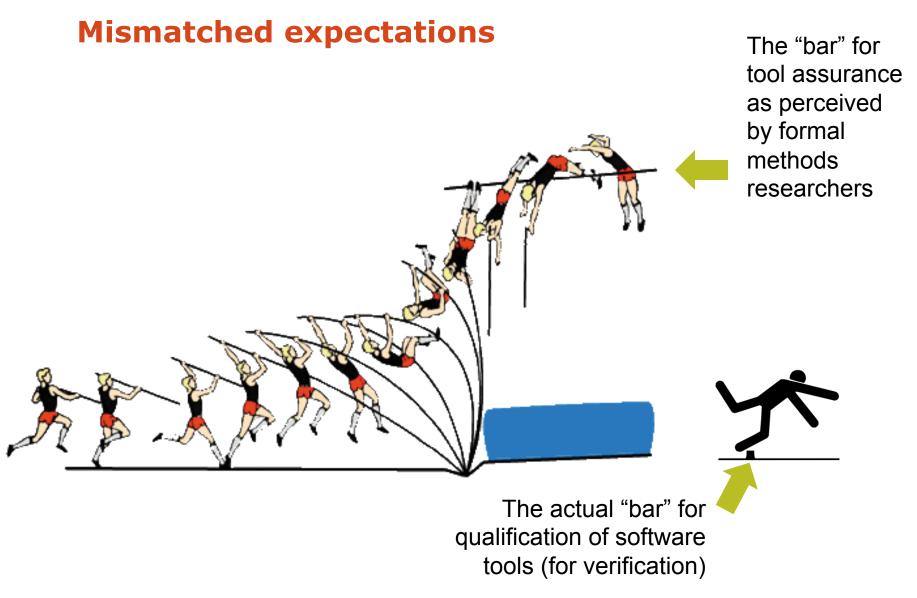


Are You Qualified For This Position?

High Confidence Systems and Software 5 May 2015

Darren Cofer darren.cofer@rockwellcollins.com


Problem

- Formal methods tools have been shown to be effective at finding defects in and verifying the correctness of safety-critical software.
- Many safety-critical domains (aviation, rail, nuclear, medical) are regulated and have requirements for certification.
- Certification processes generally require qualification of any tools/automation used.
- Tool qualification is not a widely understood concept outside of those industries requiring certification for high-assurance.

The Question

• How can we retain the high level of assurance in tools from the formal methods community without "raising the bar" on their qualification (and thereby discouraging their use)?

Dagstuhl Seguinar

about requirements for certification and qualification of software tools so that formal methods researchers can better understand the challenges and barriers to the use of

- Evidence necessorys justify the application of formal methods tools in real safety-critical settings
- Examples of how to qualify different types of software tools
- Explore new approaches

Dagstuhl Seminars

Research Guests Seminar Calendar

All Events

Events

Dagstuhl Perspectives

GI-Dagstuhl Seminars

SCHLOSS DAGSTUHL

Program

Publications

Leibniz-Zentrum für Informatik

You are here: Program » Seminar Calendar » Seminar Homepage

http://www.dagstuhl.de/15182

April 26 – 29 , 2015, Dagstuhl Seminar 15182

Qualification of Formal Methods Tools

Organizers

Darren Cofer (Rockwell Collins – Bloomington, US) Gerwin Klein (NICTA – Sydney, AU) Konrad Slind (Rockwell Collins – Bloomington, US) Virginie Wiels (ONERA – Toulouse, FR)

< 3 / 3

For support, please contact Dagmar Glaser for administrative matters Andreas Dolzmann for scientific matters

Book exhibition

Library

Books from the participants of the current Seminar Book exhibition in the library, 1st floor, during the seminar week.

dblp

Documentation

In the series Dagstuhl Reports each Dagstuhl Seminar and Dagstuhl Perspectives Workshop is documented. The seminar organizers, in cooperation with the collector, prepare a report that includes contributions from the participants' talks together with a summary of the seminar.

Download 🛓 overview leaflet (PDF).

Publications

Furthermore, a comprehensive peerreviewed collection of research papers can be published in the series Dagstuhl Follow-Ups.

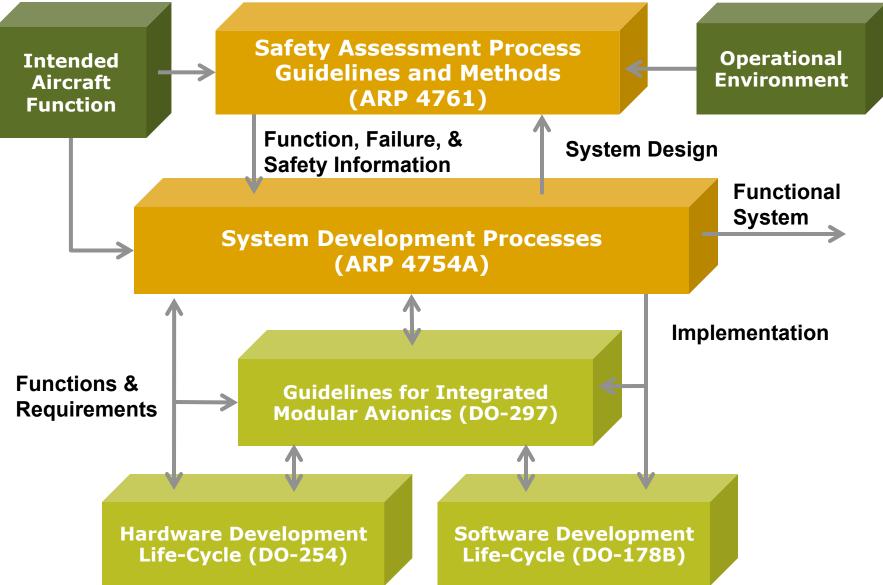
Dagstuhl's Impact

Please inform us when a publication was published as a result from your seminar. These publications are listed in the category Dagstuhl's Impact and are presented on a special shelf on the ground floor of the library.

- Safety-critical software
- Well-established guidance documents and regulatory structure
- Concrete example for discussion
- Other domains
 - Nuclear (IEC 61508/61513)
 - Rail (EN 50128)
 - Automotive (ISO 26262)

Definition 1: Certification

- Certification is the legal recognition by a regulatory authority that a product, service, organization, or person complies with the requirements (e.g., 14 CFR part 25).
 - Type Certification: design complies with standards to demonstrate adequate safety, security, etc.
 - Product conforms to certified type design
 - Certificate issued to document conformance
- Examples of certification evidence
 - We used verification tool X to accomplish these objectives.
 - These are the reasons why we think the tool is acceptable.
 - We ran 1000 tests using the tool, and this is why we think these 1000 tests are sufficient.
 - And (almost incidentally) here are the test results.

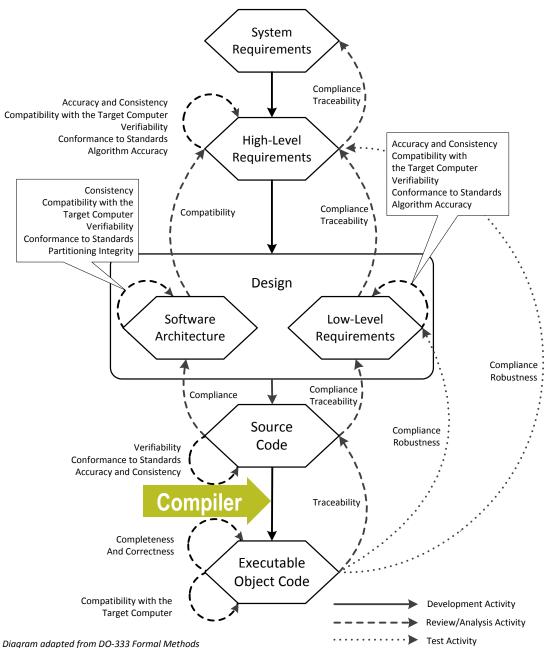

Convincing the relevant Certification Authority that all required steps have been taken to ensure the safety/reliability/integrity of the system

Certification Process for Civil Aviation

Rockwell.

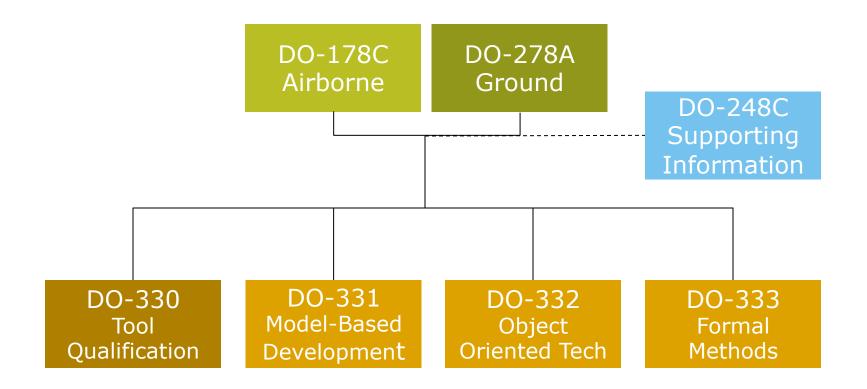
Collins

DO-178C (RTCA 2011)


"Software Considerations in Airborne Systems and Equipment Certification"

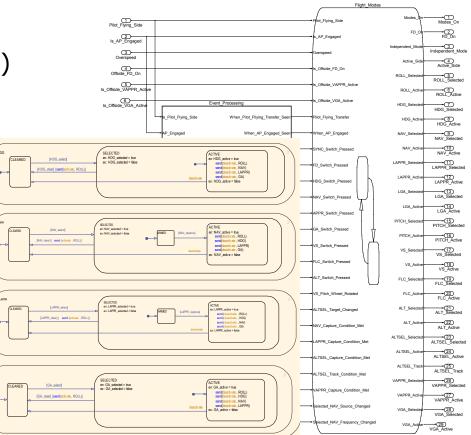
- Certification authorities agree that an applicant can use DO-178 as a means of compliance with federal regulations for airworthiness.
- Primarily a design assurance document (not safety)
 - Demonstrate that software implements requirements
 - and nothing else (no surprises)
- Requires auditable evidence of specific processes
 - Planning, Development, Verification, Configuration Management, Quality Assurance, Certification Liaison
- Five "Software Levels"
 - Design Assurance Level in other contexts
- Objective based
 - Specifies what is to be achieved, not how
 - Different objectives and requirements for
 - each software level
 - 71 objectives for Level A code

A: Catastrophic (everyone dies)
B: Hazardous/Severe (serious injuries)
C: Major (significant reduction in safety margins)
D: Minor (annoyance to crew)
E: No Effect (OK to use Windows)



Note: Requirements include Derived Requirements

DO-178C (& friends)



Example: Model Checking

- Mode logic for Flight Guidance System modeled in using Simulink/Stateflow
- Use model checker to satisfy DO-178C objectives (Table A-4) with guidance from DO-333, Formal Methods Supplement
 - LLR comply with HLR
 - LLR are accurate/consistent
- Example Requirements
 - Exactly one mode active
 - VAPPR implies LAPPR
 - Mode transitions correct
- Verification tools
 - NuSMV/Kind/SLDV
- Can we trust tools?

"Formal Methods Case Studies for DO-333" NASA Contractor Report or Loonwerks.com

Definition 2: Qualification

- Tool qualification is the process necessary to obtain certification credit for the use a tool.
 - Note: this credit may only be granted within the context of a project requiring approval.
- Qualification of a tool is needed when certification processes are eliminated, reduced, or automated by the use of a software tool without its output being verified.
- The purpose of the tool qualification process is to ensure that the tool provides confidence **at least equivalent** to that of the processes eliminated, reduced, or automated.

Does my tool even need to be qualified?

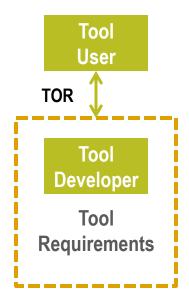
Maybe not...

- Are you using it to satisfy some certification objective?
- Is your tool being used to eliminate, reduce, or automate a certification process?
- Is the output of the tool being verified?

Tool Qualification Level

- DO-178C added new **criteria** to determine the required tool qualification level (unique to aviation domain).
- Criteria
 - 1. A tool that automates development processes (output is part of the airborne software) and thus could insert an error
 - A tool that automates verification processes and thus could fail to detect an error, and whose output is used to justify the elimination or reduction of
 - verification process other than that automated by the tool, or
 - development process which could have an impact on the airborne software
 - 3. A tool that automates verification processes and thus could fail to detect an error

Tool Qualification Level


SW Levels	Criterion 1	Criterion 2	Criterion 3	
Α	TQL 1	TQL 4	TQL 5	WTF?
В	TQL 2	TQL 4	TQL 5	
С	TQL 3	TQL 5	TQL 5	
D	TQL 4	TQL 5	TQL 5	
	Development Tools	Verifi To		

"The problem arises when, based on the confidence of a given verification activity, some alleviation is claimed for other objectives or activities that are not the direct purpose of that verification activity."

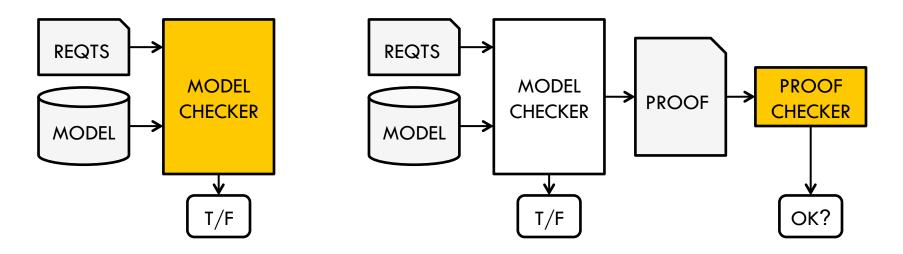
Tool Qualification Principles

- User context
 - Tool Operational Requirements (TOR)
 - What does the tool do from a user perspective?
 - Tool operational verification and validation
 - Verification: The tool is compliant with its TOR
 - Validation: The tool satisifies user needs
 - For TQL 5, only user context activities are required
 - Expected evidence: test cases demonstrating compliance with TOR
- Developer context
 - Tool development requirements are produced from the TOR
 - Development and verification objectives for the tool development processes, configuration management, etc.
 - For TQL 1-4, tool must satisfy (essentially) same objectives as the safety-critical software itself

Processes **Operational Proces 30** Table T-0 Objectives **Tool O** D0-330

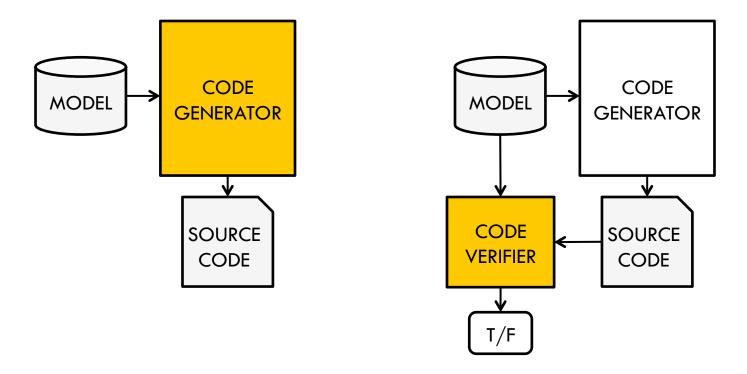
Rockwell Collins

	Objectiv	Activity	Applicability by TQL				,	Output			Control Category by TQL				
_	Description	Ref.	Ref.	1	2	3	4	5	Description	Ref.	1	2	3	4	5
	Planning Process														
1	The tool qualification need is established.	<u>4.1</u>	[Note 1]	0	0	0	0	0	Tool-specific information in the Plan for Software Aspects of Certification	<u>10.1.1</u>	1	1	1	1	1
	Tool Operational Requirements Process														
2	Tool Operational Requirements are defined.	<u>5.1.1.a</u>	5.1.2.a 5.1.2.b 5.1.2.c	0	0	0	0	0	Tool Operational Requirements	<u>10.3.1</u>	1	0	Θ	Θ	0
	Tool Operational Integration Process														
3	Tool Executable Object Code is installed in the	<u>5.3.1.a</u>	5.3.2.a 5.3.2.b	0	0	0	0	0	Tool Executable Object Code	<u>10.2.4</u>	2	0	0	0	0
	tool operational environment.		5.3.2.c						Tool Installation Report	<u>10.3.2</u>	0	0	0	0	0
	Tool Operational Verification and Validation Process														
4	Tool Operational Requirements are complete, accurate, verifiable, and consistent.	<u>6.2.1.a</u>	6.2.2.a	•	•	0	0		Tool Operational Verification and Validation Results	<u>10.3.4</u>	0	0	0	0	
5	Tool operation complies with the Tool Operational Requirements.	<u>6.2.1.b</u>	6.2.2.c	•	•	0	0	0	Tool Operational Verification and Validation Cases and Procedures	<u>10.3.3</u>	0	0	0	0	0
									Tool Operational Verification and Validation Results	<u>10.3.4</u>	0	0	0	0	0
6	Tool Operational Requirements are sufficient and correct.	<u>6.2.1.aa</u>	6.2.2.b	•	•	0	0	0	Tool Operational Verification and Validation Results	<u>10.3.4</u>	0	0	0	0	0
7	Software life cycle process needs are met by the tool.	<u>6.2.1.bb</u>	6.2.2.c	0	0	0	0	0	Tool Operational Verification and Validation Cases and Procedures	<u>10.3.3</u>	0	0	0	0	0
									Tool Operational Verification and Validation Results	<u>10.3.4</u>	0	0	0	0	0


Soundness

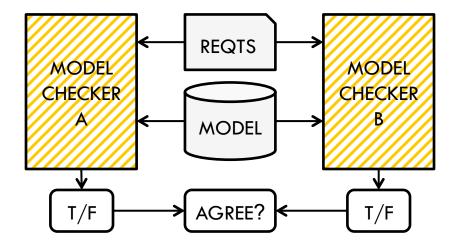
- DO-333 (Formal Methods Supplement) requires soundness of underlying **method**
 - A sound method never asserts that a property is true when it may not be true
 - Typical evidence: Peer-reviewed academic papers
 - Note: Not soundness of the tool!
- What about soundness of tools?
 - This was left as part of tool qualification
 - Don't "raise the bar"

Different Approaches to FM Tool Qualification



- Qualify a smaller, simpler checker?
- What could go wrong?

Different Approaches to FM Tool Qualification



- Instead of trying to qualify a development tool (TQL-1) can we qualify a code verifier instead (TQL-5)?
- See DO-330 FAQ D.7

Different Approaches to FM Tool Qualification

- Two independent tools that check each other's outputs
- Does either need to be qualified?
 - Probably

Observations

• For now

Rockwell

Collins

- Qualification of development tools (TQL 1-4) is still difficult.
- A qualified compiler or code generator does not buy you much.
- Verification tool developers who want their tools to be used for certification credit should be able to differentiate between assurance research and evidence/documents needed for qualification.
- The future
 - There is clearly a mismatch between the kinds of evidence required for tool qualification and the "right way" to establish assurance for FM tools (especially for development tools).
 - DO-330 tailored by DO-333? DO-330A?

Can I trust your tool?

• It depends...

Rockwell

lins

- What are we relying on the tool for?
 - What objective is it accomplishing?
- What does "trust" mean?
 - Are we in a context where qualification is required?
 - Is the tool doing something that requires qualification?
- Qualification might not mean what you think it means
 - It might be easier (or harder) than you think

More information, code, and papers available at:

Loonwerks.com

