Quantifying the Security Effectiveness of Firewalls and DMZs

- Huashan Chen¹, Jin-Hee Cho², Shouhuai Xu¹
 - ¹The University of Texas at San Antonio ²US Army Research Lab

HotSoS 2018

Introduction

□ A systematic framework

Simulation experiments & results

Related work

Conclusion

The Problem: Quantitative Analysis of Security Mechanisms in Networked Systems

Honeypot Firewa Diversity Antivirus H Redundancy

One of the most fundamental open

problems, and remains open.

Overy few (even early stage) results: extremely difficult in both modeling and analysis.

D But, we have to tackle it!

Cybersecurity Dynamics [Xu HotSoS 2014]: A Framework for Modeling and Analyzing Cybersecurity

□ Using attack-defense structure to capture the (attacker, victim) relation.

Using *parameters* to capture attack and defense capabilities, software vulnerabilities, etc.

Using evolution of global security state to describe the outcome of attack-defense interactions.

Our Contributions

- A systematic, *fine-grained* framework for modeling firewalls and DMZs by treating an entire enterprise network as a whole.
 - Fine-grained: Treating individual applications and operating system functions as "atomic" entities.
 - Dependence: No independence assumption between the attack events.
 - Realistic threat model: Accommodating realistic, APT-like attacks.
- **A** set of security metrics that can be objectively evaluated.
- **D** A simulation system for evaluating security gain of firewalls and DMZs.

The Framework

Legend: -----> Abstraction ----> Control / instruction flow

 $\Box G_i = (V_i, E_i)$: represents a computer Node set V_i: applications, OS functions

 $\Box G = (V, E)$: represents a network

Arc set *E_i* : app-app communication, app-func, func-func dependency

 $V = \{app\} \cup \{OS \ functions\}, E = E_1 \cup ... \cup E_n \cup E_0 \cup E_*$

Representation of Vulnerabilities in the Framework

Probability a user is vulnerable to social engineering attack $\psi: V \rightarrow [0, 1]$

Privilege escalation (priv):

 Human Vulnerabilities
 Friv(vul)=0: user
 priv(vul)=1: root

Representation of Firewalls and DMZs in the Framework

Representation of Other Defenses in the Framework

IPS

Capability: Blocking k fraction of inter-computer attacks

- Policy Tight: enforce strict preventive defense (e.g., whitelist) Loose: do not enforce strict preventive defense
- Capability ζ: probability in blocking privilege escalation
 α: probability in blocking other attacks
 Network-based IPS

Representation of Attacks in the Framework

- **Type of attacks**
 - Remote-To-User attack (e.g., CVE 2009-1535)
 - Remote-To-Root attack (e.g., CVE 2009-0015)
 - User-To-Root attack (e.g., CVE 2008-4050)
- Attack strategy: Adapted from Lockheed Martin's Cyber Kill Chain

Modeling Attack Strategy Phase 1: Reconnaissance

f2,6

f2,3

Gathering information about a target network (e.g., topology, vulnerabilities)

D Examples: Ping Sweeps, Port Scanning, Fingerprinting

Output: Attacker's view of target network G' = (V', E'), where $V' \subseteq V$ and $E' \subseteq E$.

Modeling Attack Strategy Phase 2: Weaponization (1)

- \Box Given graph G' = (V', E') and the attacker's exploits X, attacker determines nodes $v \in V'$ suitable for targets.
- **A** candidate app should satisfy
 - Involved in internal-external communication E*
 - App contains a software vulnerability or there exists an access path from app to a vulnerable OS function
- **Client application vs. Server application**

Modeling Attack Strategy Phase 2: Weaponization (2)

D A candidate client application for initial compromise

$$(\exists vul \in \varphi(v), \exists x \in X : \psi(v) = 1 \land \rho(x, vul) > 0) \lor (\exists vul \in \varphi(u), \exists x \in X : (u \in V_{i,os}) \land (v \in V_{i,app}) \land dep_path(v, u) \land \psi(u) = 1 \land \rho(x, vul)$$

 \Box The set of candidate client applications for initial compromise

Weapon₀ = {
$$v \in (V' \cap V_{i,app}) : \eta(v \in E_{*,oi} \cap E')$$
) \land condition

D A candidate server application for initial compromise

 \Box The set of candidate server applications for initial compromise Weapon₁ = { $v \in V' \cap V_{i,app}$: $\eta(v) = 1 \land (*, v) \in (E_{*,oi} \cap E') \land$ condition (2)

holds Weapon = Weapon₀ \cup Weapon₁

- $\mathcal{P}(((v, *) \in E_{*,io} \cap E') \lor ((*, v) \in E_{*,io}))$ on (1) holds}.
- $(\exists vul \in \varphi(v), \exists x \in X : loc(vul) = 1 \land \rho(x, vul) > 0) \lor (\exists vul \in \varphi(u),$ $\exists x \in X : (u \in V_{i,os}) \land (v \in V_{i,app}) \land dep_{bath(v,u)} \land loc(vul) = 1 \land \rho$

(1)

(2)

Modeling Attack Strategy Phase 3: Initial compromise

Remote-To-User attack

- **Strategy to select a subset of Weapon for initial**
 - Zero-day vulnerabilities first
 - Compromise the OSes whenever possible
 - Otherwise compromise all of the vulnerable apps
- $\Box \text{IniComp} = \{ app_{1,1}, app_{3,5} \}$

Remote-To-Root attack

Modeling Attack Strategy Phase 4: Further reconnaissance

f2,4

f2,6

G' = (V', E')

- **Once compromises a computer**, app1,4 attacker attempts to obtain information about sub-graph G - G'. **app**_{2,3}
 - **Can be conducted recursively**
 - **Attacker will update information f**2,2 about the enterprise network as

 $V' = V' \cup \{app_{2,1}, app_{2,4}, app_{1,2}, f_{2,1}, f_{2,2}...\}$ **f**2,3 $E' = E' \cup \{(app_{1,1}, app_{2,4}), (app_{3,2}, app_{2,1}), ...\}$

Modeling Attack Strategy Phase 5: Privilege escalation

Modeling Attack Strategy Phase 6: Lateral movement (1)

f2,4

G' = (V', E')

After penetrating into the network, attacker can leverage inter-computer communication $e \in E'$ to attack other computer.

Security Metrics

Percentage of compromised applications (pca) at time t

 $pca(t) = |\{v \in V_{(app)}: state(v, t) = 1\}|/|V_{(app)}|$

$$pcsa(t) = \frac{|\{v \in V_{(app)} \land | \{v \in V_{(app)} \mid v \in V_{(app)} \rangle|}{|\{v \in V_{(app)} \mid v \in V_{(app)} \mid v \in V_{(app)} \rangle|}$$

Percentage of compromised OSes (pcos) at time t

 $pcos(t) = |\{v \in V_{(os)}: state(v, t) = 1\}|/|V_{(os)}|$

- **Percentage of compromised server applications (pcsa) at time t**
 - $\eta(v) \neq 0$: state(v, t) = 1}
 - $\eta_{app} \land \eta(v) \neq 0\}$

Simulation Setting and Methodology (1)

Synthetic enterprise network

- Computers
 - 1,000 desktops, 5 servers, OS={Windows} \checkmark Client APP = {browser, email client, IM, word processor, FTP client,
 - database client}
 - Server APP= {web server, email server, DNS server, FTP server, database server}
 - ✓ Each OS function is called, directly or indirectly, by each app with probability δ .
- Inter-computer communication E_{n}
 - ✓ See details in the paper
- ◆ Internal-external communication *E**
 - See details in the paper

Simulation Setting and Methodology (2) **Vulnerabilities**

- \checkmark β : probability that each application contains a vulnerability
- $\checkmark \vartheta$: probability a vulnerability can be exploited remotely
- \checkmark τ : probability that a vulnerability is zero-day
- $\checkmark \psi(v) \in [0, 1]$: the probability that a client app is vulnerable to social engineering attacks

Defenses

- \checkmark Five combinations of firewalls and DMZ employment (identified by $\gamma = 0, 1, 2, 3, 4$). \checkmark k: fraction of known vulnerabilities can be prevented from being exploited by NIPS $\checkmark \zeta$: probability privilege escalation attempts are blocked by HIPS $\checkmark \alpha$: probability a social engineering attack is blocked

□ Attacks

- ✓ a: percentage of zero-day vulnerabilities that can be exploited by the attacker
- b: percentage of known vulnerabilities can be exploited by attacker but will are blocked \checkmark c: percentage of known vulnerabilities can be exploited by attacker without being blocked
 $\checkmark \rho(x, vul)$: probability that $x \in X$ successfully exploits a vulnerability vul

- $\checkmark \omega$: fraction of nodes that are discovered by attacker's initial reconnaissance

Simulation Setup and Results

Five combinations of firewalls and DMZ employment

Assume the HIPS and NIPS are not effective in blocking attacks. □ Assume OSes are not vulnerable, consider other scenarios later. **D** Network parameters: $p_1 = 0.1$, $p_2 = 0.1$, $\delta = 0.1$ **U** Vulnerabilities parameters: $\psi(v) = 0.5$, $\vartheta(vul) = 0.5$, $\tau(vul) = 0.5$ **Other defense parameters:** k = 0, $\alpha = 0$, $\zeta = 0$, HIPS loose policy **D** Attack parameters: $(a, b, c) = (1, 1, 1), \rho(x, vul) = 1, \omega = 1$

Simulation algorithm

Algorithm 1 Simulation algorithm.

Input: enterprise network with $(APP, OS, p_1, p_2, \delta)$; vulnerabilities with $(\beta, \vartheta(\mathsf{vul}), \tau(\mathsf{vul}), \psi)$; defense with $(k, \alpha, \zeta, \text{HIPS})$; attacks with (a, b, c, ρ, ω) ; simulation stop time T **Output:** state(v, t) for $v \in V$ and $t = 1, \ldots, T$ 1: Generate simulation network G = (V, E) with $\eta(v)$ 2: Assign model parameters ψ, α to v, HIPS to $V_i \in V$ 3: Simulate the reconnaissance 4: Weapon = \emptyset 5: for $v \in V'$ do if Eq. (20) holds for v then 6: Weapon = Weapon $\cup \{v\}$ 7: 8: Select IniComp according to Weapon 9: for $v \in V$ do state(v,0) = 010:11: for $v \in \text{IniComp do}$ Simulate initial compromise 12:if v is compromised then 13:14:state(v, 1) = 115: for $t \in \{2, ..., T\}$ do for each app $\in V_{(app)}$ with state(v, t - 1) = 1 do 16:Simulate further reconnaissance and update G'17:Simulate privilege escalation wrt Eqs. (21) or (22) 18:

Simulate lateral movement wrt Eqs. (23)-(26) 19:

20: Return state(v, t) for $v \in V$ and $t = 1, \ldots, T$

Determining simulation time horizon T

(a) pca(t)

Insight 1.

> Both pca(t), the percentage of compromised applications at time t, increase exponentially and then converge to a steady value.

✓ Steady value: Lack of other defenses

(b) pcsa(t)

- and pcsa(t), the percentage of compromised server applications at time t, first
- ✓ Exponential Increase: rich connections (any one can attack any one else)

Security effectiveness of firewalls and DMZ (1)

Insight 2. Caveat: Under the assumption that HIPS and NIPS are not effective

> When OSes are not vulnerable, security effectiveness of a fixed combination of firewalls and DMZ decreases as fraction of vulnerable applications increases. > Firewalls and DMZ are not effective when few or most computers are vulnerable.

Security effectiveness of firewalls and DMZ (2)

Insight 3.

- > Employing perimeter firewall lone has a little security impact.
- a vulnerability).
- of sever applications when $\beta \ge [0.2, 0.9]$.

Employing a comprehensive use of firewalls and DMZ can substantially increases security when β [[0.2,0.9] (probability that each application contains

Employing perimeter firewall and DMZ can substantially increase the security

D Epidemic spreading: Independence assumption Coarse-grained model

Cybersecurity Dynamics: Dependence is partially addressed so far Modeling aggregate effect of vulnerabilities and exploits

This paper:

No independence assumption Fine-grained modeling of vulnerabilities and exploits

Image: More systematic experiments (e.g., HIPS, NIPS are effective): full version is to come

□ On quantifying the security effectiveness of other preventive defense mechanisms (papers to come)

from a holistic perspective (i.e., global vs. local view).

- Global view allows us to quantify the <u>network-wide effectiveness</u> of replacing one mechanism with an improved mechanism
- We need many more research on quantifying cybersecurity!!!!!!

First work on quantifying security effectiveness of firewalls and DMZs

