
Reasoning about
nondeterminism in software

High Confidence Software and Systems 2012

Eric Koskinen
Research Scientist and Principal Investigator

New York University
ejk@cims.nyu.edu

Thursday, May 10, 12

mailto:ejk@cims.nyu.edu
mailto:ejk@cims.nyu.edu

The behavior of software is often nondeterministic

Initial statesif (read(&buf)) {
 computeA();
else {
 computeB();
}

read()

>0≤0

Thursday, May 10, 12

Modern software systems
 have elaborate control-flow.

Initial states

Thursday, May 10, 12

... and infinite state spaces!

Initial states
. . .

. . .

. . .

Thursday, May 10, 12

Initial states

. . .

Example: does there exist a way to reach a red state? EF red

Many important properties involve the
branching behaviors of a program

Thursday, May 10, 12

Many important properties involve the
branching behaviors of a program

Initial states

. . .
Example: are you assured you will always reach a state from
which point you can always be in a green state? AF (EG green)

Thursday, May 10, 12

Many important properties involve the
branching behaviors of a program

Initial states

. . .
Example: are you assured you will always reach a state from
which point you can always be in a green state? AF (EG green)

Thursday, May 10, 12

Branching properties can be found
in many temporal logics.

branching

Thursday, May 10, 12

AFp Across all paths, eventually reach p

EFp There is a path that eventually reaches p

AGp Across all paths, p always holds

EGp There is a path along which p always holds

Computation Tree Logic [Clarke 1986]

branching

CTL

Thursday, May 10, 12

Computation Tree Logic [Clarke 1986]

AFp Across all paths, eventually reach p

EFp There is a path that eventually reaches p

AGp Across all paths, p always holds

EGp There is a path along which p always holds

branching

CTL

Thursday, May 10, 12

Computation Tree Logic [Clarke 1986]

AFp Across all paths, eventually reach p

EFp There is a path that eventually reaches p

AGp Across all paths, p always holds

EGp There is a path along which p always holds
CAV’11

branching

CTL

Thursday, May 10, 12

Traditional Our Approach
Program Property Time(s) Time(s)
Example from Sec. 2 AFAGp 2.32 1.98
Example from Fig. 8 of [15] AG(p⇒AFq) 209.64 27.94
Toy acq/rel AG(p⇒AFq) 103.48 14.18
Toy lin. arith. 1 p⇒AFq 126.86 34.51
Toy lin. arith. 2 p⇒AFq timeout 6.74
PostgreSQL strsrv AG(p⇒AFAGq) timeout 9.56
PostgreSQL strsrv+bug AG(p⇒AFAGq) 87.31 47.16
PostgreSQL pgarch AFAGp 31.50 15.20
PostgreSQL dropbuf AGp timeout 1.14
PostgreSQL dropbuf AG(p⇒AFq) 53.99 27.54
Apache child AG(p⇒AGAFq) timeout 197.41
Apache child accept liveness AG(p⇒(AFa ∨ AFb)) 685.34 684.24
Windows frag. 1 AG(p⇒AFq) 901.81 539.00
Windows frag. 2 AFAGp 16.47 52.10
Windows frag. 2+bug AFAGp 26.15 30.37
Windows frag. 3 AFAGp 4.21 15.75
Windows frag. 4 AG(p⇒AFq) timeout 1,114.18
Windows frag. 4 (AFp) ∨ (AFq) 1,223.96 100.68
Windows frag. 5 AG(p⇒AFq) timeout timeout
Windows frag. 6 AFAGp 149.41 59.56
Windows frag. 6+bug AFAGp 6.06 22.12
Windows frag. 7 AGAFp timeout 55.77
Windows frag. 8 FGp timeout 5.24

branching

Thursday, May 10, 12

Traditional Our Approach
Program Property Time(s) Time(s)
Example from Sec. 2 AFAGp 2.32 1.98
Example from Fig. 8 of [15] AG(p⇒AFq) 209.64 27.94
Toy acq/rel AG(p⇒AFq) 103.48 14.18
Toy lin. arith. 1 p⇒AFq 126.86 34.51
Toy lin. arith. 2 p⇒AFq timeout 6.74
PostgreSQL strsrv AG(p⇒AFAGq) timeout 9.56
PostgreSQL strsrv+bug AG(p⇒AFAGq) 87.31 47.16
PostgreSQL pgarch AFAGp 31.50 15.20
PostgreSQL dropbuf AGp timeout 1.14
PostgreSQL dropbuf AG(p⇒AFq) 53.99 27.54
Apache child AG(p⇒AGAFq) timeout 197.41
Apache child accept liveness AG(p⇒(AFa ∨ AFb)) 685.34 684.24
Windows frag. 1 AG(p⇒AFq) 901.81 539.00
Windows frag. 2 AFAGp 16.47 52.10
Windows frag. 2+bug AFAGp 26.15 30.37
Windows frag. 3 AFAGp 4.21 15.75
Windows frag. 4 AG(p⇒AFq) timeout 1,114.18
Windows frag. 4 (AFp) ∨ (AFq) 1,223.96 100.68
Windows frag. 5 AG(p⇒AFq) timeout timeout
Windows frag. 6 AFAGp 149.41 59.56
Windows frag. 6+bug AFAGp 6.06 22.12
Windows frag. 7 AGAFp timeout 55.77
Windows frag. 8 FGp timeout 5.24

branching

Thursday, May 10, 12

Traditional Our Approach
Program Property Time(s) Time(s)
Example from Sec. 2 AFAGp 2.32 1.98
Example from Fig. 8 of [15] AG(p⇒AFq) 209.64 27.94
Toy acq/rel AG(p⇒AFq) 103.48 14.18
Toy lin. arith. 1 p⇒AFq 126.86 34.51
Toy lin. arith. 2 p⇒AFq timeout 6.74
PostgreSQL strsrv AG(p⇒AFAGq) timeout 9.56
PostgreSQL strsrv+bug AG(p⇒AFAGq) 87.31 47.16
PostgreSQL pgarch AFAGp 31.50 15.20
PostgreSQL dropbuf AGp timeout 1.14
PostgreSQL dropbuf AG(p⇒AFq) 53.99 27.54
Apache child AG(p⇒AGAFq) timeout 197.41
Apache child accept liveness AG(p⇒(AFa ∨ AFb)) 685.34 684.24
Windows frag. 1 AG(p⇒AFq) 901.81 539.00
Windows frag. 2 AFAGp 16.47 52.10
Windows frag. 2+bug AFAGp 26.15 30.37
Windows frag. 3 AFAGp 4.21 15.75
Windows frag. 4 AG(p⇒AFq) timeout 1,114.18
Windows frag. 4 (AFp) ∨ (AFq) 1,223.96 100.68
Windows frag. 5 AG(p⇒AFq) timeout timeout
Windows frag. 6 AFAGp 149.41 59.56
Windows frag. 6+bug AFAGp 6.06 22.12
Windows frag. 7 AGAFp timeout 55.77
Windows frag. 8 FGp timeout 5.24

branching
all “A” properties

Thursday, May 10, 12

Traditional Our Approach
Program Property Time(s) Time(s)
Example from Sec. 2 AFAGp 2.32 1.98
Example from Fig. 8 of [15] AG(p⇒AFq) 209.64 27.94
Toy acq/rel AG(p⇒AFq) 103.48 14.18
Toy lin. arith. 1 p⇒AFq 126.86 34.51
Toy lin. arith. 2 p⇒AFq timeout 6.74
PostgreSQL strsrv AG(p⇒AFAGq) timeout 9.56
PostgreSQL strsrv+bug AG(p⇒AFAGq) 87.31 47.16
PostgreSQL pgarch AFAGp 31.50 15.20
PostgreSQL dropbuf AGp timeout 1.14
PostgreSQL dropbuf AG(p⇒AFq) 53.99 27.54
Apache child AG(p⇒AGAFq) timeout 197.41
Apache child accept liveness AG(p⇒(AFa ∨ AFb)) 685.34 684.24
Windows frag. 1 AG(p⇒AFq) 901.81 539.00
Windows frag. 2 AFAGp 16.47 52.10
Windows frag. 2+bug AFAGp 26.15 30.37
Windows frag. 3 AFAGp 4.21 15.75
Windows frag. 4 AG(p⇒AFq) timeout 1,114.18
Windows frag. 4 (AFp) ∨ (AFq) 1,223.96 100.68
Windows frag. 5 AG(p⇒AFq) timeout timeout
Windows frag. 6 AFAGp 149.41 59.56
Windows frag. 6+bug AFAGp 6.06 22.12
Windows frag. 7 AGAFp timeout 55.77
Windows frag. 8 FGp timeout 5.24

branching
all “A” properties

Extend beyond the universal fragment,
include existential properties . . .

Thursday, May 10, 12

• Planning
Is there a position I can move to such that escape is possible?
At any point system could terminate and when it does p holds.

branching

existential and universal

Thursday, May 10, 12

• Planning
Is there a position I can move to such that escape is possible?
At any point system could terminate and when it does p holds.

• Games
Are there choices that I can make (“exists”) such that I will
always outwit every move (“universal”) my opponent makes?

branching

existential and universal

Thursday, May 10, 12

• Planning
Is there a position I can move to such that escape is possible?
At any point system could terminate and when it does p holds.

• Games
Are there choices that I can make (“exists”) such that I will
always outwit every move (“universal”) my opponent makes?

• Security
Can the system eventually repair itself after an intrusion?
Is is possible that, no matter what inputs an attacker enters, the
system can escape being compromised.

branching

existential and universal

Thursday, May 10, 12

branching

existential and universal

Can be treated similarlyCan be treated similarly

Thursday, May 10, 12

Initial states

AG and EG (reachability)

. . .

. . .

. . .AG yellow

Thursday, May 10, 12

Initial states

AG and EG (reachability)

. . .

. . .

. . .AG yellow

Thursday, May 10, 12

Initial states

AG and EG (reachability)

. . .

. . .

. . .AG yellow

Thursday, May 10, 12

Initial states

AG and EG (reachability)

. . .

. . .

. . .AG yellow

Thursday, May 10, 12

Initial states

. . .

. . .

. . .EG yellow

AG and EG (reachability)

Thursday, May 10, 12

Initial states

. . .

. . .

. . .EG yellow

AG and EG (reachability)

Thursday, May 10, 12

Initial states

. . .

. . .

. . .EG yellow

AG and EG (reachability)

Thursday, May 10, 12

Initial states

. . .

. . .

. . .EG yellow

AG and EG (reachability)

Thursday, May 10, 12

Initial states

. . .

. . .

. . .EG yellow

AG and EG (reachability)

Thursday, May 10, 12

Initial states

. . .

. . .

. . .EG yellow

AG and EG (reachability)

Looks like AG yellow

Thursday, May 10, 12

Initial states

. . .

. . .

. . .EG yellow

Side Condition:
Recurrent set?

AG and EG (reachability)

Looks like AG yellow

Thursday, May 10, 12

AF and EF (termination)
Initial states

AF green

Thursday, May 10, 12

AF and EF (termination)
Initial states

AF green

Thursday, May 10, 12

Initial states

AF and EF (termination)

EF red

Thursday, May 10, 12

Initial states

AF and EF (termination)

EF red

Thursday, May 10, 12

Initial states

AF and EF (termination)

EF red

Looks like AF red

Thursday, May 10, 12

Initial states

AF and EF (termination)

EF red

Side Condition:
Recurrent set?

Looks like AF red

Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

Thursday, May 10, 12

. . .

. . .

. . .

Treat universal and existential fragments similarly . . .

F ⌘ {s | color(s) = green}
C ⌘ {s | color(s) = yellow}

F

C

X

EF green

Thursday, May 10, 12

. . .

. . .

. . .

Treat universal and existential fragments similarly . . .

F ⌘ {s | color(s) = green}
C ⌘ {s | color(s) = yellow}

F

C

X

EF green

“Chute”

Thursday, May 10, 12

. . .

. . .

. . .

Treat universal and existential fragments similarly . . .

F ⌘ {s | color(s) = green}
C ⌘ {s | color(s) = yellow}

F

C

X

EF green

“Chute”

“Frontier”

Thursday, May 10, 12

. . .

. . .

. . .

Treat universal and existential fragments similarly . . .

F ⌘ {s | color(s) = green}
C ⌘ {s | color(s) = yellow}

F

C

X

EF green

“Chute”

For AFp, chute is simply S

“Frontier”

Thursday, May 10, 12

. . .

. . .

. . .

Treat universal and existential fragments similarly . . .

F ⌘ {s | color(s) = green}
C ⌘ {s | color(s) = yellow}

F

C

X

EF green

“Chute”

For AFp, chute is simply S

Characterization for CTL . . .

“Frontier”

Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

Set of states

Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

Set of states

Property

Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

Set of states

Property

Standard CTL semantics

Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

Set of states

Property

Standard CTL semantics

I ` � () 8s 2 I. s ✏ �

Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

Thursday, May 10, 12

Similar to CTL*

Decompose temporal operators:

Treat universal and existential fragments similarly . . .

X ` �

Thursday, May 10, 12

Similar to CTL*

Decompose temporal operators:

Treat universal and existential fragments similarly . . .

X ` �

X, C,F � �

Second kind of judgement

Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

X, C,F � �

Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` � Side Condition:
Recurrent set?

X, C,F � �

Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

X, C,F � �

Walk
Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

TerminationX, C,F � �

Walk
Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

Termination

}well-founded

X, C,F � �

Walk
Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

X, C,F � �

Walk
Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

SafetyX, C,F � �

Walk
Thursday, May 10, 12

CTL semanticsProof System

Treat universal and existential fragments similarly . . .

X ` �

I ` � () 8s 2 I. s ✏ �

Soundness and Completeness

Thursday, May 10, 12

Treat universal and existential fragments similarly . . .

X ` �

• Sets-of-states rather than singleton states

• Works well for infinite state spaces

• Partition rather than enumerate states

• Symbolic representations/overapproximations

• We believe it will work well in practice...

X, C,F � �

Thursday, May 10, 12

Side Condition:
Recurrent set?

Thursday, May 10, 12

Side Condition:
Recurrent set?

C
X

F
✘

Thursday, May 10, 12

C
X

F
✘

Side Condition:
Recurrent set?

In practice,

1. Guess an invariant I for chute C
(using, e.g., Octagon)

2. Check that I is recurrent set
(using an SMT solver)

Thursday, May 10, 12

Example

EF (AF (EG x))

x := 1

x = 0

x := 0

Thursday, May 10, 12

EF (AF (EG x))

x := 1

x = 0

x := 0

Thursday, May 10, 12

EF (AF (EG x))

x := 1

x = 0

 x

x := 0

Thursday, May 10, 12

EF (AF (EG x))

x := 1

x = 0

 x EG x

x := 0

Thursday, May 10, 12

EF (AF (EG x))

x := 1

x = 0

 x EG x

AF EG x

x := 0

Thursday, May 10, 12

EF (AF (EG x))

x := 1

x = 0

 x EG x

AF EG x

EF AF EG x

EF AF EG x

x := 0

Thursday, May 10, 12

x := 1

x = 0

 x EG x

AF EG x

EF AF EG x

EF AF EG x

x := 0

Thursday, May 10, 12

x := 1

x = 0

 x EG x

AF EG x

EF AF EG x

EF AF EG x

x := 0

F1 ⌘ pc = 4

C1 ⌘ pc = 0) ⇢1 ^ pc = 2) ⇢2

F2 ⌘ pc = 6

C2 ⌘ pc = 2) ¬⇢2
F3 ⌘ true

Thursday, May 10, 12

x := 1

x = 0

 x EG x

AF EG x

EF AF EG x

EF AF EG x

x := 0

F1 ⌘ pc = 4

C1 ⌘ pc = 0) ⇢1 ^ pc = 2) ⇢2

F2 ⌘ pc = 6

C2 ⌘ pc = 2) ¬⇢2
F3 ⌘ true

Thursday, May 10, 12

x := 1

x = 0

 x EG x

AF EG x

EF AF EG x

EF AF EG x

x := 0

F1 ⌘ pc = 4

C1 ⌘ pc = 0) ⇢1 ^ pc = 2) ⇢2

F2 ⌘ pc = 6

C2 ⌘ pc = 2) ¬⇢2
F3 ⌘ true

Thursday, May 10, 12

x := 1

x = 0

 x EG x

AF EG x

EF AF EG x

EF AF EG x

x := 0

F1 ⌘ pc = 4

C1 ⌘ pc = 0) ⇢1 ^ pc = 2) ⇢2

F2 ⌘ pc = 6

C2 ⌘ pc = 2) ¬⇢2
F3 ⌘ true

Thursday, May 10, 12

x := 1

x = 0

 x EG x

AF EG x

EF AF EG x

EF AF EG x

x := 0

F1 ⌘ pc = 4

C1 ⌘ pc = 0) ⇢1 ^ pc = 2) ⇢2

F2 ⌘ pc = 6

C2 ⌘ pc = 2) ¬⇢2
F3 ⌘ true

Thursday, May 10, 12

x := 1

x = 0

 x EG x

AF EG x

EF AF EG x

EF AF EG x

x := 0

F1 ⌘ pc = 4

C1 ⌘ pc = 0) ⇢1 ^ pc = 2) ⇢2

F2 ⌘ pc = 6

C2 ⌘ pc = 2) ¬⇢2
F3 ⌘ true

Thursday, May 10, 12

x := 1

x = 0

 x EG x

AF EG x

EF AF EG x

EF AF EG x

x := 0

F1 ⌘ pc = 4

C1 ⌘ pc = 0) ⇢1 ^ pc = 2) ⇢2

F2 ⌘ pc = 6

C2 ⌘ pc = 2) ¬⇢2
F3 ⌘ true

Thursday, May 10, 12

x := 1

x = 0

 x EG x

AF EG x

EF AF EG x

EF AF EG x

x := 0

F1 ⌘ pc = 4

C1 ⌘ pc = 0) ⇢1 ^ pc = 2) ⇢2

F2 ⌘ pc = 6

C2 ⌘ pc = 2) ¬⇢2
F3 ⌘ true

• (Finite) derivation despite infinite state spaces

• Partition rather than enumerate states

• Symbolic representations/overapproximations

• We believe it will work well in practice...

Thursday, May 10, 12

F1 ⌘ pc = 4

C1 ⌘ pc = 0) ⇢1 ^ pc = 2) ⇢2

F2 ⌘ pc = 6

C2 ⌘ pc = 2) ¬⇢2
F3 ⌘ true

x := 1

x = 0

 x EG x

AF EG x

EF AF EG x

EF AF EG x

x := 0

How do we discover Frontiers and Chutes?

Thursday, May 10, 12

F1 ⌘ pc = 4

C1 ⌘ pc = 0) ⇢1 ^ pc = 2) ⇢2

F2 ⌘ pc = 6

C2 ⌘ pc = 2) ¬⇢2
F3 ⌘ true

x := 1

x = 0

 x EG x

AF EG x

EF AF EG x

EF AF EG x

x := 0

• (Finite) derivation despite infinite state spaces

• Partition rather than enumerate states

• Symbolic representations/overapproximations

• We believe it will work well in practice...

How do we discover Frontiers and Chutes?

Thursday, May 10, 12

Automation
How do we discover frontiers?

(see our work in CAV 2011)

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

AF red

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

AF red

. . .

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

AF red

Counterexample

. . .

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

AF red

Counterexample

. . .Remove this behavior!

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

AF red

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

AF red

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

AF red

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

AF red

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

AF red

AF red holds!

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

AF red

AF red holds! Recurrent set.

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

AF red

AF red holds! Recurrent set.

EF red

Thursday, May 10, 12

Automation
How do we discover chutes?

Initial states

. . .

EF red

C

F
(X, C,F) is rcr

F ` red

X ` EF red

X, C,F � F red

WC,F
X is w.f.

X

Thursday, May 10, 12

Automation
Iterated refinement Algorithm

Prove(P, Φ) :
 let Φ’ = Φ where replace “E” with “A” in
 loop
 match (P ⊢∀ Φ) with
 | Fail χ in EG or EF → eliminate χ
 | Fail χ in AG or AF → return Fail
 | Succeed →
 if C’s are recurrent, return Succeed
 else return Fail

Thursday, May 10, 12

Implementation
• Input: C program, CTL property

• CIL front-end, generate the CAV’11 encoding

• Safety: prove encoding “cannot return false”
(SLAM or BLAST)

• Termination (AF/EF):
term. argument refinement via Terminator/ARMC

• Recurrent sets (EF/EG): Octagon and SMT solver

Thursday, May 10, 12

Implementation
• Input: C program, CTL property

• CIL front-end, generate the CAV’11 encoding

• Safety: prove encoding “cannot return false”
(SLAM or BLAST)

• Termination (AF/EF):
term. argument refinement via Terminator/ARMC

• Recurrent sets (EF/EG): Octagon and SMT solver

Work in progress . . .
Thursday, May 10, 12

End of talk :-)

Thursday, May 10, 12

More about me

• Research Scientist, Principal Investigator,
Courant Institute (NYU)

• PhD from University of Cambridge
(Byron Cook, Mike Gordon)

• ScM from Brown University
(Maurice Herlihy)

• Software Engineer at Amazon.com

Biography
Thesis: Temporal verification
[CAV’11,POPL’11,FMSD’12]

Depth-bounded systems,
Bound analysis [PLDI’09]

Concur: Transactional Memory
[PPoPP08,SPAA08i, SPAA08ii]

Systems: Req Tracing [EuroSys08]

Research

Thursday, May 10, 12

