
Integrating
Programming,
Properties, and
Certification

Tutorial
Mark P. Jones

Pacific Software Research Center (PacSoft)
OGI School of Science & Engineering
Oregon Health & Science University

Current Team Members:

James Hook
Mark Jones
Dick Kieburtz
John Matthews
Andrew Tolmach
Peter White
Bill Harrison
Thomas Hallgren
Amber Telfer

Develop architecture and tools to support
construction and certification of high-assurance
systems

Integrate a broad (and open) spectrum of
assurance techniques (code review, testing,
formal methods, ...)

Application focus: assurance of security
properties (e.g., separation) in complex
software artifacts of engineering significance.

Programatica Goals:

Building High-assurance Software:
There are many ways to increase assurance:

Test programs on specific cases
Test programs on randomly generated test cases
derived from expected properties
Peer review
Use algorithms from published papers
Reason about equational properties
Reason about meta-properties (e.g., using types)
Use theorem provers to validate (translated) code
...

Each one can contribute significantly to increased
reliability, security, and trustworthiness

Evidence: A Unifying Feature

There are significant differences in the
applicability, assurance, and technical
details of each of these techniques.

But there is a common feature:
Each one results in some tangible form of
evidence that provides a basis for trust

Examples of Evidence:
There are many kinds of evidence:

An (input, expected output) pair for a test case
A property statement, and heuristics for guiding the
selection of "interesting" random test cases
A record of a code review meeting
A citation/URL for a published paper or result
An equational proof
A type and the associated derived property
A translation of the source program into a suitable
theory and a user-specified proof tactic
...

In Programatica, each different kind of evidence
is stored with the program as a certificate

Evidence and Certificates:
The certificate abstraction allows users to:

Capture evidence of validity (in many different
forms) and Collate it with source materials

Combine of evidence from different sources

Track dependencies and detect when
evidence needs to be revalidated because of
changes in the source code

Manage evidence by analyzing and reporting
on what has been established, identifying
weaknesses, guiding further effort, etc...

Program Development
Environment

The Programatica Vision:

Instrumenting
compiler

Random
test generator

Automatic Decision
Procedures

Interactive
Proof Editor

Model
Checking

User supplied,
domain-specific
toolsets...

Type
checking Program Development

&
Property Certification

Environment
Execute
& test

Code review

Theorem
Proving

The Programatica Vision:

Instrumenting
compiler

Random
test generator

Automatic Decision
Procedures

Interactive
Proof Editor

Model
Checking

User supplied,
domain-specific
toolsets...

Type
checking Program Development

&
Property Certification

Environment
Execute
& test

Code review

Theorem
Proving

The Programatica Vision:

lo hi
assure-o-meter

Reporting,
Analysis,

Management

Generic/Library
Components

Application
Specific
Components

Modular Construction
The modular design and construction of computer
systems ...

Generic/Library
Components

Application
Specific
Components

Modular, Automated Certification
... should be reflected in modular certification
processes that are used to validate them:

Generic/Library
Components

Application
Specific
Components

Systems Change:
Modularity minimizes the impact of change

CHANGED

Generic/Library
Components

Application
Specific
Components

Systems Change:
Modularity minimizes the cost of recertification

CHANGED?

Generic/Library
Components

Application
Specific
Components

Systems Change:
Modularity minimizes the cost of recertification
(automation helps too ...)

CHANGED

Generic/Library
Components

Application
Specific
Components

Assurance Requirements Change:
Minimize cost during early stages of
development

lo hi
assure-o-meter

Generic/Library
Components

Application
Specific
Components

Assurance Requirements Change:
Invest more in validation as overall
design begins to stabilize

lo hi
assure-o-meter

Generic/Library
Components

Application
Specific
Components

Assurance Requirements Change:
lo hi

assure-o-meter

Increase assurance as development
begins to mature

Generic/Library
Components

Application
Specific
Components

Assurance Requirements Change:
Maximize assurance before final
deployment

lo hi
assure-o-meter

Programatica Components:

A semantically rich, formal modeling
language (Haskell)

An expressive programming logic that
can be used to capture critical program
properties (P-logic)

A toolset for creating, maintaining, and
auditing the supporting evidence
(pfe,cert,...)

Sample Applications:

Channel separation for a (hypothetical)
crypto chip design

Domain/process separation in Osker, the
"Oregon Separation Kernel"

Preliminary Experiments in the context of
Trusted Web Server work at Galois
Connections

Running example in this talk

Split

Alg1

Alg2

Alg3

Merge

Example: Modeling a Crypto-Chip

One chip, multiple channels
Channels may use different algorithms
GUARANTEED separation between channels

An example based on a hypothetical crypto-chip
design
Conceptual view:

Upper Engine

Shared Memory

Lower Engine

Registers RegF

RegF

RegF
RegF

Algorithm

Alg

Alg

Alg

Basic architecture:

Basic architecture:

Upper Engine

Shared Memory

Lower Engine

Registers RegF

RegF

RegF
RegF

Algorithm

Alg

Alg

Alg

Receive packets, save
in shared memory.

Upper Engine

Shared Memory

Lower Engine

Registers RegF

RegF

RegF
RegF

Algorithm

Alg

Alg

Alg

Load saved registers &
algorithm for channel.Basic architecture:

Upper Engine

Shared Memory

Lower Engine

Registers RegF

RegF

RegF
RegF

Algorithm

Alg

Alg

Alg

Invoke lower engine
to process packet.Basic architecture:

Upper Engine

Shared Memory

Lower Engine

Registers RegF

RegF

RegF
RegF

Algorithm

Alg

Alg

Alg

Save register set, if
lower engine completes
successfully.

Basic architecture:

Upper Engine

Shared Memory

Lower Engine

Registers RegF

RegF

RegF
RegF

Algorithm

Alg

Alg

Alg

0

Zero out shared
register set.Basic architecture:

Upper Engine

Shared Memory

Lower Engine

Registers RegF

RegF

RegF
RegF

Algorithm

Alg

Alg

Alg

Pass processed packet
data to output.Basic architecture:

Building the Model:

Memories

MemMonad

StateMonad

Alg (algorithms) ChipModel

FM (finite maps)

Generic
Components

Application
Specific
Components

We developed an executable model of the
chip as a Haskell program: (~260 LOC)

Properties are written, parsed, analyzed, and
type-checked as an integral part of source text

Maintains consistency between code and
properties

Captures programmer expectations/intentions
as part of the programming process

Our experience: Just writing down properties
heightens thinking about correctness

"Programming as if Properties Matter"

Extreme Programming

Tests

Implementation

Testing and Programming proceed hand
in hand
Testing reveals errors in the program
Programming reveals errors in the test
cases

"Extreme Formal Methods"

Specification

Implementation

Programming and Validation proceed
hand in hand
Validation reveals errors in the program
Programming reveals errors in the
specification

Demo:

Programatica as a Modeling and
Development Environment

(At this point in the talk, I started
switching back and forward between the
slides and a demo of the Programatica
toolset. The next few slides show
screenshots from that demo with a few
additional annotations that I hope will
convey the key ideas ...)

A program
development
environment

Syntax coloring
and hyper linking

Embedded
property
definitions and
assertions

Embedded
certificates

Here's a program
that contains a
simple test case
certificate ...

Let's change the
code that is
being tested ...

Programatica's
dependency
checking
mechanisms
detect that there
have been
changes in parts
of the program
that might affect
the validity of
the certificate.

So it is marked
with a "?" ...

The environment
provides a
summary of the
certificate, which
indicates that it
needs
revalidating

We can see the
output from the
first time the test
was run ...

Our attempt to
revalidate fails!

And the
certificate icon
changes again to
reflect the
problem ...

If we look at the
diagnostics, we
can see that the
test now
produces
different output!

But if we change
the program
back to the way
it was, then the
test succeeds ...

And the
certificate is valid
once again!

What we've seen here
looks a lot like the kind of
functionality provided by
the unit/regression
testing tools that are used
in extreme programming

Programatica generalizes
these ideas so that they
can be used with other
types of evidence too,
including testing, informal
assertions, and formal
methods ...

... and
Programatica
also provides
tools to help
manage the
corresponding
collection of
evidence
throughout the
project's lifetime

Ok. So how
does this work?

Back to the talk
to explain ...

Programatica Servers:

Programatica Servers:

A server is a Programatica plugin that
knows how to interpret the data in a
particular type of certificate

Key to the extensible architecture
described earlier

Servers present a uniform API for
evidence management that is
independent of certificate type

cert

c2 cn
…

source

dependency
info

c1

descriptor

hi
cac
hed
bro
wse

r
dat
a

source source…

Servers and Certificates:

Server

Evidence
Management

Tools
Registry

Use of a registry enables a
flexible, extensible system

Use of servers and certificates
permits a generic interface that
automates/hides the translation
between Programatica and any
external tools

1

3

2
4

5

External
Tool

certificates

Using QuickCheck:

QuickCheck is an independently developed
random testing tool (Hughes and Claessen,
Chalmers University, Sweden)

Haskell developer's perspective:

Haskell
program

+
property

annotations
QuickCheck

Library

Executable
Code

rng

Passed n tests; or

Failed with
counterexample

Using QuickCheck with pfe:

Programatica implementer's perspective:

Programatica
source QuickCheck

Library

Executable
Code

rng

Passed n tests; or

Failed with
counterexample

Haskell
program

+
property

annotations

Slicing

(Slicing is a reusable
transformation that
reduces the size of the
code that is passed to
QuickCheck, and eliminates
spurious dependencies)

Using QuickCheck with pfe:

Programatica user's perspective:

Programatica
source QuickCheck

Library

Executable
Code

rng

Passed n tests; or

Failed with
counterexample

Haskell
program

+
property

annotationsThe QuickCheck Server

Integrating Multiple Servers:

PFE currently includes servers for:
supported assertions ("I say so")
individual test cases
random testing (QuickCheck)
automated theorem proving (Plover)
interactive proof editing (Alfa)

Others planned/in progress include:
Isabelle/HOL
Internal servers for certificate combination

Dealing with Change:

Our model, our specification, or both must be
revised to complete the task in hand

Whatever happens, some of the evidence we
have collected may no longer be valid.

Some evidence can be reconstructed
automatically, but some will be quite expensive
to reconstruct

In software development, change is the norm,
not the exception, so we need to handle
change as efficiently as possible.

Hashing to Detect Change:
When we parse a source file, we calculate a
cryptographically robust hash over the abstract syntax
of each definition

These hashes are cached within each project:
0cc175b9c0f1b6a831c399e269772661
92eb5ffee6ae2fec3ad71c777531578f
81a5fe3d544359af13848e6192ece475
445a4ca24e10824e03ef42e2e1d755d9
987dd8f5f1293857dc7932c14c7f3d80
8b3ee2a3933b9c01878bcddc298ff9e2
bb53046df3ef7793ee7c37aec0d090d0
ad797e6f29cf558f7aeb8200563ecd3a
8959f36e873441e58dcc9222777b6d47
84de7ff93b201e8c5b4cf0e006dfe848
7a5acfc765e1875a49daffd8561ae025

If we find a definition whose hash is not listed, then it
must be new/modified.

Using a Dependency Graph:

a

h

j

il

k

b

c

m ge

f

d

Properties

Definitions

Primitives

Using a Dependency Graph:

a

h

j

il

k

b

c

m ge

f

d

Properties

Definitions

Primitives

New Definition!

Using a Dependency Graph:

a

h

j

il

k

b

c

m ge

f

d

Properties

Definitions

Primitives

Potential change

Benefits of Hashing:

Fine-grained dependency analysis reduces the
cost of reconstructing evidence after the
program has been modified

By hashing over abstract syntax, we do not
flag any changes if the source text is
reformatted, if comments are changed, etc...

Re-establishing Validity:
How do we revalidate an invalid certificate?

It depends on the type of certificate

Typical process:
Gather relevant data using sequent, dependencies,
and abstract syntax
Translate to form suitable for external tool
Save artifacts in certificate directory
Invoke external tool
Capture Potentially useful feedback

This could be a lot more expensive ...
... but we hope it will be a lot less frequent

Separation:

Separation:
Packets are labeled for different channels
The behavior on one channel should not affect
the behavior on any other channel

Split

Alg1

Alg2

Alg3

Merge

Separation:
Packets are labeled for different channels
The behavior on one channel should not affect
the behavior on any other channel

Split

Alg1

Alg2

Alg3

Merge

Separation:
Packets are labeled for different channels
The behavior on one channel should not affect
the behavior on any other channel

Split

Alg1

Alg2

Alg3

Merge

Separation:
Packets are labeled for different channels
The behavior on one channel should not affect
the behavior on any other channel

Split

Alg1

Alg2

Alg3

Merge

Separation:
Packets are labeled for different channels
The behavior on one channel should not affect
the behavior on any other channel

Split

Alg1

Alg2

Alg3

Merge

If we filter out blue packets before they reach
the chip ...

Separation:
Packets are labeled for different channels
The behavior on one channel should not affect
the behavior on any other channel

Split

Alg1

Alg2

Alg3

Merge

If we filter out blue packets before they reach
the chip ...

Separation:
Packets are labeled for different channels
The behavior on one channel should not affect
the behavior on any other channel

Split

Alg1

Alg2

Alg3

Merge

... the remaining packets should flow through
as before and produce the same outputs ...

Separation:
Packets are labeled for different channels
The behavior on one channel should not affect
the behavior on any other channel

Split

Alg1

Alg2

Alg3

Merge

... the remaining packets should flow through
as before and produce the same outputs ...

Separation:
Packets are labeled for different channels
The behavior on one channel should not affect
the behavior on any other channel

Split

Alg1

Alg2

Alg3

Merge

... the remaining packets should flow through
as before and produce the same outputs ...

Separation:
Packets are labeled for different channels
The behavior on one channel should not affect
the behavior on any other channel

Split

Alg1

Alg2

Alg3

Merge

Or we could let all of the packets through the
chip ...

Separation:
Packets are labeled for different channels
The behavior on one channel should not affect
the behavior on any other channel

Split

Alg1

Alg2

Alg3

Merge

Separation:
Packets are labeled for different channels
The behavior on one channel should not affect
the behavior on any other channel

Split

Alg1

Alg2

Alg3

Merge

Separation:
Packets are labeled for different channels
The behavior on one channel should not affect
the behavior on any other channel

Split

Alg1

Alg2

Alg3

Merge

... and only then discard the blue packets ...

Separation:
Packets are labeled for different channels
The behavior on one channel should not affect
the behavior on any other channel

Split

Alg1

Alg2

Alg3

Merge

The final result should be the same: yellow and
red are independent of blue

This law guarantees that:
Outputs do not depend on inputs to
other channels.
Channels do not generate spurious
outputs.

Alg1

Alg2

Alg3

Alg1

Alg2

Alg3

=
The Separation Property:

assert Separation =

All algs :: Algs.

All select :: (ChannelId → Bool).

{ filter (select . fst) . chip algs }

===

{ chip algs . filter (select . fst) }

The Separation Property:
Alg1

Alg2

Alg3

Alg1

Alg2

Alg3

=

Validation and Combination:
We want to validate and combine evidence from
different sources:

Certificates carry sequents "Assume ` Conclude"
that act as an interface/contract between
Programatica and any external tools.

Servers for external tools are used to test validity
(i.e., to check that a certificate's sequent is consistent
with its evidence)

Built-in servers use sequents of existing certificates to
guide the construction of new, composite certificates.

Combining Evidence:
`

CondSeparation
GoodAlg, CondSeparation

` Separation

GoodAlg `
Separation` GoodAlg

` Separation

Property propagation:

Properties of imported components/ADTS

Properties of locally defined values

Properties that guarantee more secure
and reliable software

Separation Fails:
Packets are written into shared memory
Absolute addresses of packets are passed to
lower engine algorithms ...

Split

Alg1

Alg2

Alg3

Merge

100 200 300

... what if an algorithm writes the absolute
address into its output?

100 200 300

Separation Fails:
Packets are written into shared memory
Absolute addresses of packets are passed to
lower engine algorithms ...

Split

Alg1

Alg2

Alg3

Merge

100 200 300

... what if an algorithm writes the absolute
address into its output?

100 200 300

100 300

filter after

100 200
filter before

Separation Restored!

The method provides important feedback for the
designer/developer to discuss and then address ...

This is a violation of the separation property!
Our analysis leads us to raise several questions:

Is it a bug in the code or the specification?
Is it a security problem (a covert channel)?
How can it be fixed?

Fixing packet start addressing
Relative addressing
Fixed address
...

Why Haskell?

Why Haskell?
Purity: the result of a function, depends only on
the argument value (i.e., no hidden
dependencies)

Polymorphic Types: powerful and expressive;
parametricity provides "theorems for free":

map :: ∀a.∀b. (a → b) → ([a] → [b])

Formal semantics: a foundation for
meaningful assurance guarantees

we can safely
apply this
function…

… to the
values in
this list

…without exposing
those values (or

ourselves)

because this
works for any

types …

Why Haskell? The Big Win:

Monads

Modular, scalable
encapsulation and reasoning

about effects

What are Effects?
Standard examples: State, I/O, Exceptions, ...

Why are they a concern?
Interactions between effects can lead to
unexpected behavior, nasty bugs, and
compromised security

How do programmers tackle these
challenges? How do programming languages
help them?

some specific examples
generalized by monads

Exceptions in Java:

void method(int x) {

...

throw Exception("File not found");

...

}

a method must declare any exceptions that
it throws

Exceptions in Java:

void method(int x) throws Exception {

...

throw Exception("File not found");

...

}

the platform (compiler, verifier, VM) ensures
that programmers follow this particular
discipline.

Hidden State in Java:

class SecureProcess {
private byte[] key;
...

}

modifiers control access to portions of
state
the platform enforces these restriction

Exposing Hidden State in Java:

class SecureProcess {
private byte[] pubkey;
...
public byte[] getPubkey() {

return pubkey;
}

}

... but a careless programmer might open the
gates
and nothing in the platform will prevent this
...

provides both
read and write

access!

Abstract Datatypes (ADTs):

interface Stack {

void push(int value);

int pop();

...

}

interface constrains allowed operations
compiler enforces correct use
reuse + managed cost of certification

In these examples:
the platform checks/guarantees some
properties
others are assured only by careful,
insightful programming

Summary:
ad-hoc mechanisms
patchy coverage
limited extensibility
ultimate reliance on disciplined
programming

Monads: ADTs for computations
monads provide a uniform and general way
to encapsulate and control the scope of
effects

the type system tracks & enforces correct
usage

the platform guarantees safety

a general & extensible framework:
handles state, exceptions, I/O, concurrency, ...
new, user definable monads
modular construction and separation using monad
transformers

"Mostly Types, a Little Theorem Proving"

The chip model (and separation proof)
abstracts away from specifics of any
instruction set

Algorithms described at a high-level in terms
of their use of memory

Specific instruction sets can be modeled
on top of this framework

Separation follows "for free" by type checking

"Mostly Types, a Little Theorem Proving"

sumPacket = loadI 0 r1 -- read size value into r1
$ loadC 1 r0 -- set pointer to start of data
$ loadC 0 r2 -- initialize running total
$ jmp loop

loop = jzero r1 done
$ load r0 r3 -- read value from packet
$ add r3 r2 r2 -- add to running total
$ incr r0 -- move to next packet location
$ decr r1
$ jmp loop

done = storeI r2 0 -- save result at start of packet
$ ret

Example: We have built a simple instruction set model
in 146 lines of Haskell code that allows us to write
packet processing algorithms like the following:

Separating Separation
Based on our experience with Osker:

Separation can be achieved for complex APIs
Mostly through types

Separation can be separated from the API
Assurance of separation independent from the API

Separation can be encapsulated using monads
and monad transformers

Alternatives to Haskell?

Purity, polymorphic type system, and
support for monads play critical roles in
our current use of Programatica

"Mostly types, a little theorem proving"
"Separating separation"

They are not necessarily unique to Haskell

Alternatives to Haskell?

The Programatica certificate abstraction and our
architecture for evidence management seem to
be language independent

More precisely, languages and logics can be seen as
parameters.
Our current implementation does not yet reflect this.

Programatica for Domain-Specific languages?

Programatica for general purpose languages?

Multiple Logics:

Programming Logic

Certificate Logic

Policy Logic

Key points:
Building on powerful rapid prototyping
platform that has been used for problems of
engineering significance

Logic directly connected to programming
language

Certificate management:
tracks dependencies and validity
integrates evidence from many external sources

Formal methods and high-assurance within
the context/chaos of standard software
development processes

For more information:

http://www.cse.ogi.edu/pacsoft/projects/programatica/

