared memory
Absolute addresses of packets are passed to

lower engine algorithms ...

100 200 300 » Alg,
> Split Alg,
| Algs

erg

... what if an algorit

nm writes the absolute

address into its output?

100 200

300

Separation Fails:

Packets are written into shared memory

Absolute addresses of packets are passed to
lower engine algorithms ...

filter after
300
100 200 300 + Alg,
B TR 300
>~ Split Alg, erg >

filter before

" Alg; 100 B

... what if an algorithm writes the absolute
address into its output?

Separation Restored!

This is a violation of the separation property!
Our analysis leads us to raise several questions:
Is it a bug in the code or the specification?
Is it a security problem (a covert channel)?
How can it be fixed?

#®Fixing packet start addressing

#Relative addressing

#Fixed address

®...

The method provides important feedback for the
designer/developer to discuss and then address ...

Why Haskell?

Why Haskell?

#® Purity: the result of a function, depends only on
the argument value (i.e., no hidden
dependencies)

Polymorphic Types: Powerful and expressive;
parametricity provides "theorems for free":

map :: Va.Vb. (a — b) — ([a] — [bl)

because this we can safely ... to the ...without exposing
works for any apply this values in those values (or
types ... function... this list ourselves)

® Formal semantics: a foundation for
meaningful assurance guarantees

Why Haskell? The Big Win:

Monads

Modular, scalable
encapsulation and reasoning
about effects

What are Effects?

Standard examples: State, I/O, Exceptions, ...

#® Why are they a concern?

s Interactions between effects can lead to
unexpected behavior, nasty bugs, and
compromised security

#® How do programmers tackle these
challenges? How do programming languages
nelp them?

= some specific examples

= generalized by monads

Exceptions in Java:

void method(int x) {
throw ExcepticXﬂe not found");

a method must declare any exceptions that
it throws

}

Exceptions in Java:

VO

®t

d method(int x) throws Exception {
throw Exceptio%e not found");

ne platform (compiler, verifier, VM) ensures
nat programmers follow this particular

C

iscipline.

Hidden State in Java:

class SecureProcess {
private byte[] key;

modifiers control access to portions of
state

the platform enforces these restriction

Exposing Hidden State in Java:

class SecureProcess {
private byte[] pubkey;

public byt®g] Metrubkey() {
return pu . provides both
, read and write
} access!
}

... but a careless programmer might open the
gates

and nothing in the platform will prevent this

Abstract Datatypes (ADTS):

interface Stack {
void push(int value);

int pop(Q);

}

interface constrains allowed operations
compiler enforces correct use
#reuse + managed cost of certification

#In these examples:

= the platform checks/guarantees some
properties

= Others are assured only by careful,
insightful programming

#Summary:
= ad-hoc mechanisms
= patchy coverage
= limited extensibility

= ultimate reliance on disciplined
programming

Monads: ADTs for computations

monads provide a uniform and general way
to encapsulate and control the scope of
effects

@ the type system tracks & enforces correct
usage

#® the platform guarantees safety

a general & extensible framework:
= handles state, exceptions, I/O, concurrency, ...
= new, user definable monads

= modular construction and separation using monad
transformers

"Mostly Types, a Little Theorem Proving"

#®The chip model (and separation proof)
abstracts away from specifics of any
instruction set

= Algorithms described at a high-level in terms
of their use of memory

@ Specific instruction sets can be modeled
on top of this framework

= Separation follows "for free" by type checking

"Mostly Types, a Little Theorem Proving"

#® Example: We have built a simple instruction set model
in 146 lines of Haskell code that allows us to write
packet processing algorithms like the following:

ToadI O rl
ToadC 1 rO
ToadC 0 r2
jmp Toop
jzero rl done
Toad rO r3
add r3 r2 r2
incr rO

decr rl

jmp loop
storeI r2 0O
ret

sumPacket

Toop

done

Al A A A A A A |

Separating Separation

Based on our experience with Osker:

Separation can be achieved for complex APIs
= Mostly through types

Separation can be separated from the API
= Assurance of separation independent from the API

Separation can be encapsulated using monads
and monad transformers

Alternatives to Haskell?

#®Purity, polymorphic type system, and
support for monads play critical roles in
our current use of Programatica

= 'Mostly types, a little theorem proving"
= "Separating separation”

#®They are not necessarily unique to Haskell

Alternatives to Haskell?

#® The Programatica certificate abstraction and our
architecture for evidence management seem to
be language independent

= More precisely, languages and logics can be seen as
parameters.

= Our current implementation does not yet reflect this.

Programatica for Domain-Specific languages?

Programatica for general purpose languages?

Multiple Logics:

Policy Logic

Certificate Logic

Programming Logic

Key points:

Building on powerful rapid prototyping
platform that has been used for problems of
engineering significance

Logic directly connected to programming
language

Certificate management:
= tracks dependencies and validity
= integrates evidence from many external sources

Formal methods and high-assurance within
the context/chaos of standard software
development processes

For more information:

http://www.cse.ogi.edu/pacsoft/projects/programatica/

