
Are You Qualified For This Position?

High Confidence Systems and Software
5 May 2015

Darren Cofer
darren.cofer@rockwellcollins.com

2

CERTIFICATION

QUALIFICATION

Proof certificate

Certifying compiler

Verification

Validation

Certification authority

Assurance Trust
Trustworthy

Safety

Security

Guidance Requirements

Regulations

Problem

•  Formal methods tools have been shown to be effective at
finding defects in and verifying the correctness of safety-critical
software.

•  Many safety-critical domains (aviation, rail, nuclear, medical)
are regulated and have requirements for certification.

•  Certification processes generally require qualification of any
tools/automation used.

3

•  Tool qualification is not a widely
understood concept outside of
those industries requiring
certification for high-assurance.

Mismatched expectations

4

The “bar” for
tool assurance
as perceived
by formal
methods
researchers

The actual “bar” for
qualification of software

tools (for verification)

The Question

•  How can we retain the high level of assurance in tools from the
formal methods community without “raising the bar” on their
qualification (and thereby discouraging their use)?

5

6

Dagstuhl Seminar

• Evidence necessary
justify the application of
formal methods tools in
real safety-critical
settings

• Examples of how to
qualify different types of
software tools

• Explore new approaches
for the qualification of
formal methods tools

Share knowledge
about requirements
for certification and
qualification of
software tools so that
formal methods
researchers can
better understand the
challenges and
barriers to the use of
formal methods tools

Domain: Civil Aviation

•  Safety-critical software
•  Well-established guidance documents and regulatory structure
•  Concrete example for discussion
•  Other domains

–  Nuclear (IEC 61508/61513)
–  Rail (EN 50128)
–  Automotive (ISO 26262)

7

Mark Lawford, SCC

Definition 1: Certification

•  Certification is the legal recognition by a regulatory authority
that a product, service, organization, or person complies with
the requirements (e.g., 14 CFR part 25).
–  Type Certification: design complies with standards to demonstrate

adequate safety, security, etc.
–  Product conforms to certified type design
–  Certificate issued to document conformance

•  Examples of certification evidence
–  We used verification tool X to accomplish these objectives.
–  These are the reasons why we think the tool is acceptable.
–  We ran 1000 tests using the tool, and this is why we think these

1000 tests are sufficient.
–  And (almost incidentally) here are the test results.

Convincing the relevant Certification Authority that all required steps
have been taken to ensure the safety/reliability/integrity of the system

8

Certification Process for Civil Aviation

9

Safety Assessment Process
Guidelines and Methods

(ARP 4761)

System Development Processes
(ARP 4754A)

Hardware Development
Life-Cycle (DO-254)

Software Development
Life-Cycle (DO-178B)

Functions &
Requirements

Function, Failure, &
Safety Information

System Design

Guidelines for Integrated
Modular Avionics (DO-297)

Implementation

Functional
System

Intended
Aircraft
Function

Operational
Environment

DO-178C (RTCA 2011)
“Software Considerations in Airborne Systems and Equipment Certification”

•  Certification authorities agree that an applicant can use DO-178 as
a means of compliance with federal regulations for airworthiness.

•  Primarily a design assurance document (not safety)
–  Demonstrate that software implements requirements
–  and nothing else (no surprises)

•  Requires auditable evidence of specific processes
–  Planning, Development, Verification, Configuration Management,

Quality Assurance, Certification Liaison
•  Five “Software Levels”

–  Design Assurance Level in other contexts
•  Objective based

–  Specifies what is to be achieved, not how
–  Different objectives and requirements for
–  each software level
–  71 objectives for Level A code

10

A: Catastrophic
 (everyone dies)

B: Hazardous/Severe
 (serious injuries)

C: Major
 (significant reduction
in safety margins)

D: Minor
 (annoyance to crew)

E: No Effect
 (OK to use Windows)

D
O

-1
7

6
C

 V
er

if
ic

at
io

n
 O

b
je

ct
iv

es
 f

or

Le
ve

l A
 S

of
tw

ar
e

Design

System
Requirements

High-‐Level
Requirements

Low-‐Level
Requirements

Software
Architecture

Source
Code

Executable
Object	 Code

Accuracy	 and	 Consistency
Compatibility	 with	 the	 Target	 Computer

Verifiability
Conformance	 to	 Standards

Algorithm	 Accuracy

Compliance
Traceability

Compliance
Traceability

Compatibility

Compliance

Verifiability
Conformance	 to	 Standards
Accuracy	 and	 Consistency

Accuracy	 and	 Consistency
Compatibility	 with	
the	 Target	 Computer
Verifiability
Conformance	 to	 Standards
Algorithm	 Accuracy

Compliance
Traceability

Traceability

Compliance
Robustness

Compliance
Robustness

Completeness
And	 Correctness

Compatibility	 with	 the	
Target	 Computer

Consistency
Compatibility	 with	 the	

Target	 Computer
Verifiability

Conformance	 to	 Standards
Partitioning	 Integrity

Development	 Activity

Review/Analysis	 Activity

Test	 Activity

Note:	 Requirements	 include	 Derived	 Requirements
Diagram	 adapted	 from	 DO-‐333	 Formal	 Methods	
Supplement	 to	 DO-‐178C	 and	 DO-‐278A

11

Compiler

DO-278A
Ground

DO-178C (& friends)

DO-178C
Airborne

DO-248C
Supporting
Information

DO-330
Tool

Qualification

DO-331
Model-Based
Development

DO-332
Object

Oriented Tech

DO-333
Formal

Methods

12

Example: Model Checking

•  Mode logic for Flight Guidance
System modeled in using
Simulink/Stateflow

•  Use model checker to satisfy
DO-178C objectives (Table A-4)
with guidance from DO-333,
Formal Methods Supplement
–  LLR comply with HLR
–  LLR are accurate/consistent

•  Example Requirements
–  Exactly one mode active
–  VAPPR implies LAPPR
–  Mode transitions correct

•  Verification tools
–  NuSMV/Kind/SLDV

•  Can we trust tools?

13

29
VGA_Active

28
VGA_Selected

27
VAPPR_Active

26
VAPPR_Selected

25
ALTSEL_Track

24
ALTSEL_Active

23
ALTSEL_Selected

22
ALT_Active

21
ALT_Selected

20
FLC_Active

19
FLC_Selected

18
VS_Active

17
VS_Selected

16
PITCH_Active

15
PITCH_Selected

14
LGA_Active

13
LGA_Selected

12
LAPPR_Active

11
LAPPR_Selected

10
NAV_Active

9
NAV_Selected

8
HDG_Active

7
HDG_Selected

6
ROLL_Active

5
ROLL_Selected

4
Active_Side

3
Independent_Mode

2
FD_On

1
Modes_OnPilot_Flying_Side

Is_AP_Engaged

Overspeed

Is_Offside_FD_On

Is_Offside_VAPPR_Active

Is_Offside_VGA_Active

Pilot_Flying_Transfer

When_AP_Engaged

SYNC_Switch_Pressed

FD_Switch_Pressed

HDG_Switch_Pressed

NAV_Switch_Pressed

APPR_Switch_Pressed

GA_Switch_Pressed

VS_Switch_Pressed

FLC_Switch_Pressed

ALT_Switch_Pressed

VS_Pitch_Wheel_Rotated

ALTSEL_Target_Changed

NAV_Capture_Condition_Met

LAPPR_Capture_Condition_Met

ALTSEL_Capture_Condition_Met

ALTSEL_Track_Condition_Met

VAPPR_Capture_Condition_Met

Selected_NAV_Source_Changed

Selected_NAV_Frequency_Changed

Modes_On

FD_On

Independent_Mode

Active_Side

ROLL_Selected

ROLL_Active

HDG_Selected

HDG_Active

NAV_Selected

NAV_Active

LAPPR_Selected

LAPPR_Active

LGA_Selected

LGA_Active

PITCH_Selected

PITCH_Active

VS_Selected

VS_Active

FLC_Selected

FLC_Active

ALT_Selected

ALT_Active

ALTSEL_Selected

ALTSEL_Active

ALTSEL_Track

VAPPR_Selected

VAPPR_Active

VGA_Selected

VGA_Active

Flight_Modes

Is_Pilot_Flying_Side

AP_Engaged

SYNC_Switch

FD_Switch

HDG_Switch

NAV_Switch

APPR_Switch

GA_Switch

VS_Switch

FLC_Switch

ALT_Switch

VS_Pitch_Wheel_Rotated

ALTSEL_Target_Changed

NAV_Capture_Cond_Met

LAPPR_Capture_Cond_Met

ALTSEL_Capture_Cond_Met

ALTSEL_Track_Cond_Met

VAPPR_Capture_Cond_Met

When_Pilot_Fllying_Transfer_Seen

When_AP_Engaged_Seen

When_SYNC_Switch_Pressed_Seen

When_FD_Switch_Pressed_Seen

When_HDG_Switch_Pressed_Seen

When_NAV_Switch_Pressed_Seen

When_APPR_Switch_Pressed_Seen

When_GA_Switch_Pressed_Seen

When_VS_Switch_Pressed_Seen

When_FLC_Switch_Pressed_Seen

When_ALT_Switch_Pressed_Seen

When_VS_Pitch_Wheel_Rotated_Seen

When_ALTSEL_Target_Changed_Seen

If_NAV_Capture_Cond_Met_Seen

If_LAPPR_Capture_Cond_Met_Seen

If_ALTSEL_Capture_Cond_Met_Seen

If_ALTSEL_Track_Cond_Met_Seen

If_VAPPR_Capture_Cond_Met_Seen

Event_Processing

24
Selected_NAV_Frequency_Changed

23
Selected_NAV_Source_Changed

22
VAPPR_Capture_Cond_Met

21
ALTSEL_Track_Cond_Met

20
ALTSEL_Capture_Cond_Met

19
LAPPR_Capture_Cond_Met

18
NAV_Capture_Cond_Met

17
ALTSEL_Target_Changed

16
VS_Pitch_Wheel_Rotated

15
ALT_Switch

14
FLC_Switch

13
VS_Switch

12
GA_Switch

11
APPR_Switch

10
NAV_Switch

9
HDG_Switch

8
FD_Switch

7
SYNC_Switch

6
Is_Offside_VGA_Active

5
Is_Offside_VAPPR_Active

4
Offside_FD_On

3
Overspeed

2
Is_AP_Engaged

1
Pilot_Flying_Side

ON
LATERAL 1

ROLL 1

SELECTED
en: ROLL_selected = true
ex: ROLL_selected = false

ACTIVE
en: ROLL_active = true
ex: ROLL_active = false

CLEARED

HDG 2SELECTED
en: HDG_selected = true
ex: HDG_selected = false

ACTIVE
en: HDG_active = true

send(deactivate , ROLL)
send(deactivate , NAV)
send(deactivate , LAPPR)
send(deactivate , GA)

ex: HDG_active = false

CLEARED

NAV 3SELECTED
en: NAV_selected = true
ex: NAV_selected = false

ACTIVE
en: NAV_active = true

send(deactivate , ROLL)
send(deactivate , HDG)
send(deactivate , LAPPR)
send(deactivate , GA)

ex: NAV_active = false

ARMED
CLEARED

LAPPR 4
SELECTED
en: LAPPR_selected = true
ex: LAPPR_selected = false

ACTIVE
en: LAPPR_active = true

send (deactivate , ROLL)
send (deactivate , HDG)
send (deactivate , NAV)
send (deactivate , GA)

ex: LAPPR_active = false

ARMED
CLEARED

GA 5
SELECTED
en: GA_selected = true
ex: GA_selected = false

ACTIVE
en: GA_active = true

send(deactivate , ROLL)
send(deactivate , HDG)
send(deactivate , NAV)
send(deactivate , LAPPR)

ex: GA_active = false

CLEARED

VERTICAL 2

OFF

[On]

[Off]

activate

deactivate

[HDG_select]

[HDG_clear] {send(activate, ROLL)}

deactivate

[NAV_select]

[NAV_clear] { send (activate , ROLL)}

deactivate

[NAV_capture]

[LAPPR_select]

[LAPPR_clear] { send (activate , ROLL)}

deactivate

[LAPPR_capture]

[GA_select]

[GA_clear] {send(activate, ROLL)}

deactivate

“Formal Methods Case Studies
 for DO-333”
 NASA Contractor Report or
 Loonwerks.com

Definition 2: Qualification

•  Tool qualification is the process necessary to obtain certification
credit for the use a tool.

–  Note: this credit may only be granted within the context of a
project requiring approval.

•  Qualification of a tool is needed when certification processes
are eliminated, reduced, or automated by the use of a
software tool without its output being verified.

•  The purpose of the tool qualification process is to ensure that
the tool provides confidence at least equivalent to that of the
processes eliminated, reduced, or automated.

14

Does my tool even need to be qualified?

Maybe not…
•  Are you using it to satisfy some certification

objective?
•  Is your tool being used to eliminate, reduce,

or automate a certification process?
•  Is the output of the tool being verified?

15

Tool Qualification Level

•  DO-178C added new criteria to determine the required tool
qualification level (unique to aviation domain).

•  Criteria
1. A tool that automates development processes (output is part of

the airborne software) and thus could insert an error

2. A tool that automates verification processes and thus could fail to
detect an error, and whose output is used to justify the
elimination or reduction of

–  verification process other than that automated by the tool, or

–  development process which could have an impact on the
airborne software

3. A tool that automates verification processes and thus could fail to
detect an error

16

Tool Qualification Level

SW
Levels

Criterion 1 Criterion 2 Criterion 3

A TQL 1 TQL 4 TQL 5

B TQL 2 TQL 4 TQL 5

C TQL 3 TQL 5 TQL 5

D TQL 4 TQL 5 TQL 5

“The problem arises when, based on the confidence of a given verification
activity, some alleviation is claimed for other objectives or activities that
are not the direct purpose of that verification activity.”

WTF?

Development
Tools

Verification
Tools

Tool Qualification Principles

•  User context
–  Tool Operational Requirements (TOR)

•  What does the tool do from a user perspective?
–  Tool operational verification and validation

•  Verification: The tool is compliant with its TOR
•  Validation: The tool satisifies user needs

–  For TQL 5, only user context activities are required
–  Expected evidence: test cases demonstrating compliance

with TOR
•  Developer context

–  Tool development requirements are produced from the TOR
–  Development and verification objectives for the tool development

processes, configuration management, etc.
–  For TQL 1-4, tool must satisfy (essentially) same objectives

as the safety-critical software itself

Tool
Requirements

Tool
Developer

Tool
User

TOR

To
ol

 O
p

er
at

io
n

al
 P

ro
ce

ss
es

D

O
-3

3
0

 T
ab

le
 T

-0
 O

b
je

ct
iv

es

19

Soundness

•  DO-333 (Formal Methods Supplement) requires soundness of
underlying method
–  A sound method never asserts that a property is true when it may

not be true
–  Typical evidence: Peer-reviewed academic papers
–  Note: Not soundness of the tool!

•  What about soundness of tools?
–  This was left as part of tool qualification
–  Don’t “raise the bar”

20

Different Approaches to FM Tool Qualification

•  Qualify a smaller, simpler checker?
•  What could go wrong?

21

MODEL
CHECKER

REQTS

T/F

MODEL

MODEL
CHECKER

REQTS

T/F

MODEL
PROOF

PROOF
CHECKER

OK?

Different Approaches to FM Tool Qualification

•  Instead of trying to qualify a development tool (TQL-1) can we
qualify a code verifier instead (TQL-5)?

•  See DO-330 FAQ D.7

22

CODE
GENERATOR MODEL

SOURCE
CODE

CODE
GENERATOR MODEL

SOURCE
CODE

CODE
VERIFIER

T/F

Different Approaches to FM Tool Qualification

•  Two independent tools that check each other’s outputs
•  Does either need to be qualified?

–  Probably

23

MODEL
CHECKER

B

REQTS

T/F

MODEL

AGREE?

MODEL
CHECKER

A

T/F

Observations

•  For now
–  Qualification of development tools (TQL 1-4) is still difficult.
–  A qualified compiler or code generator does not buy you much.
–  Verification tool developers who want their tools to be used for

certification credit should be able to differentiate between
assurance research and evidence/documents needed for
qualification.

•  The future
–  There is clearly a mismatch between the kinds of evidence required

for tool qualification and the “right way” to establish assurance for
FM tools (especially for development tools).

–  DO-330 tailored by DO-333? DO-330A?

24

Can I trust your tool?

•  It depends…

•  What are we relying on the tool for?
–  What objective is it accomplishing?

•  What does “trust” mean?
–  Are we in a context where qualification is required?
–  Is the tool doing something that requires qualification?

•  Qualification might not mean what you think it means
–  It might be easier (or harder) than you think

25

More information, code, and papers available at:

Loonwerks.com

26

