
Gerwin Klein | Rafal Kolanski | HCSS 2021

Proof Robustness
in the seL4® verification

seL4 is a registered trademark of LF Projects, LLC

Why Robustness?

‣ The verified seL4 microkernel:

• high-assurance code base

• large, successful proof

• interactive proof in Isabelle/HOL 

The seL4 verification

3

‣ The verified seL4 microkernel:

• high-assurance code base

• large, successful proof

• interactive proof in Isabelle/HOL 

‣ Change is inevitable

• change is painful in normal software

• more painful in high-assurance software

• proofs can help, but:

• changing proofs is additional cost

The seL4 verification

3

‣ The verified seL4 microkernel:

• high-assurance code base

• large, successful proof

• interactive proof in Isabelle/HOL 

‣ Change is inevitable

• change is painful in normal software

• more painful in high-assurance software

• proofs can help, but:

• changing proofs is additional cost

The seL4 verification

3

 Need robustness of proofs against change

Indications of robustness in seL4 proofs

‣ Started as research project:

• 200k lines of proof, 10k lines of C code

• 1 platform and architecture

• functional correctness down to C 

4

Indications of robustness in seL4 proofs

‣ Started as research project:

• 200k lines of proof, 10k lines of C code

• 1 platform and architecture

• functional correctness down to C 

‣ Now: larger, deeper, more versatile

• 3 architectures, multiple configuration

• deep security properties

• proofs down to binaries

• 1 million lines of proof

4

Indications of robustness in seL4 proofs

‣ Started as research project:

• 200k lines of proof, 10k lines of C code

• 1 platform and architecture

• functional correctness down to C 

‣ Now: larger, deeper, more versatile

• 3 architectures, multiple configuration

• deep security properties

• proofs down to binaries

• 1 million lines of proof

4

Archive of Formal Proofs

Indications of robustness in seL4 proofs

‣ Started as research project:

• 200k lines of proof, 10k lines of C code

• 1 platform and architecture

• functional correctness down to C 

‣ Now: larger, deeper, more versatile

• 3 architectures, multiple configuration

• deep security properties

• proofs down to binaries

• 1 million lines of proof

4

Archive of Formal Proofs

Indications of robustness in seL4 proofs

‣ Started as research project:

• 200k lines of proof, 10k lines of C code

• 1 platform and architecture

• functional correctness down to C 

‣ Now: larger, deeper, more versatile

• 3 architectures, multiple configuration

• deep security properties

• proofs down to binaries

• 1 million lines of proof

4

Archive of Formal Proofs

‣ And: we, the proof engineers, are still alive...

Why care about robustness?

5

Why care about robustness?

‣ Mathematical truth vs customer wishes

5

Why care about robustness?

‣ Mathematical truth vs customer wishes

‣ Research project vs commercial interest

5

Why care about robustness?

‣ Mathematical truth vs customer wishes

‣ Research project vs commercial interest

‣ Scale of proof and scale of team

5

Why care about robustness?

‣ Mathematical truth vs customer wishes

‣ Research project vs commercial interest

‣ Scale of proof and scale of team

‣ Agility

• Cost & Effort

• Time to market

• Open-source contributions

5

Dimensions of change

‣ Code

• new feature (new system-call), new architecture (RISC-V), new platform (imx8)

• refactoring

• optimisation 

6

Code

Dimensions of change

‣ Code

• new feature (new system-call), new architecture (RISC-V), new platform (imx8)

• refactoring

• optimisation 

‣ Proof

• new property

• refactoring for faster proofs

• refactoring for nicer proofs 

6

Proof

Code

Dimensions of change

‣ Code

• new feature (new system-call), new architecture (RISC-V), new platform (imx8)

• refactoring

• optimisation 

‣ Proof

• new property

• refactoring for faster proofs

• refactoring for nicer proofs 

‣ Technology

• prover update

6

Proof

Code

Technology

Dimensions of change

‣ Code

• new feature (new system-call), new architecture (RISC-V), new platform (imx8)

• refactoring

• optimisation 

‣ Proof

• new property

• refactoring for faster proofs

• refactoring for nicer proofs 

‣ Technology

• prover update

6

Proof

Code

Technology

Not: implementation errors

(but maybe spec changes)

Dealing with Change

Approaches to increasing robustness

8

‣ Types

‣ Automation

‣ Semantic

• Abstraction

• Modularity & Parametricity

‣ Process

Types

‣ Automatic. Free theorems!

9

Types

‣ Automatic. Free theorems!

‣ Basic:

• Make invalid states unrepresentable

• Invariants: "ASIDs have at most 7 bits"

• Effect level: "function is read-only, but can fail"

9

Types

‣ Automatic. Free theorems!

‣ Basic:

• Make invalid states unrepresentable

• Invariants: "ASIDs have at most 7 bits"

• Effect level: "function is read-only, but can fail"

‣ More advanced:

• State projections to constrain properties:

• "only depends on TCB contents"

• State projections to constrain effects (lenses):

• "only operates on threads"

• Combination produces free independence theorems

9

Types

‣ Automatic. Free theorems!

‣ Basic:

• Make invalid states unrepresentable

• Invariants: "ASIDs have at most 7 bits"

• Effect level: "function is read-only, but can fail"

‣ More advanced:

• State projections to constrain properties:

• "only depends on TCB contents"

• State projections to constrain effects (lenses):

• "only operates on threads"

• Combination produces free independence theorems

9

‣ Why not just always more types?

• introducing more types also is change, needs effort/benefit trade-off

• can be too much hassle (e.g. 7-bit word in Haskell)

• potentially type system not powerful enough

10

‣ Types

‣Automation

‣ Semantic

• Abstraction

• Modularity & Parametricity

‣ Process

Automation

‣ Automation is cheaper than manual labor

• Higher chance that proof still works

• But:

• Needs more expertise to implement

• Needs foresight to help against change

• Information density in some seL4 proofs still low

‣ The "easy" way out

• Can replace other techniques

‣ Every bit helps

• Automating small tasks frees up time for 

deeper things

11

Automation

‣ Automation is cheaper than manual labor

• Higher chance that proof still works

• But:

• Needs more expertise to implement

• Needs foresight to help against change

• Information density in some seL4 proofs still low

‣ The "easy" way out

• Can replace other techniques

‣ Every bit helps

• Automating small tasks frees up time for 

deeper things

11

seL4 proof example: `crunches`

Automation

‣ Automation is cheaper than manual labor

• Higher chance that proof still works

• But:

• Needs more expertise to implement

• Needs foresight to help against change

• Information density in some seL4 proofs still low

‣ The "easy" way out

• Can replace other techniques

‣ Every bit helps

• Automating small tasks frees up time for 

deeper things

11

seL4 proof example: `crunches`

‣ Why not just automate the whole proof?

• First examples exist, but not there yet for our domain

• Automatic proof repair: first steps exist, but much more to do

12

‣ Types

‣ Automation

‣Semantic

• Abstraction

• Modularity & Parametricity

‣ Process

Semantic approaches

13

‣ Abstraction, Parametricity, Modularity

Semantic approaches

13

‣ Abstraction, Parametricity, Modularity

‣Why do they work for robustness?

• Hide details

• "Free" robustness against change of these details

• Can be extremely effective

Semantic approaches

13

‣ Abstraction, Parametricity, Modularity

‣Why do they work for robustness?

• Hide details

• "Free" robustness against change of these details

• Can be extremely effective

‣ Why not just use them everywhere?

• Requires expertise and foresight

• If change breaks the abstraction or interface, cost can be high

Abstraction

‣ Abstraction in seL4 proof stack:

• Abstract spec + refinement stack

• Security proofs much lower effort

• Robust against many optimisations

‣ Abstraction in proof scripts:

• Use rule collections (bit_sizes) instead of 

specific rule (PT_16_bit_def)

• Use proof method (unfold_bit_size) instead of 

rule applications (simp add: ..)

14

C Code

Design

Abstract Specification

Security Proofs

Binary

Abstraction

‣ Abstraction in seL4 proof stack:

• Abstract spec + refinement stack

• Security proofs much lower effort

• Robust against many optimisations

‣ Abstraction in proof scripts:

• Use rule collections (bit_sizes) instead of 

specific rule (PT_16_bit_def)

• Use proof method (unfold_bit_size) instead of 

rule applications (simp add: ..)

14

C Code

Design

Abstract Specification

Security Proofs

Binary‣ Why not just more abstraction?

• Needs brain power and experience (expensive)

• Needs abstractable surface

• Counter-examples: mixed-criticality features, multicore

Modularity & Parametricity

‣ Example: split proof into arch-specific and generic part

• Generic part is a parametric module

• Has been effective, but used only for part of proof

• More of this in development

‣ Example: parametric page table structures in seL4/RISC-V

• Regular structure

• Much faster proof completion

‣ Example: proof libraries and tools

• C-Parser, AutoCorres, wp, word library, monad library

• Can be maintained independently

• But: tech upgrade can break proofs

15

Modularity & Parametricity

‣ Example: split proof into arch-specific and generic part

• Generic part is a parametric module

• Has been effective, but used only for part of proof

• More of this in development

‣ Example: parametric page table structures in seL4/RISC-V

• Regular structure

• Much faster proof completion

‣ Example: proof libraries and tools

• C-Parser, AutoCorres, wp, word library, monad library

• Can be maintained independently

• But: tech upgrade can break proofs

15

‣ Why not just everything modular?

• Yes, as far as possible

• Can fight with code structure and performance

16

‣ Types

‣ Automation

‣ Semantic

• Abstraction

• Modularity & Parametricity

‣Process

Process

‣ Code change often originates outside verification

• New feature idea, platform port, optimisation, etc

• Open-source contributions

17

Process

‣ Code change often originates outside verification

• New feature idea, platform port, optimisation, etc

• Open-source contributions

‣ Many on non-verified platforms or feature-combinations

• Should be invisible to the proofs

• But are not always

• Provide way for developer to check proof impact:

• Pre-process test on GitHub

• Proof testboard

17

Process

‣ Code change often originates outside verification

• New feature idea, platform port, optimisation, etc

• Open-source contributions

‣ Many on non-verified platforms or feature-combinations

• Should be invisible to the proofs

• But are not always

• Provide way for developer to check proof impact:

• Pre-process test on GitHub

• Proof testboard

‣ CI pipeline for seL4 proofs:

• Automatically check proof for 

code and proof changes

• Automatically record which proof versions 

apply to which code version

• Proofs always releasable

17

18

‣ Types

‣ Automation

‣ Semantic

• Abstraction

• Modularity & Parametricity

‣ Process

We covered:

Summary

Some robustness required

20

‣ Managing software is hard 
Large-scale software engineering is far from solved

‣ Should not expect large-scale proof engineering to be easy

Some robustness required

20

‣ Managing software is hard 
Large-scale software engineering is far from solved

‣ Should not expect large-scale proof engineering to be easy

‣ High assurance still takes time, still not cheap

‣ But:

• Situation is constantly improving

• High assurance can be continually maintained

• Robustness can be increased

• Commercially viable

Some robustness required

20

‣ Managing software is hard 
Large-scale software engineering is far from solved

‣ Should not expect large-scale proof engineering to be easy

‣ High assurance still takes time, still not cheap

‣ But:

• Situation is constantly improving

• High assurance can be continually maintained

• Robustness can be increased

• Commercially viable

We're betting the company on it

https://proofcraft.systems

https://proofcraft.systems

