Reconciling
provable security and practical cryptography
A programming language perspective

Gilles Barthe
IMDEA Software Institute, Madrid, Spain

May 15, 2015

Tools for high-integrity cryptography

G-Crypt

ZooCrypt

\

MLT

EasyCrypt

FaultFinder

GGAnalyzer

SynthSPS

StealthCert

A motivating example: PKCS

Decryption Dpkcs.c(sk)(C) :
if (¢ € MsgSpace(sk)) then
{ c0 «f l(c);
(b0, s, t) < i2bs(c0);
h < MGF(s, hLen); i < 0;
while (i < hLen+1)
{rli] <t h[i]; i< i+1;}
g < MGF(r,dbLen); i+ 0;
while (i < dbLen)
{ pli] sl @gll i+ i+1:}
| « payload_length(p);
if (b0 = 08 A [p]/'e" = 0..01 A [P]pLen = LHash)
then
{rc «+ Success;
memcpy(res, 0, p,dbLen — I, 1); }
else {rc + DecryptionError; } }
else {rc + CiphertextTooLong; }
return rc;

f-OAEP

Decryption Doagp(sk)(C) : Encryption & ©
(s,1) f;k1(c); r s (0.1}, OAEP(pk)(C) :
retoh(s)y s« G(r) & (m] 0%);
if (Is @ G(r)]i, =0) fC o
then {m « [s® G(r)]*; } ¢t (s t)-,
else {m « 1;} returnpkc ’
return m
Game INDCCA(A) : Game sPDOW(Z)
(sk,pk) < K(); (sk, pk) « K();
(mo, my) « A7 (pk); Yo & {0,1}™;
bs {01} y1 & {0,1}™;
C* = Epk(My); Y < Yoly
v e r B
return (&= b return (yo € Y’)

Provable security of f~-OAEP

Shoup Bellare, Hofheinz, Kiltz
Bellare and Rogaway Pointcheval
1994 2001 2004 2009 2011
Fujisaki, Okamoto, Pointcheval, Stern BGLZ

FOR ALL IND-CCA adversary A against (K, Eoarp, Doarp),
THERE EXISTS a sPDOW adversary 7 against (K, f,f~1) st

34pdc+dp+4do+de | 290
2k

|Prinp-ceaay[b’ = b] — %‘ < Prppow(z)[Yo € Y] + ok

and
tr <ta+qp 9 qu Ti

Approach: computer-aided cryptographic proofs

» adhere to cryptographic practice
1T same guarantees
= same level of abstraction
= same proof techniques
» leverage existing verification techniques and tools

= program logics, VC generation, invariant generation
iz SMT solvers, theorem provers, proof assistants

(code-based game-playing) provable security

deductive relational verification
of parametrized probabilistic programs

EasyCrypt

Next generation program verification environment

>

>

>

>

v

full-fledged proof assistant (inspired from SSREFLECT)
backend to SMT solvers and CAS

native embedding of rich probabilistic language
probabilistic Relational Hoare Logic for game hopping
probabilistic Hoare Logic for bounding probabilities
libraries of proof techniques

module system and theory mechanism

(soon) automation from symbolic cryptography

Applications

Emblematic examples

» encryption, signatures, hash designs, zero knowledge
protocols, garbled circuits, secure function evaluation,
verifiable computation

» (computational) differential privacy, mechanism design
Magic of machine-checked proofs

» synthesis of encryption schemes

» key exchange under weaker assumptions
Ongoing examples

» SHA3

» Voting

Back to PKCS

Kocher Manger ABBD
1998 2010
1994 1996 2001 2013
Bleichenbacher Strenzke

An isolated case?

» Omitting one fine-grained detail from a formal analysis can
have a large effect on how that analysis applies in practice.
Degabriele, Paterson, and Watson, 2011

» Real-world crypto is breakable; is in fact being broken; is
one ongoing disaster area in security. Bernstein, 2013

Provable security vs practical cryptography

» Proofs reason about algorithmic descriptions
» Standards constrain implementations
» Attackers target executable code and exploit side-channels

Existing solutions bring limited guarantees
Leakage-resilient cryptography (mostly theoretical)
Real-world cryptography (still in the comp. model)
Constant-time implementations (pragmatic)
Program transformations (pragmatic)

Our approach

» Separation of concerns: establish formal contracts
between theoretical and practical cryptographers (and
compiler and static analysis writers)

» Strong guarantees on executable code
» Amenable to tool support and machine-checked proofs

v

v

v

v

Provably secure implementations
Control-flow attacks
» Security proof on C code (EasyCrypt C-mode)
» Reductionist argument (requires semantic preservation)

iz FOR ALL adversary that breaks the x86 code,
ww THERE EXISTS an adversary that breaks the C code

» Adding leakage (requires leakage simulation)

= Model leakage at C level
1w Model leakage at assembly level

» Application
= PKCS in program counter model

ooooo

Provably secure implementations

Cache attacks

» Use static analysis on x86 code to prove no leakage
» Reductionist argument

iz FOR ALL adversary that breaks the x86 code,
= |F x86 code passes static analysis,
ww THERE EXISTS an adversary that breaks the C code

» Applications to constant-time cryptography
Salsa, SHA, TEA, AES, DES, RC4...
(some algorithms need stealth memory)

» Proof relative to an idealized model of virtualization

Provably secure implementations
DPA attacks

v

v

Measuring power consumption allows to retrieve keys
Masking uses secret sharing to protect against DPA

= each input is divided into d shares

= computation operates on shares
Achieves probabilistic non-intereference (PNI) wrt bounded
sets of observations: the marginal distribution for any t < d
observations can be simulated from t shares of each input;
PNl is easy to check for a fixed set of observations, but
hard for all sets of observations is hard. Explosion as
masking order d grows:

= size of programs increases

= number of observation sets explodes

Our Solution
Large observation sets

» given a set of intermediate values known to be safe,
efficiently extend it as much a possible

» still exponential, but pretty good in practice
Strong non-interference

» ensures that f — k intermediate values and k outputs can
be simulated from t — k shares of each input

» supports compositional principles
» improves efficiency of implementations
Implementation
» automated checker (returns valid or violating tuple)
» certifying compiler
» used to mask AES, Keccak, Simon, Speck at high orders

» generated code is reasonably fast, e.g.
7-order code is ~ 100x slower than unmasked code

Benchmarks

Complexit
Reference ‘ Target ‘ #1tuples ‘ Result # sets P | t}i/me)
First Order Masking
CHES10 multiplication 13 secure v 7 e
FSE13 Sbox 63 secure v’ 17 €
FSE13 full AES 17,206 secure v’ 3,342 128
Second Order Masking
RSA06 Sbox 1,188,111 secure v 4,104 1.649
CHES10 multiplication 435 secure v 92 0.001
CHES10 Sbox 7,140 15"-order flaws 866 0.045
CHES10 key schedule 23,041,866 secure v/ 771,263 340,745
FSE13 AES 2 rounds 25,429,146 secure v’ 511,865 1,295
FSE13 AES 4 rounds 109,571,806 secure v 2,317,593 40,169
Third Order Masking
CHES10 multiplication 24,804 secure v’ 1,410 0.033
FSE13 Sbox 4,499,950 secure v’ 33,075 3.894
FSE13 Sbox 4,499,950 secure v/ 39,613 5.036
Fourth Order Masking
rd
RSA06 Sbox 4874429560 || 3 -orderflaws | o5 gg5 437 | 22,119
CHES10 multiplication 2,024,785 secure v 33,322 1.138
FSE13 Sbox 2,277,036, 685 secure v 3,343,587 879
Fifth Order Masking
CHES10 [multiplication | 216,071,394 [[securev | 856,147 [45

Conclusion

Formal methods provide solid and practical foundations for
(reconciling) provable security and practical crypto

Our tools allow to
» formally prove security of cryptographic constructions

» generate correct, secure, and optimized code, which can
resist implementation-level adversaries

Further directions
» embedded domain-specific logics
» verified standards and cryptographic systems
» automated discovery of fault attacks
» verification of privacy-preserving computations

http://www.easycrypt.info

J

