
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

•  Module, Procedure, Init-Procedure
•  Basic Block, Edge, Predecessor,

Successor, Statement
•  Obj-ID, DMOD, Export/New object,

Live on Entry
•  Static Single Assignment (SSA)

•  Phi and Kappa and Phis-as-Kappa
•  Initial-External-Kappa, Aliased-Kappa,

Multi-Target-Call Kappa
•  Value Numbers (VNs) and VN

Computation Table
•  Possible Value Set Propagation (PVP)

•  Constraint Propagation, Arc Consistency
•  Unknown/Unanalyzed Module/

Procedure/Call/Result

Re-Engineering Abstract Interpretation
Inferring Contracts and Proving Program Properties

S. Tucker Taft, AdaCore taft@adacore.com

Overview

CodePeer is an advanced static
analysis tool based on interprocedural,
global, control and data flow analysis.

CodePeer infers contracts (pre/
postconditions) and proves absence of
run-time errors (AoRTE).

CodePeer is an example of Abstract
Interpretation, but incorporates lessons
learned from decades of optimizing
compiler development, to produce
precise and sound results very
efficiently, based on a systematic,
scalable, bottom-up approach.

Overall Structure

Object Identification – Bottom-up Aliasing Analysis

Vocabulary for Obj-ID, SSA/GVN, PVP

Static Single Assignment & Global Value Numbering

Typical Control Flow Graph during SSA/GVN and PVP

Possible-Value Set Propagation

Influences and Related Work

Conclusion
Abstract Interpretation can be re-engineered for
scalability and precision by incorporating the
inherently bottom-up approaches developed and
refined over the years as part of optimizing
compilers. Contracts, in the form of pre/
postconditions can be inferred, providing a
bridge to a more formal approach to software
development

Influences:
•  Building an Optimizing Compiler (R. Morgan)
•  Static Single Assignment theory (Cytron et al)
•  Ada Compiler Range-Check Elimination

Related work:
•  Clousot (CC-Check, Microsoft)
•  Infer (Monoidics)

Obj-ID

Aliasing
SSA /
GVN PVP

Obj-ID
Tree

VN
Table

SCIL Msgs &
Annotations

Kinds of Annotations Inferred:

•  Inputs (Live-On-Entry)

•  Outputs (DMODs – Direct
Modifications)

•  New Objects (Escape Analysis),

•  Preconditions, Postconditions,
Presumptions

Obj-ID
Assignment

Obj-ID Value
Tracking

Alias
Determination

•  Obj-ID assigned to each object “name”

•  Extra assignments to represent parameter
passing and “pseudo” fields of objects
(e.g. taintedness)

•  Values of pointer/integer Obj-IDs tracked
(mostly flow insensitive in this phase),
DMODs and exports id’ed

•  Pointer and array index value sets used to
determine potential aliases

•  Value sets of DMODs/exports propagated
to callers (values possibly assigned by
callee added to caller set)

Obj-ID
Liveness

(Live-on-entry
id’ed)

Alias
Identification

SSA Phi
Placement

Global Value
Numbering

Dominator
Tree & Loop
Identification

•  Each procedure converted into Static Single
Assignment (SSA) representation, followed
by a Global Value Numbering (GVN).

•  Single Obj-ID split into multiple Phi Value
Numbers (Phi VNs) by Address value number

•  “Kappa” value number introduced to
represent value of potential alias after
assignment, one per address VN

•  Flow-sensitive address VNs used to choose
between “old” and “new” values for Kappa
node

Typical edge state:
VN1 => {1..4}
VN4 => inverse{null}
VN7 => {0..+inf}
VN9 => {&obj2,&obj4} Entry

 BB_1

BB_2 BB_3

BB_4

Exit

BB_5

pre-conditions

edge 1 state
edge 2 state

edge 3 state
edge 4 state

edge 6 state

edge 6 state

Back edge

phis: 1,3

phis: 8,9

post-conditions

•  Possible Value Set maintained for each value number, for each
basic block, which are then constrained by run-time checks

•  Constraints propagated within basic block until stabilizes, both
“bottom up” and “top down,” as well as “across” between VNs
determined to be related by transitivity or other algebraic
equivalence

•  Value sets propagated across basic blocks, directly, and via
“phi” nodes, iterating until fix point reached.

•  Preconditions determined, so as to minimize run-time check
failures while attempting to avoid killing off interesting basic
blocks

•  Iteration performed again to determine postconditions
•  “Grand” iteration performed at procedure level presuming there

is mutual recursion (possibly due to indirect/dynamically-
dispatched calls)

•  Final pass produces messages identifying points where run-
time checks might fail

Result of PVP for block:
VN1 => {1..4}
VN4 => inverse{null}
VN7 => {0..+inf}
VN9 => {&obj2,&obj4}

Obj-ID SSA/GVN PVP

CodePeer structure

Vocabulary

Control-Flow Graph

