1Prc>c>fcr<)1‘:c_:I

Proof Robustness

in the selL4® verification

Gerwin Klein | Rafal Kolanski | HCSS 2021

4.] why Robustness?

The sel4 verification

» The verified selL4 microkernel:
- high-assurance code base

arge, successful proof

. interactive proof in Isabelle/HOL

» The verified selL4 microkernel:
- high-assurance code base
. large, successful proof
. interactive proof in Isabelle/HOL

» Change Is inevitable
. change is painful in normal software
. more painful In high-assurance software

. proofs can help, but:
. changing proofs is additional cost

O D
32 Active Pull Requests

19 19713
Merged Pull Requests Open Pull Requests

Excluding merges, 14 authors have pushed 43 commits to
master and 50 commits to all branches. On master, 173 files
have changed and there have been 3,898 additions and
872 deletions.

» The verified selL4 microkernel:
NiIgh-assurance code base

arge, successful proof

. interactive proof in Isabelle/HOL

> Change |S |neV|ta b‘e 32 Active Pull Requests
. change is painful in normal software 16 s
more painful in high-assurance software Merged Pull Requests Open Pull Requests

proofs can help, but:
. changing proofs is additional cost

Excluding merges, 14 authors have pushed 43 commits to
master and 50 commits to all branches. On master, 173 files
have changed and there have been 3,898 additions and

Need robustness of proofs against change

Indications of robustness in selL4 proofs

» Started as research project:
. 200k lines of proof, 10k lines of C code
. 1 platform and architecture
. functional correctness down to C

Indications of robustness in selL4 proofs

» Started as research project:
. 200k lines of proof, 10k lines of C code
.] platform and architecture
. functional correctness down to C

> Now: larger, deeper, more versatile
. 3 architectures, multiple configuration
. deep security properties
. proofs down to binaries
- 1 million lines of proof

» Started as research project:
. 200k lines of proof, 10k lines of C code
.] platform and architecture
. functional correctness down to C

» Now: larger, deeper, more versatile
. 3 architectures, multiple configuration
. deep security properties
. proofs down to binaries
- 1 million lines of proof

80000
70000
60000
50000
40000
30000
20000

10000 ‘
Il

9 mH\' N hll |||!| |

IIL H

.

<bo>Q ,\\
SR s

okl

1AL

Q, NN

o)

S

| bl

I'n

,\('o

I)Ih

|

|I|‘

i

L

Q

l || M

IL

\1|h|

\n

i

|1‘||\

’||||H |

‘II

Hln

il

» Started as research project:
. 200k lines of proof, 10k lines of C code
.] platform and architecture
. functional correctness down to C

> Now: larger, deeper, more versatile
. 3 architectures, multiple configuration
deep security properties
proofs down to binaries
- 1 million lines of proof

1000000

900000

800000

700000

600000

500000

400000

300000

200000

100000

B (oc per article

» Started as research project:

. 200Kk lines of proof, 10k lines of C code B (oc per article
- 1 platform and architecture _—
. functional correctness down to C 300000

> Now: larger, deeper, more versatile

400000

. 3 architectures, multiple configuration
. deep security properties

300000

200000

proofs down to binaries 100000
- 1 million lines of proof

» And: we, the proof engineers, are still alive...

Why care about robustness?

g

Why care about robustness?

» Mathematical truth vs customer wishes

RN

Why care about robustness?

» Mathematical truth vs customer wishes

» Research project vs commercial interest

LN

Why care about robustness?

» Mathematical truth vs customer wishes
» Research project vs commercial interest

» Scale of proof and scale of team

RN

Why care about robustness?

» Mathematical truth vs customer wishes
» Research project vs commercial interest
» Scale of proof and scale of team

> Agility
. Cost & Effort
- Time to market
. Open-source contributions

Dimensions of change

» Code

. new feature (new system-call), new architecture (RISC-V), new platform (imx8)
. refactoring
. optimisation

Code

Dimensions of change

» Code

. new feature (new system-call), new architecture (RISC-V), new platform (imx8)
. refactoring
. optimisation Proof

> Proof
. New property
. refactoring for faster proofs
. refactoring for nicer proofs

Code

Dimensions of change

» Code

new feature (new system-call), new architecture (RISC-V), new platform (imx8)
refactoring
. optimisation Proof

> Proof
new property
refactoring for faster proofs
refactoring for nicer proofs

Technology

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
‘0
*

» Technology

prover update o

Dimensions of change

» Code

. new feature (hew system-call), new architecture (RISC-V), new platform (imx8)
. refactoring
. optimisation Proof

> Proof
. New property
. refactoring for faster proofs
. refactoring for nicer proofs

Technology

*
*
*
*
*
*
*
*
*
*
*
*
*
*
‘0
*

» Technology
. prover update

Not: mplementation errors Code

(but maybe spec changes)

4.] Dealing with Change

Approaches to increasing robustness

> Types
» Automation
» Semantic

. Abstraction

. Modularity & Parametricity

» Process

LN

Types

» Automatic. Free theorems!

LN

Types

» Automatic. Free theorems!

» Basic:
- Make Invalid states unrepresentable
- |nvariants: "ASIDs have at most 7 bits"
. Effect level: "function Is read-only, but can fail"

Types

» Automatic. Free theorems!

» Basic:
Make invalid states unrepresentable
Invariants: "ASIDs have at most /7 bits"
Effect level: "function is read-only, but can fail"

» More advanced:
. State projections to constrain properties:
. "only depends on TCB contents"
. State projections to constrain effects (lenses):
. "only operates on threads"
. Combination produces free independence theorems

Types

» Automatic. Free theorems!

» Basic:
- Make Invalid states unrepresentable
- |nvariants: "ASIDs have at most 7 bits"
. Effect level: "function Is read-only, but can fail"

» More advanced:
. State projections to constrain properties:

» Why not just always more types?

. introducing more types also is change, needs effort/benefit trade-off
. can be too much hassle (e.g. 7-bit word in Haskell)
. potentially type system not powerful enough

> Types
» Automation
» Semantic

. Abstraction

Modularity & Parametricity

» Process

10

Automation

» Automation is cheaper than manual labor
Higher chance that proof still works

SUt:

- Needs more expertise to Implement

- Needs foresight to help against change

- |Information density in some selL4 proofs still low

» The "easy" way out
. Can replace other technigues

» Every bit helps

. Automating small tasks frees up time for
deeper things

11

» Automation is cheaper than manual labor selL4 proof example: " crunches

Higher chance that proof still works
crunches tcbSchedAppend, tcbSchedDequeue, tcbSchedE

Sut: for typ at'[wp]: "As. P (typ at' T p s)"
Needs more expertise to implement and tcb_at'[wp]: "tcb_at® t"

: : and ctes of[wp]: "As. P (ctes of s)”
Needs foresight to help against change and irq states[wp]l: valid irq states'

lallelsagElulelaRe ClaSInAla R elna CRScIR“Nelgelol iR ulINIe)WAN and 1rqg node’[wp]: "As. P (1rg_node' s)"
and ct'[wp]: "As. P (ksCurThread s)"

» The "easy" way out and global refs'[wp]: valid global refs'
, and ifunsafe'[wp]: 1f unsafe then cap’
Can replace other techniques and cap to'[wp]l: "ex nonz cap to' p"
-] and state refs of'[wp]: "As. P (state refs of' s)
> Every bit helps and idle'[wp]: valid idle’
. Automating small tasks frees up time for (simp: unless_def crunch_simps)

deeper things

11

» Automation Is cheaper than manual labor
Higher chance that proof still works

Sut: for
Needs more expertise to implement ang
. . al
Needs foresight to help against change and
Information density in some sel 4 proofs still low [l
and
» The "easy" way out ang
. al
Can replace other techniques and
_ : and
> Every bit helps
. Automatipm ~anll +aclc Framne 1A Fiaas FAr
deeper t

selL4 proof example: crunches”

crunches tcbSchedAppend, tcbSchedDequeue, tcbSchedE

typ at'[wp]: "As. P (typ at' T p s)"
tcb at'[wp]: "tcb at' t"

ctes of[wp]: "As. P (ctes of s)”

irq states[wp]: valid irq states'
irq node'[wp]: "As. P (1rq node' s)”
ct'[wp]l: "As. P (ksCurThread s)"

global refs'[wp]: valid global refs'
ifunsafe'[wp]: 1f unsafe then cap’
cap to'[wp]: "ex nonz cap to' p"
state refs of'[wp]: "As. P (state refs of' s)
e'[wp]: valid idle’
: unless def crunch simps

> WWhy not just automate the whole proof?

First examples exist, but not there yet for our domain
. Automatic proof repair: first steps exist, but much more to do

11

> Types
» Automation
» Semantic

e Abstraction

e Modularity & Parametricity

» Process

12

Semantic approaches

» Abbstraction, Parametricity, Modularity

LN

13

Semantic approaches

» Abbstraction, Parametricity, Modularity

y do they work for robustness?
. Hide detalls

- "Free" robustness against change of these detalls
. Can be extremely effective

LN

13

Semantic approaches

» Abbstraction, Parametricity, Modularity

» \Why do they work for robustness?
. Hide detalls
. "Free" robustness against change of these detalls
. Can be extremely effective

> Why not just use them everywhere?
. Requires expertise and foresight
f change breaks the abstraction or interface, cost can be high

13

Abstraction

» Abstraction in selL.4 proof stack: Security Proofs
. Abstract spec + refinement stack
. Security proofs much lower effort
- Robust against many optimisations

Abstract Specification

» Abstraction in proof scripts:

. Use rule collections (bit_sizes) instead of
specific rule (PT_lo_bit_def)

. Use proof method (unfold_bit_size) instead of
rule applications (simp add: ..)

14

Abstraction

» Abstraction in selL4 proof stack:

. Abstract spec + refinement stack A
. Security proofs much lower effort

: L : Abstract Specification
- Robust against many optimisations

» Abstraction in proof scripts:

. Use rule collections (bit_sizes) instead of A

specific rule (PT_lo_bit_def)

. Use proof method (unfold_bit_size) instead of
rule applicz '

C Code

» WWhy not just more abstraction?
- Needs brain power and experience (expensive)
- Needs abstractable surface
. Counter-examples: mixed-criticality features, multicore

14

Modularity & Parametricity

» Example: split proof into arch-specific and generic part

. Generic part Is a parametric module
. Has been effective, but used only for part of proof
. More of this In development

» Example: parametric page table structures in selL.4/RISC-V
- Regular structure
- Much faster proof completion

» Example: proof libraries and tools
. C-Parser, AutoCorres, wp, word library, monad library
. Can be maintained independently
. But: tech upgrade can break proofs

15

Modularity & Parametricity

» Example: split proof into arch-specific and generic part

. Generic part Is a parametric module
. Has been effective, but used only for part of proof
. More of this In development

» Example: parametric page table structures in selL.4/RISC-V
- Regular structure
- Much faster proof completion

» Example: proof libraries and tools
. C-Parser, AutoCorres, wp, word library, monad library
. Can be maintainedindanandan
. But: tech upgrad

> Why not just everything modular?
- Yes, as far as possible

. Can fight with code structure and performance

15

> Types
» Automation
» Semantic

. Abstraction

Modularity & Parametricity

» Process

LN

16

Process

» Code change often originates outside verification

- New feature idea, platform port, optimisation, etc
. Open-source contributions

17

» Code change often originates outside verification

- New feature idea, platform port, optimisation, etc
. Open-source contributions

» Many on non-verified platforms or feature-combinations
. Should be invisible to the proofs

But are not always

Provide way for developer to check proof impact:

Pre-process test on GitHub

Proof testboard

if (config_set(CONFIG_ARM_HYPERVISOR

if (0 && 10) {

17

» Code change often originates outside verification

New feature idea, platform port, optimisation, etc
. Open-source contributions

» Many on non-verified platforms or feature-combinations
. Should be invisible to the proofs

3ut are not always if (config_set(CONFIG_ARM_HYPERVISOR

Provide way for developer to check proof impact:
Pre-process test on GitHub
Proof testboard

if (0 && 10) {

» C| pipeline for selL4 proofs:

. Automatically check proof for
code and proof changes

. Automatically record which proof versions
apply to which code version

Proofs always releasable

ssrg-bamboo commented 20 days ago Member (O) ---

Hello, I'm a bot! I've set up a proof testboard for this PR here, and results
should show up as pending in status checks in a few minutes.

17

We covered:

> Types
» Automation
» Semantic

. Abstraction

. Modularity & Parametricity

» Process

LN

18

4 Summary

Some robustness required

» Managing software Is hard
Large-scale software engineering is far from solved

» Should not expect large-scale proof engineering to be easy

LN

20

Some robustness required

» Managing software Is hard
Large-scale software engineering Is far from solved

» Should not expect large-scale proof engineering to be easy

» High assurance still takes time, still not cheap
> But:
. Sltuation Is constantly improving
- High assurance can be continually maintained

. Robustness can be increased

« Commercially viable

20

» Managine We're betting the company on it
Large-sce

JF’:‘()()fcrczf‘t_-_-l

https://proofcraft.systems

« Commercially viable

20

https://proofcraft.systems

