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 Need robustness of proofs against change
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‣ And: we, the proof engineers, are still alive...
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Why care about robustness?

‣ Mathematical truth vs customer wishes

‣ Research project vs commercial interest

‣ Scale of proof and scale of team

‣ Agility

• Cost & Effort

• Time to market

• Open-source contributions
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Not: implementation errors


(but maybe spec changes)



Dealing with Change



Approaches to increasing robustness
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‣ Types


‣ Automation


‣ Semantic


• Abstraction


• Modularity & Parametricity


‣ Process
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‣ Why not just always more types?


• introducing more types also is change, needs effort/benefit trade-off


• can be too much hassle (e.g. 7-bit word in Haskell)


• potentially type system not powerful enough
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Automation

‣ Automation is cheaper than manual labor

• Higher chance that proof still works

• But:


• Needs more expertise to implement

• Needs foresight to help against change


• Information density in some seL4 proofs still low


‣ The "easy" way out

• Can replace other techniques


‣ Every bit helps

• Automating small tasks frees up time for 

deeper things
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seL4 proof example: `crunches`

‣ Why not just automate the whole proof?


• First examples exist, but not there yet for our domain

• Automatic proof repair: first steps exist, but much more to do
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‣ Abstraction, Parametricity, Modularity

‣Why do they work for robustness?

• Hide details


• "Free" robustness against change of these details

• Can be extremely effective

‣ Why not just use them everywhere?

• Requires expertise and foresight

• If change breaks the abstraction or interface, cost can be high



Abstraction

‣ Abstraction in seL4 proof stack:

• Abstract spec + refinement stack

• Security proofs much lower effort

• Robust against many optimisations


‣ Abstraction in proof scripts:

• Use rule collections (bit_sizes) instead of 

specific rule (PT_16_bit_def)

• Use proof method (unfold_bit_size) instead of 

rule applications (simp add: ..)
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C Code

Design

Abstract Specification

Security Proofs

Binary‣ Why not just more abstraction?

• Needs brain power and experience (expensive)

• Needs abstractable surface

• Counter-examples: mixed-criticality features, multicore



Modularity & Parametricity

‣ Example: split proof into arch-specific and generic part

• Generic part is a parametric module

• Has been effective, but used only for part of proof

• More of this in development


‣ Example: parametric page table structures in seL4/RISC-V

• Regular structure

• Much faster proof completion


‣ Example: proof libraries and tools
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• Can be maintained independently

• But: tech upgrade can break proofs
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‣ Why not just everything modular?

• Yes, as far as possible

• Can fight with code structure and performance
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‣ Many on non-verified platforms or feature-combinations

• Should be invisible to the proofs

• But are not always

• Provide way for developer to check proof impact:


• Pre-process test on GitHub

• Proof testboard

‣ CI pipeline for seL4 proofs:

• Automatically check proof for 

code and proof changes

• Automatically record which proof versions 

apply to which code version

• Proofs always releasable
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‣ Types


‣ Automation


‣ Semantic


• Abstraction


• Modularity & Parametricity


‣ Process

We covered:



Summary



Some robustness required
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We're betting the company on it


https://proofcraft.systems
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