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 Need robustness of proofs against change
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‣ And: we, the proof engineers, are still alive...
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Why care about robustness?

‣ Mathematical truth vs customer wishes

‣ Research project vs commercial interest

‣ Scale of proof and scale of team

‣ Agility 
• Cost & Effort 
• Time to market 
• Open-source contributions
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Not: implementation errors 

(but maybe spec changes)



Dealing with Change



Approaches to increasing robustness
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‣ Types 

‣ Automation 

‣ Semantic 

• Abstraction 

• Modularity & Parametricity 

‣ Process



Types

‣ Automatic. Free theorems!

9



Types

‣ Automatic. Free theorems!

‣ Basic: 
• Make invalid states unrepresentable 
• Invariants: "ASIDs have at most 7 bits" 
• Effect level: "function is read-only, but can fail"

9



Types

‣ Automatic. Free theorems!

‣ Basic: 
• Make invalid states unrepresentable 
• Invariants: "ASIDs have at most 7 bits" 
• Effect level: "function is read-only, but can fail"

‣ More advanced: 
• State projections to constrain properties: 

• "only depends on TCB contents" 
• State projections to constrain effects (lenses): 

• "only operates on threads" 
• Combination produces free independence theorems

9



Types

‣ Automatic. Free theorems!

‣ Basic: 
• Make invalid states unrepresentable 
• Invariants: "ASIDs have at most 7 bits" 
• Effect level: "function is read-only, but can fail"

‣ More advanced: 
• State projections to constrain properties: 

• "only depends on TCB contents" 
• State projections to constrain effects (lenses): 

• "only operates on threads" 
• Combination produces free independence theorems

9

‣ Why not just always more types? 

• introducing more types also is change, needs effort/benefit trade-off 

• can be too much hassle (e.g. 7-bit word in Haskell) 

• potentially type system not powerful enough
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Automation
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• Higher chance that proof still works 
• But: 
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seL4 proof example: `crunches`

‣ Why not just automate the whole proof? 

• First examples exist, but not there yet for our domain 
• Automatic proof repair: first steps exist, but much more to do
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‣ Abstraction, Parametricity, Modularity

‣Why do they work for robustness? 
• Hide details 

• "Free" robustness against change of these details 
• Can be extremely effective

‣ Why not just use them everywhere? 
• Requires expertise and foresight 
• If change breaks the abstraction or interface, cost can be high



Abstraction

‣ Abstraction in seL4 proof stack: 
• Abstract spec + refinement stack 
• Security proofs much lower effort 
• Robust against many optimisations 

‣ Abstraction in proof scripts: 
• Use rule collections (bit_sizes) instead of 

specific rule (PT_16_bit_def) 
• Use proof method (unfold_bit_size) instead of 

rule applications (simp add: ..)
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C Code

Design

Abstract Specification

Security Proofs

Binary‣ Why not just more abstraction? 
• Needs brain power and experience (expensive) 
• Needs abstractable surface 
• Counter-examples: mixed-criticality features, multicore



Modularity & Parametricity

‣ Example: split proof into arch-specific and generic part 
• Generic part is a parametric module 
• Has been effective, but used only for part of proof 
• More of this in development 

‣ Example: parametric page table structures in seL4/RISC-V 
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• C-Parser, AutoCorres, wp, word library, monad library 
• Can be maintained independently 
• But: tech upgrade can break proofs
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‣ Why not just everything modular? 
• Yes, as far as possible 
• Can fight with code structure and performance
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‣ Many on non-verified platforms or feature-combinations 
• Should be invisible to the proofs 
• But are not always 
• Provide way for developer to check proof impact: 

• Pre-process test on GitHub 
• Proof testboard

‣ CI pipeline for seL4 proofs: 
• Automatically check proof for 

code and proof changes 
• Automatically record which proof versions 

apply to which code version 
• Proofs always releasable
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We covered:



Summary
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We're betting the company on it 

https://proofcraft.systems
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