Proving Abstractions of Dynamical Systems

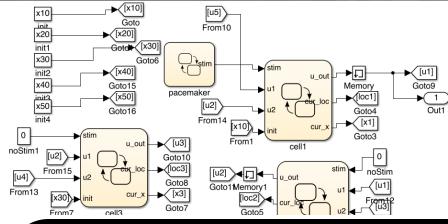
Using Numerical Simulations

Sayan Mitra

mitras@Illinois.edu

Department of Electrical and Computer Engineering
University of Illinois at Urbana Champaign

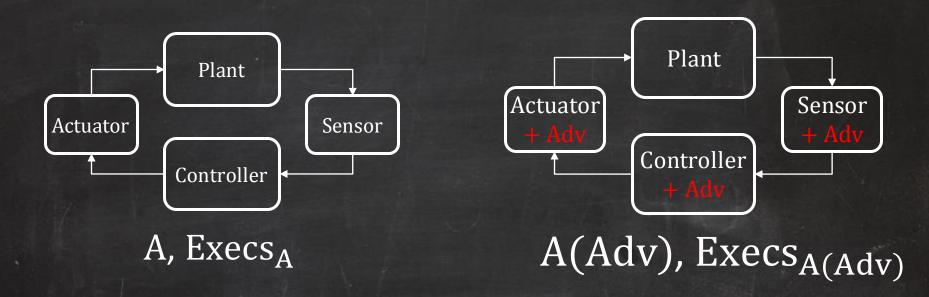
April 9th 2014



Model-based Design

From20

System Models and Attacks



Q1: How much does Adv compromise X of A?

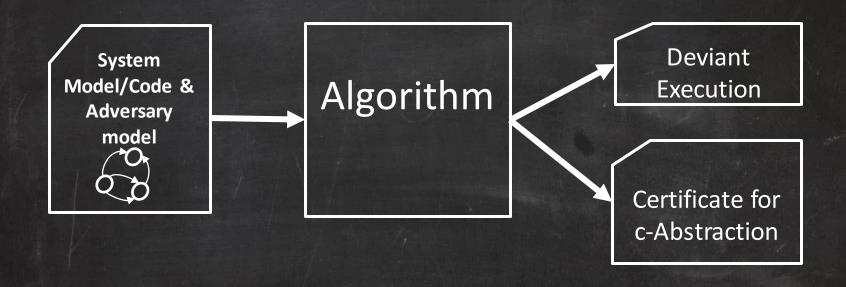
X = availability, safety, ...

d: Metric on executions

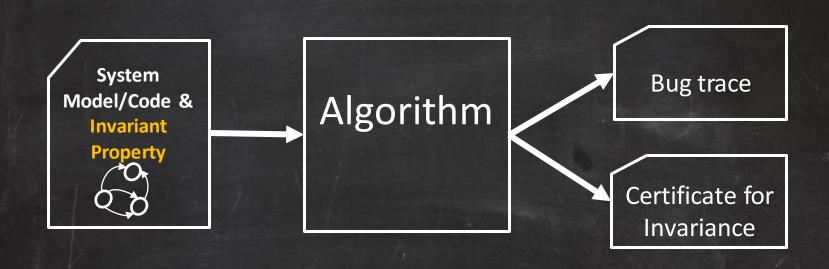
Q2: $d(Execs_{A(Adv)}, Execs_{A}) \le c$?

Every behavior of A(Adv) is **close** to some behavior of₃A

Abstraction Verification Decision Problem



Invariant Verification Problem



Nonlinear Models

- Dynamics $\dot{x}(t) = f(x(t))$
- Initial state $\Theta \subseteq \mathbb{R}^n$
- Execution: $\xi: \mathbb{R}^n \times \mathbb{R}_{\geq 0} \to \mathbb{R}^n$, $\xi(x(0), t) \in \mathbb{R}^n$
- Output map: $g: \mathbb{R}^n \to \mathbb{R}^m$, $g(\xi(x(0), t))$

Bounded Safety Property

• Bounded safety (U, T_b) : $\forall t \leq T_b, x(0) \in \Theta, \xi(x(0, t) \notin U$

Hybrid Verification

Early 90's: Exactly compute unbounded time reach set

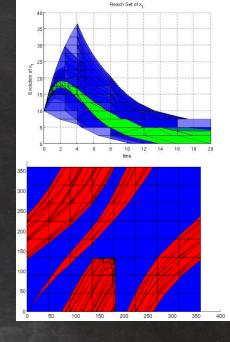
- Decidable for timed automata [Alur Dill 92]
- Undecidable even for rectangular dynamics [Henzinger 95]

Late 90's: Approximate bounded time reach set

- Polytopes [Henzinger 97], ellipsoids [Kurzhanski] zonotopes
 [Girard 05], support functions [Frehse 08]
- Predicate abstraction [Alur 03], CEGAR [Clarke 03] [Mitra 13]
- Hamilton-Jacobi-Bellman approach [Tomlin et al. 02]

Current research: Scalable approximations

Simulation-based methods [Julius 02] [Mitra 10-13][Donze 07]



Our Algorithms: Static-Dynamic Analysis

Validated Simulation Data

+

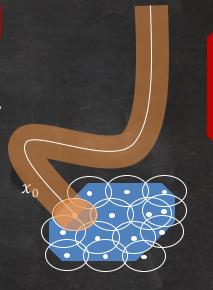
Static Annotations (Discrepancy)

=

Sound, Complete & Scalable Verification of Robust Properties

Algorithm Sketch for Invariant Verification

- Given initial set and unsafe set
- Compute finite cover of initial set
- Simulate from the center x_0 of each cover
- Bloat simulation so that bloated tube contains all trajectories from the cover
- Union = over-approximation of reach set
- Check intersection with unsafe set
- How much to bloat?
- How to get completeness?

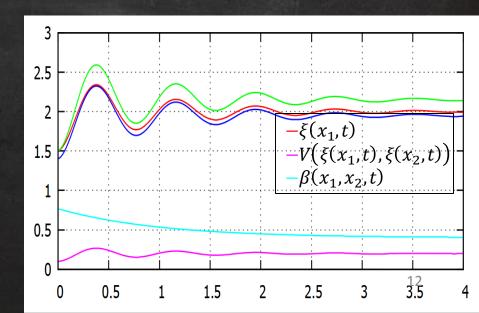


Discrepancy

Definition. Functions V: $X \times X \to \mathbb{R}^{\geq 0}$ and β : $\mathbb{R}^{\geq 0} \times T \to \mathbb{R}^{\geq 0}$ define a discrepancy of the system if for any two states x_1 and $x_2 \in X$

- 1. $V(x_1, x_2) = 0 \Leftrightarrow x_1 = x_2$
- 2. For any t, $V(\xi(x_1, t), \xi(x_2, t)) \le \beta(|x_1 x_2|, t)$ and $\beta \to 0$ as $x_1 \to x_2$

Stability not required



Lipschitz Constant

Proposition 1. If L is a Lipschitz constant for f(x,t) then $V(\xi(x_1,t),\xi(x_2,t)) \leq e^{Lt}|x_1-x_2|$.

(Contraction Metrics

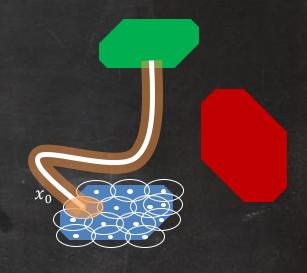
Theorem [Lohmiller & Slotine '98]. A positive definite matrix M is a **contraction metric** if there is a constant $b_M > 0$ such that the Jacobian J of f satisfies:

$$J^T M + M J + b_M M \leq 0.$$

If M is a contraction metric then $\exists k, \delta > 0$ such that $|\xi(x,t)|$

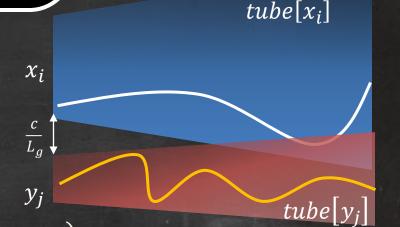
Algorithm Sketch for Invariants

```
Init \leftarrow \Theta
While Init \neq \emptyset
  \{x_i\} \leftarrow Cover(\delta, Init)
   sim[x_i] \leftarrow Simulate(A, x_i, \epsilon, \tau, T)
   tube[x_i] \leftarrow Bloat(sim[x_i], \max_{t \in [0,T]} \beta(\delta, t))
   If tube[x_i] \cap U = \emptyset
      Init \leftarrow Init \setminus B_{\delta}(x_i)
   Elsif some segment of tube[x_i] \subseteq U
      Return COUNTER-EXAMPLE x_i
   Else \delta \leftarrow \frac{\delta}{2}; \tau \leftarrow \frac{\tau}{2}; \epsilon \leftarrow \frac{\epsilon}{2}
Return SAFE
```



Algorithm for Abstractions

 $Init \leftarrow \Theta_{A} \qquad \qquad x_{i}$ $While Init \neq \emptyset$ $\{x_{j}\} \leftarrow Cover(\delta, Init) \qquad \qquad \frac{c}{L_{g}}$ $\{y_{j}\} \leftarrow Cover(\delta, \Theta_{B})$ $For each x_{i}, y_{j} \qquad \qquad y_{j}$ $tube[x_{j}] \leftarrow SimBloat(sim[x_{j}], V_{A}, \delta, \epsilon, \tau, T)$



For each x_i

If
$$\exists y_j \ d_H(tube[x_i], tube[y_j]) \leq \frac{c}{L_g} \land dia(tube[x_i]) \leq \frac{c}{2L_g} \land dia(tube[y_j]) \leq \frac{c}{2L_g}$$

$$Init \leftarrow Init \setminus B_{\delta}(x_i)$$

Elsif
$$\forall y_j \ d_H(tube[x_i], tube[y_j]) \ge \frac{c}{S_g} \land dia(tube[x_i]) \le \frac{c}{2S_g}$$

Return COUNTER EXAMPLE x_i

 $tube[y_i] \leftarrow SimBloat(sim[y_i], V_B, \delta, \epsilon, \tau, T)$

Else
$$\delta \leftarrow \frac{\delta}{2}$$
; $\tau \leftarrow \frac{\tau}{2}$; $\epsilon \leftarrow \frac{\epsilon}{2}$

Return c-ABSTRACTION

Sound & Complete

Theorem. Whenever algorithm terminates with answer (c-Abstraction/Counter example), the answer is correct.

Theorem. The algorithm terminates either if B is at least a $\frac{c}{2}$ -abstraction of A or if there exists a trace of A which is at least 2c distance away from all traces of B.

Conclusions and Ongoing Work

- (Simulation) Data + (some information about) Model
 Sound, Precise and Scalable Analysis
 - Scalable invariant verification
 - Checking abstraction relation (Scalable?)
- Applications: Systems with Software + Physics
 - Alerting protocol, fault-tolerance mechanisms, run-time safety assurance, engine control, aircraft power system
- Ongoing: Experiments, Adversary Models & Symbolic Simulations