
Reconciling

provable security and practical cryptography
A programming language perspective

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

May 15, 2015

Tools for high-integrity cryptography

G-Crypt ZooCrypt AutoBatch (JHU)

EasyCrypt FaultFinderMLT

CertiCrypt SMT, CAS CompCert (Inria)

StealthCertGGAnalyzer SynthSPS

A motivating example: PKCS

Decryption DPKCS-C(sk)(c) :
if (c ∈ MsgSpace(sk)) then

{ c0← f−1
sk (c);

(b0, s, t)← i2bs(c0);
h← MGF (s, hLen); i ← 0;
while (i < hLen + 1)
{ r [i]← t[i] ⊕ h[i]; i ← i + 1; }
g ← MGF (r , dbLen); i ← 0;
while (i < dbLen)
{ p[i]← s[i]⊕ g[i]; i ← i + 1; }
l ← payload_length(p);
if (b0 = 08 ∧ [p]hLen

l = 0..01 ∧ [p]hLen = LHash)
then
{rc ← Success;
memcpy(res, 0, p, dbLen − l, l); }

else {rc ← DecryptionError ; } }
else {rc ← CiphertextTooLong; }

return rc;

f-OAEP

Decryption DOAEP(sk)(c) :

(s, t)← f−1
sk (c);

r ← t ⊕ H(s);
if ([s ⊕G(r)]k1

=0k1)
then {m← [s ⊕G(r)]k ; }
else {m← ⊥; }

return m

Encryption EOAEP(pk)(c) :
r $← {0, 1}k0 ;
s ← G(r)⊕ (m‖0k1);
t ← H(s)⊕ r ;
c ← fpk (s ‖ t);
return c

Game INDCCA(A) :
(sk , pk)← K();

(m0,m1)← A
G,H,D

1 (pk);
b $← {0, 1};
c⋆ ← Epk (mb);

b′ ← AG,H,D

2 (c⋆);
return (b′ = b)

Game sPDOW(I)
(sk , pk)← K();
y0

$← {0, 1}n0 ;
y1

$← {0, 1}n1 ;
y ← y0 ‖y1;
x⋆ ← fpk (y);
Y ′ ← I(x⋆);
return (y0 ∈ Y ′)

Provable security of f-OAEP

1994

Bellare and Rogaway

2001

Shoup

Fujisaki, Okamoto, Pointcheval, Stern

2004

Pointcheval

2009

Bellare, Hofheinz, Kiltz

2011

BGLZ

FOR ALL IND-CCA adversary A against (K, EOAEP,DOAEP),
THERE EXISTS a sPDOW adversary I against (K, f, f−1) st

∣

∣PrIND-CCA(A)[b
′ = b]− 1

2

∣

∣ ≤ PrPDOW(I)[y0 ∈ Y ′] +
3qD qG+q2

D+4qD+qG

2k0
+ 2qD

2k1

and

tI ≤ tA + qD qG qH Tf

Approach: computer-aided cryptographic proofs

◮ adhere to cryptographic practice

☞ same guarantees

☞ same level of abstraction

☞ same proof techniques

◮ leverage existing verification techniques and tools

☞ program logics, VC generation, invariant generation

☞ SMT solvers, theorem provers, proof assistants

(code-based game-playing) provable security

=

deductive relational verification

of parametrized probabilistic programs

EasyCrypt

Next generation program verification environment

◮ full-fledged proof assistant (inspired from SSREFLECT)

◮ backend to SMT solvers and CAS

◮ native embedding of rich probabilistic language

◮ probabilistic Relational Hoare Logic for game hopping

◮ probabilistic Hoare Logic for bounding probabilities

◮ libraries of proof techniques

◮ module system and theory mechanism

◮ (soon) automation from symbolic cryptography

Applications

Emblematic examples

◮ encryption, signatures, hash designs, zero knowledge

protocols, garbled circuits, secure function evaluation,

verifiable computation

◮ (computational) differential privacy, mechanism design

Magic of machine-checked proofs

◮ synthesis of encryption schemes

◮ key exchange under weaker assumptions

Ongoing examples

◮ SHA3

◮ Voting

Back to PKCS

1994 1996

Kocher

1998

Bleichenbacher

2001

Manger

2010

Strenzke

2013

ABBD

An isolated case?

◮ Omitting one fine-grained detail from a formal analysis can

have a large effect on how that analysis applies in practice.

Degabriele, Paterson, and Watson, 2011

◮ Real-world crypto is breakable; is in fact being broken; is

one ongoing disaster area in security. Bernstein, 2013

Provable security vs practical cryptography

◮ Proofs reason about algorithmic descriptions

◮ Standards constrain implementations

◮ Attackers target executable code and exploit side-channels

Existing solutions bring limited guarantees

◮ Leakage-resilient cryptography (mostly theoretical)

◮ Real-world cryptography (still in the comp. model)

◮ Constant-time implementations (pragmatic)

◮ Program transformations (pragmatic)

Our approach

◮ Separation of concerns: establish formal contracts

between theoretical and practical cryptographers (and

compiler and static analysis writers)

◮ Strong guarantees on executable code

◮ Amenable to tool support and machine-checked proofs

Provably secure implementations
Control-flow attacks

◮ Security proof on C code (EasyCrypt C-mode)

◮ Reductionist argument (requires semantic preservation)

☞ FOR ALL adversary that breaks the x86 code,

☞ THERE EXISTS an adversary that breaks the C code

◮ Adding leakage (requires leakage simulation)

☞ Model leakage at C level

☞ Model leakage at assembly level

◮ Application

☞ PKCS in program counter model

Provably secure implementations
Cache attacks

◮ Use static analysis on x86 code to prove no leakage

◮ Reductionist argument

☞ FOR ALL adversary that breaks the x86 code,

☞ IF x86 code passes static analysis,

☞ THERE EXISTS an adversary that breaks the C code

◮ Applications to constant-time cryptography

Salsa, SHA, TEA, AES, DES, RC4. . .

(some algorithms need stealth memory)

◮ Proof relative to an idealized model of virtualization

Provably secure implementations
DPA attacks

◮ Measuring power consumption allows to retrieve keys

◮ Masking uses secret sharing to protect against DPA

☞ each input is divided into d shares

☞ computation operates on shares

◮ Achieves probabilistic non-intereference (PNI) wrt bounded

sets of observations: the marginal distribution for any t ≤ d

observations can be simulated from t shares of each input;

◮ PNI is easy to check for a fixed set of observations, but

hard for all sets of observations is hard. Explosion as

masking order d grows:

☞ size of programs increases

☞ number of observation sets explodes

Our Solution
Large observation sets

◮ given a set of intermediate values known to be safe,

efficiently extend it as much a possible

◮ still exponential, but pretty good in practice

Strong non-interference

◮ ensures that t − k intermediate values and k outputs can

be simulated from t − k shares of each input

◮ supports compositional principles

◮ improves efficiency of implementations

Implementation

◮ automated checker (returns valid or violating tuple)

◮ certifying compiler

◮ used to mask AES, Keccak, Simon, Speck at high orders

◮ generated code is reasonably fast, e.g.

7-order code is ∼ 100× slower than unmasked code

Benchmarks

Reference Target # tuples Result
Complexity

sets time (s)

First Order Masking

CHES10 multiplication 13 secure X 7 ε

FSE13 Sbox 63 secure X 17 ε

FSE13 full AES 17,206 secure X 3,342 128

Second Order Masking

RSA06 Sbox 1,188,111 secure X 4,104 1.649
CHES10 multiplication 435 secure X 92 0.001

1st -order flaws
CHES10 Sbox 7,140 866 0.045

CHES10 key schedule 23,041,866 secure X 771,263 340,745
FSE13 AES 2 rounds 25,429,146 secure X 511,865 1,295
FSE13 AES 4 rounds 109,571,806 secure X 2,317,593 40,169

Third Order Masking

CHES10 multiplication 24,804 secure X 1,410 0.033
FSE13 Sbox 4,499,950 secure X 33,075 3.894
FSE13 Sbox 4,499,950 secure X 39,613 5.036

Fourth Order Masking

3rd -order flaws
RSA06 Sbox 4,874,429,560 35,895,437 22,119

CHES10 multiplication 2,024,785 secure X 33,322 1.138
FSE13 Sbox 2, 277, 036, 685 secure X 3,343,587 879

Fifth Order Masking

CHES10 multiplication 216,071,394 secure X 856,147 45

Conclusion

Formal methods provide solid and practical foundations for

(reconciling) provable security and practical crypto

Our tools allow to

◮ formally prove security of cryptographic constructions

◮ generate correct, secure, and optimized code, which can

resist implementation-level adversaries

Further directions

◮ embedded domain-specific logics

◮ verified standards and cryptographic systems

◮ automated discovery of fault attacks

◮ verification of privacy-preserving computations

http://www.easycrypt.info

