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The behavior of software is often nondeterministic

Initial statesif (read(&buf)) {
  computeA();
else {
  computeB();
}

read()

>0≤0
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Modern software systems
     have elaborate control-flow. 

Initial states

Thursday, May 10, 12



... and infinite state spaces!

Initial states
. . .

. . .

. . .
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Initial states

. . .

Example: does there exist a way to reach a red state?  EF red

Many important properties involve the 
branching behaviors of a program
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Many important properties involve the 
branching behaviors of a program

Initial states

. . .
Example: are you assured you will always reach a state from 
which point you can always be in a green state?   AF (EG green)
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Many important properties involve the 
branching behaviors of a program

Initial states

. . .
Example: are you assured you will always reach a state from 
which point you can always be in a green state?   AF (EG green)
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Branching properties can be found
in many temporal logics. 

branching

Thursday, May 10, 12



AFp     Across all paths, eventually reach p

EFp      There is a path that eventually reaches p

AGp     Across all paths, p always holds

EGp     There is a path along which p always holds

Computation Tree Logic  [Clarke 1986]

branching

CTL
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Computation Tree Logic  [Clarke 1986]

AFp     Across all paths, eventually reach p

EFp      There is a path that eventually reaches p

AGp     Across all paths, p always holds

EGp     There is a path along which p always holds
CAV’11

branching

CTL
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Traditional Our Approach
Program Property Time(s) Time(s)
Example from Sec. 2  AFAGp  2.32 1.98
Example from Fig. 8 of [15] AG(p⇒AFq)   209.64 27.94
Toy acq/rel AG(p⇒AFq)   103.48 14.18
Toy lin. arith. 1 p⇒AFq   126.86 34.51
Toy lin. arith. 2 p⇒AFq    timeout 6.74
PostgreSQL strsrv   AG(p⇒AFAGq)   timeout 9.56
PostgreSQL strsrv+bug  AG(p⇒AFAGq)   87.31 47.16
PostgreSQL pgarch   AFAGp  31.50 15.20
PostgreSQL dropbuf   AGp timeout 1.14
PostgreSQL dropbuf AG(p⇒AFq)   53.99 27.54
Apache child   AG(p⇒AGAFq)    timeout 197.41
Apache child accept liveness   AG(p⇒(AFa ∨ AFb))   685.34 684.24
Windows frag. 1 AG(p⇒AFq)   901.81 539.00
Windows frag. 2 AFAGp  16.47 52.10
Windows frag. 2+bug AFAGp  26.15 30.37
Windows frag. 3 AFAGp  4.21 15.75
Windows frag. 4 AG(p⇒AFq)   timeout 1,114.18
Windows frag. 4 (AFp) ∨ (AFq)   1,223.96 100.68
Windows frag. 5 AG(p⇒AFq)   timeout timeout
Windows frag. 6 AFAGp  149.41 59.56
Windows frag. 6+bug AFAGp  6.06 22.12
Windows frag. 7 AGAFp   timeout 55.77
Windows frag. 8 FGp   timeout 5.24

branching
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branching
all “A” properties

Extend beyond the universal fragment,
include existential properties . . .
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• Planning
Is there a position I can move to such that escape is possible?
At any point system could terminate and when it does p holds. 

branching

existential and universal
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• Planning
Is there a position I can move to such that escape is possible?
At any point system could terminate and when it does p holds. 

• Games
Are there choices that I can make (“exists”) such that I will 
always outwit every move (“universal”) my opponent makes? 

branching

existential and universal
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• Planning
Is there a position I can move to such that escape is possible?
At any point system could terminate and when it does p holds. 

• Games
Are there choices that I can make (“exists”) such that I will 
always outwit every move (“universal”) my opponent makes? 

• Security
Can the system eventually repair itself after an intrusion?
Is is possible that, no matter what inputs an attacker enters, the 
system can escape being compromised.  

branching

existential and universal
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branching

existential and universal

Can be treated similarlyCan be treated similarly
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Initial states

AG and EG (reachability)

. . .

. . .

. . .AG yellow
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Initial states

. . .

. . .

. . .EG yellow

AG and EG (reachability)

Looks like   AG yellow
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Initial states

. . .

. . .

. . .EG yellow

Side Condition: 
Recurrent set?

AG and EG (reachability)

Looks like   AG yellow
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AF and EF (termination)
Initial states

AF green
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AF and EF (termination)
Initial states

AF green
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Initial states

AF and EF (termination)

EF red
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Initial states

AF and EF (termination)

EF red

Looks like   AF red
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Initial states

AF and EF (termination)

EF red

Side Condition: 
Recurrent set?

Looks like   AF red
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Treat universal and existential fragments similarly . . .
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. . .

. . .

. . .

Treat universal and existential fragments similarly . . .

F ⌘ {s | color(s) = green}
C ⌘ {s | color(s) = yellow}

F

C

X

EF green

Thursday, May 10, 12



. . .

. . .

. . .

Treat universal and existential fragments similarly . . .

F ⌘ {s | color(s) = green}
C ⌘ {s | color(s) = yellow}

F

C

X

EF green

“Chute”
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Treat universal and existential fragments similarly . . .

F ⌘ {s | color(s) = green}
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F

C

X
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“Frontier”
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. . .

. . .

. . .

Treat universal and existential fragments similarly . . .

F ⌘ {s | color(s) = green}
C ⌘ {s | color(s) = yellow}

F

C

X

EF green

“Chute”

For AFp, chute is simply S

Characterization for CTL . . .

“Frontier”
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Treat universal and existential fragments similarly . . .

X ` �
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Similar to CTL*

Decompose temporal operators:

Treat universal and existential fragments similarly . . .

X ` �
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Similar to CTL*

Decompose temporal operators:

Treat universal and existential fragments similarly . . .

X ` �

X, C,F � �

Second kind of judgement 
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Treat universal and existential fragments similarly . . .

X ` �

X, C,F � �
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Treat universal and existential fragments similarly . . .

X ` � Side Condition: 
Recurrent set?

X, C,F � �
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Treat universal and existential fragments similarly . . .

X ` �

TerminationX, C,F � �

Walk
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Treat universal and existential fragments similarly . . .

X ` �

Termination

}well-founded

X, C,F � �

Walk
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Treat universal and existential fragments similarly . . .

X ` �

X, C,F � �

Walk
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Treat universal and existential fragments similarly . . .

X ` �

SafetyX, C,F � �

Walk
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CTL semanticsProof System

Treat universal and existential fragments similarly . . .

X ` �

I ` � () 8s 2 I. s ✏ �

Soundness and Completeness
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Treat universal and existential fragments similarly . . .

X ` �

• Sets-of-states rather than singleton states 

• Works well for infinite state spaces

• Partition rather than enumerate states

• Symbolic representations/overapproximations

• We believe it will work well in practice...

X, C,F � �
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Side Condition: 
Recurrent set?
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Side Condition: 
Recurrent set?

C
X

F
✘

Thursday, May 10, 12



C
X

F
✘

Side Condition: 
Recurrent set?

In practice,

1. Guess an invariant I for chute C 
(using, e.g., Octagon)

2. Check that I is recurrent set
(using an SMT solver)
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Example

EF (AF (EG x ))

x := 1

    

x = 0

x := 0
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 x 

x := 0
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x = 0

 x EG x

x := 0
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x = 0

 x EG x

AF EG x

x := 0
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x := 1

    

x = 0

 x EG x
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EF AF EG x

x := 0

F1 ⌘ pc = 4

C1 ⌘ pc = 0 ) ⇢1 ^ pc = 2 ) ⇢2

F2 ⌘ pc = 6

C2 ⌘ pc = 2 ) ¬⇢2
F3 ⌘ true
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F1 ⌘ pc = 4

C1 ⌘ pc = 0 ) ⇢1 ^ pc = 2 ) ⇢2

F2 ⌘ pc = 6

C2 ⌘ pc = 2 ) ¬⇢2
F3 ⌘ true

x := 1

    

x = 0

 x EG x

AF EG x

EF AF EG x

EF AF EG x

x := 0

How do we discover Frontiers and Chutes?
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How do we discover Frontiers and Chutes?
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Automation
How do we discover frontiers?

(see our work in CAV 2011)
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Automation
How do we discover chutes?

Initial states

. . .

EF red
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. . .
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Automation
How do we discover chutes?

Initial states

. . .

EF red

AF red

Counterexample

. . .Remove this behavior!
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AF red

AF red holds! Recurrent set.
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Automation
How do we discover chutes?

Initial states

. . .

EF red

C

F
(X, C,F) is rcr

F ` red

X ` EF red

X, C,F � F red

WC,F
X is w.f.

X
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Automation
Iterated refinement Algorithm

Prove(P, Φ) :
    let Φ’ = Φ where replace “E” with “A” in
    loop
       match ( P ⊢∀ Φ ) with
       | Fail χ in EG or EF → eliminate χ
       | Fail χ in AG or AF → return Fail
       | Succeed → 
          if C’s are recurrent, return Succeed
          else return Fail
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Implementation
• Input: C program, CTL property

• CIL front-end, generate the CAV’11 encoding

• Safety: prove encoding “cannot return false”
(SLAM or BLAST)

• Termination (AF/EF):
term. argument refinement via Terminator/ARMC

• Recurrent sets (EF/EG): Octagon and SMT solver
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Implementation
• Input: C program, CTL property

• CIL front-end, generate the CAV’11 encoding

• Safety: prove encoding “cannot return false”
(SLAM or BLAST)

• Termination (AF/EF):
term. argument refinement via Terminator/ARMC

• Recurrent sets (EF/EG): Octagon and SMT solver

Work in progress . . .
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End of talk :-) 
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