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Abstract

This paper describes a way to reduce a database of transaction records when interest lies in
the behaviors of the people making the transactions. A fixed length data structure, called a sig-
nature, is used to summarize the complete, multidimensional behavior of each individual, giving
a database that is linear in the number of individuals instead of the number of transactions.
The signature structure can be used with both static and dynamic databases. With dynamic
databases, a signature can be updated with every transaction that the individual makes, so that
the signature adapts reliably and efficiently to changing behavior. The structure of a signature
and the initial set of signatures to be assigned to individuals with no past transaction history
are derived automatically from a set of past transactions for a set of individuals. An application
to wireless calling patterns, in which each signature is limited to about the size of one call record
and must be updated at the end of each call, is used to motivate the ideas.

1 Background

Increasingly, large transaction databases are used to understand customer behavior [1]. A business
may periodically seek “interesting” associations in customers’ patterns of purchases, or it may
segment customers into homogeneous clusters for marketing, for example. Or, a business may
analyze transaction data in nearly real-time to influence the behavior of customers. An e-commerce
web site may want to offer a visitor help from a live agent to increase the chances of a large sale, or
it may want to limit a customer’s purchases if there is evidence of fraud. Accessing and analyzing
continually updated transaction data fast enough to influence customer behavior is challenging,
though, unless the data are scaled down to fit in main memory.

The idea of data reduction is not new, of course. See, for example, the review article [2], the
notion of sampling from the leaves of a classification tree in [3], the use of univariate frequency
distributions, quantiles and “backing samples” in [4] and [5], and “data squashing” or sophisticated
weighted sampling for the purposes of logistic regression in [6]. But all these techniques are designed
to preserve global characteristics of the data, rather than to preserve information at the customer
level. Also, with the exception of [4], these methods are aimed at static databases rather than
dynamic databases that must be updated with each new transaction.

In contrast, this paper describes an approach to reducing dynamic transaction databases when
interest centers on the “customers” or individuals who are making transactions. A fixed-length data
structure that we call a signature summarizes each customer’s behavior, giving a database that is
linear in the number of individuals rather than the number of transactions. A signature database
is easy to maintain because it can be easily updated transaction-by-transaction, tracking customer
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behavior reliably and efficiently. Signatures are also optimal, in the sense that they minimize the
loss of information about individual customers, under a certain criterion that requires one level
of accuracy for most customers and a high level of accuracy for a specified fraction of customers.
Methods for determining the structure of a signature, the set of signatures that can be assigned
to new customers, and for updating signatures as a customer makes new transactions are also
discussed in this paper. An application to wireless calling records motivates the ideas throughout.

2 A Model for Data Reduction

To be concrete, consider a dynamic database of wireless calls. Each transaction or call record
contains over twenty variables on a call, such as its date and time, its duration, its direction
(incoming or outgoing), the location of the caller, the service provider (roaming or home based),
which, if any, special features, such as call waiting, were used, and the number called. These
variables contain information about each customer’s transaction pattern, and the goal is to represent
that pattern succinctly and accurately. The summarization might then be used to answer questions
about all customers, such as what fraction of calls occur on weekends, or questions about a particular
customer, such as is it unusual for this customer to make a one hour call at 11 p.m. on a Sunday?

Histograms are an easy way to summarize transaction behavior dynamically — just discretize
the variable if necessary and update bin counts with each new call that a customer makes. But
there are complications. An obvious problem is that the discretization intervals or buckets must be
chosen, and what is “right” for one customer may be “wrong” for another. Another complication
is that standard histograms give equal importance to recent and old transactions, so they cannot
represent recent behavior unless they are re-computed periodically. A more challenging and impor-
tant difficulty is that a customer’s pattern of behavior for any one variable may depend on other
variables, so a multidimensional histogram may be needed. If the duration of a customer’s call is
different for incoming and outgoing calls and for peak and off-peak calls, for example, then a three
dimensional histogram is needed to represent the customer’s call durations accurately. On the other
hand, some variables, like the duration of a customer’s calls and the location of the caller, may be
independent, so storing the full multidimensional histogram for each caller is likely to waste space.
Moreover, the full multivariate histogram is likely to be sparsely populated for most customers
unless all the variables are severely discretized.

To address issues like choice of buckets, staleness, and multidimensionality, we cast the problem
of customer-centric data reduction as estimation of a huge set of multivariate probability models,
one for each customer. Each probability distribution describes the likely transaction behavior of a
customer and the objective of data reduction is to estimate this probability distribution, quickly
and reliably. The estimated distributions can then be used to understand the likely behavior of each
customer separately or the likely behavior of a population of customers as a whole. For example,
the probability that a customer makes a local call that lasts at least an hour at 11 p.m. Sunday
night can be computed from that customer’s probability distribution, and the fraction of customers
who make at least an hour long call at 11 p.m. Sunday night can be computed from the full set of
probability distributions for all customers. Thus, knowledge of the probability distributions for all
customers provides answers to many questions about the customer base.

More formally, let X,, = (X;, 1, Xy 2,...,Xp p) represent the vector of M transaction variables
for a particular customer at the time of transaction n. Some transaction variables, such as call
duration, are explicit in the transaction record; others, such as time from last call, may need to
be computed from information in the current and previous transaction records. Let P, represent
the joint probability distribution of X, at the time of transaction n. Then P, describes which



values of the transaction variables are likely and which are unlikely. In that sense, P, describes
the customer’s pattern of behavior at the time of transaction n. The goal of data reduction, then,
is to keep enough information in the reduced data to estimate P, well. Note that the goal is not
to give an exact accounting of the customer’s past transaction records but rather to keep enough
information about P, to make predictions about the customer and answer statistical questions
about the population as a whole. Loosely speaking, we are more interested in predicting the future
than in reproducing the past data.

The first task is to build a model for P,,. The law of iterated probability [7] states that P, can
be written as a product of one dimensional distributions:

Pn(Xn) = Pn(Xl,n)Pn(XQ,n|X1,n) cee Pn(XM,n|X1,na cee ’XM—I,n)’ (1)

where P, (X1 ;) is the marginal distribution of the first variable for transaction n and P, (X2,,|X1,,)
is the conditional distribution of the second variable for transaction n given the first variable for
transaction n. The last term in the product implies that the behavior of X/, depends on all
the other variables for transaction n, so there is a one dimensional distribution of X;, for each
combination of possible values of the other variables.

A signature is a fixed-length estimate of P,. To simplify the discussion, we assume that each
variable either has at most several possible values or it is discretized into buckets. Consequently,
from equation (1), the signature is an estimate of a set of one dimensional discrete distributions.
Thus, it is natural to write a signature as a product of signature components, each of which is
a one dimensional histogram. For example, if only the duration and direction of the call are
recorded, then the signature components might be a histogram for call direction (incoming or
outgoing), a histogram for the duration of incoming calls, and a histogram for the duration of
outgoing calls. Alternatively, if one of the distributions in equation (1) is parametrized, then
the corresponding signature component might be the estimated parameter(s) of the distribution
rather than a histogram. (Finding a parametric distribution that is appropriate for all or even
most customers has proven impossible in the applications that we have encountered, however.)
Other nonparametric possibilities include representing each distribution by a set of percentiles or
representing the density of each continuous distribution by a set of coefficients from a spline fit for
the density [8]. In this paper, we consider only histogram representations, where histograms are
understood to be normalized to have a total weight of 1, but extending the ideas and methods in
this paper to these other kinds of representations is not difficult.

Generally, using a full set of histograms for each customer, one for each term in the product
representation (1) of P,, takes too much space and is statistically inefficient. Obviously, storing
separate histograms for durations of incoming and outgoing calls wastes space if the two histograms
are identical. But it is also statistically inefficient because only the incoming calls would be used
to update the incoming histogram, even though the outgoing calls in this case would also have
information about the distribution of the duration of incoming calls. “Wasting” the outgoing calls
in this way is particularly bad for infrequent callers. Finally, it may also be necessary to coarsen a
variable to save space. For example, duration may be recorded to the nearest second, but a much
coarser representation may be adequate for estimation. The next section discusses signature design
to meet space constraints when statistical efficiency needs to be taken into account.

3 Signature Design

The set of priming data is a collection of transaction records collected from a representative set
of customers during a fixed time period that can be used to design signatures. If the signatures



are to be used primarily for one application, such as identification of big spenders or detection of
fraud, the priming data is assumed to include transaction records for a set of customers in the
target group (customers who are big spenders or who commit fraud, for example). In applications
that we have seen, the target characteristic is rare, so there are not many target customers in the
priming data. Moreover, in some applications, such as fraud, the relevant (fraudulent) records for
each target customer are not labelled, so the relevant and irrelevant records for the target behavior
are not distinguished in advance. Given all the uncertainties surrounding the target data, we do
not construct separate signatures for each customer with the target behavior but instead compute
one target signature t from the data for all the customers with the target behavior. Thus, p;  refers
to the fraction of transactions for customer 7 for which variable X falls in bin &, and ¢; refers to
the fraction of target transaction records for which variable X falls in bin k. The target signature
is assumed to have the same structure as any other signature. Also, any customer known to have
the target behavior is removed from the priming data, so the priming data represents customers
without that behavior (perhaps including a few misidentified individuals) and the target set includes
customers with the target behavior (perhaps including some irrelevant records.)

3.1 Binning Signature Variables

Because a signature is a set of components, it is tempting to consider the resolution needed for
each component X conditional on Y separately. But that would require knowledge of the signature
structure (choice of conditioning variables), which might depend on the resolution of the variables.
Thus, there is a chicken and egg dilemma. Should the variables be binned first, or should the
signature structure be defined first? The approach that we have taken is to choose the binning of
the signature variables first, ignoring the conditioning, and then to choose the conditioning variables
for the coarsened variables. The argument is that it is simpler to use the same resolution for each
conditioning variable. The process of the coarsening variables and choosing conditioning variables
could be iterative, choosing the binning, then choosing the set of histograms, then re-evaluating
the binning and so on, but we have not done that in our applications. Also, we suppose that the
number of bins to be allocated to each variable is determined in advance, so the only task is to
define the bins. Again, the process could be iterative, so that the number of bins could also be
optimized, but we have never done that.

If X is numeric, then it is natural to think of the bins as intervals with endpoints dy < d; <
... < dg, where dj is the smallest value of X that can be observed and dj is the largest (possibly
infinity). The task is to choose di, ... ,dx 1 so that the coarsened distribution is as close as possible
to the original distribution for each customer ¢. Many other authors have considered optimal global
binning (e.g., [9] and the review paper [2]) in the context of representing the entire database of
calls, not local binning, in the context of choosing one set of bins for representing each individual
customer well.

Suppose first that there is no target group. Then, the global binning problem is solved by the
equi-depth histogram in which each of the K bins has about 1/K of the transactions, in the sense
that that histogram maximizes the empirical information entropy [ E; = — Zszl Dik logp; k. in the
coarsened distribution [2]. For local binning, we choose the K bins for X that maximize the average
information entropy

— 1
T ZWZIE“ (2)

where N is the number of customers in the priming data. The average information entropy assigns



equal weights to all individuals in the training data, but it can be easily adapted to weight different
customers differently if some classes of customers are more important to track than others.

If there is a target behavior, then the bins should be chosen to increase the chances of finding
it. Standard statistical theory [10] implies that when X = k is observed, the log-likelihood ratio
log(tk/pij) is the best discriminator based on X for testing whether customer ¢ belongs to the
target group. Large positive values of the log-likelihood ratio imply that bin &k is more likely
under the target signature, while large negative values imply that bin k& is more likely under the
customer’s signature. The more extreme the log-likelihood ratio, the easier it is to identify whether
a customer belongs to the target group. Thus, the goal is to make the log-likelihood ratio as positive
as possible when the customer belongs to the target group and as negative as possible otherwise.
More precisely, using the priming data, we choose the di’s to maximize

N K K
1 Dik 123
KL(t) = N E (UJ E ik 10gtl—k + (1 —w) E tg log > (3)
k=1 k=1
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for some weight w, 0 < w < 1. When w = 0, the criterion considers only the ability to identify
members of the target group. When w = 1, the criterion considers only the ability to avoid
misclassifying a customer who does not belong to the target group. Intermediate values of w
balance these two concerns. Note that this procedure is equivalent to maximizing the average,
weighted, symmetrized Kullback-Leibler distance [11] from p; to t, averaging over all individuals.

The cutpoints dy, ... ,d;_; that maximize the average information entropy (2) or the Kullback-
Leibler distance (3) are found by exhaustive search when the original variable X has only several
possible values. If exhaustive search is not feasible, then the search is constrained by specifying
minimum widths for the K final bins. For example, transaction duration might be measured to the
nearest second, but all bins might be forced to be at least 2 minutes long and to have endpoints
that are integer minutes.

3.2 Choosing Conditioning Variables

The question is can the product (1) be simplified by ignoring some of the conditioning variables in
some of the terms? For example, perhaps a variable X is independent of all the other variables,
so only its marginal distribution, not its conditional distributions, need to be considered. Or
perhaps X3 depends on X; but not X5 so only the conditional distributions X3 given X; need to
be considered. Because each possible combination of the conditioning variables gives another term
in the product, reducing the number of conditioning variables for one signature variable X for each
customer can save significant space.

Generally, X should be conditioned on Y if the distribution of X varies significantly with Y,
which happens if the conditional distributions of X given Y differ from the distribution of X that
does not condition on Y. For example, consider the coarsened duration X of wireless calls and the
candidate conditioning variables “service provider” Y7, which has values “local” and “roaming”,
and “direction,” Y2 which has values “incoming” and “outgoing”. The top panel in Figure 1
shows the marginal (unconditional) histogram of duration for all calls for one customer in a set of
priming data, and the four bottom panels show the conditional histograms of duration for the same
customer, split according to the four possible combinations of service provider and direction. For
this customer, stratifying call duration by provider and direction would be useful. If the histograms
in the four strata had been similar, though, then stratifying duration by either service provider or
direction would waste space (and be statistical inefficient) because the same information on the
customer would need to be stored (and estimated) four times. Similarly, if the histograms in the two



rows in Figure 1 were similar but the two columns were not, then keeping separate histograms for
the durations of incoming and outgoing calls would be useful for this customer, but also separating
roaming and local calls would not.
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Figure 1: The marginal distribution (top panel) and conditional distributions (bottom four panels)
of the the signature variable call duration for one customer.

Of course, finding conditioning variables that are appropriate for all customers simultaneously
is likely to be impossible. Instead, we strive for conditioning variables that are “good for most, best
for some”. That is, the selected conditioning variables for X must be “useful” for most customers
and “important” for some customers, where useful means that the differences in the histograms
corresponding to the different values of Y are statistically significant for the customer. Thus, we
have a statistical model selection for each customer. There are many variants of model selection
(see, for example, the textbook [12]); here we adopt forward model selection in which variables
are added to the model sequentially until the gain from adding another conditioning variable is
unimportant.

Forward model selection proceeds as follows. First, take a candidate conditioning variable Y in
the set C of all conditioning variables. For each customer ¢ in the priming data and each level y; of
Y,l=1,...,L, compute the number of transactions aj; for which X = z; and Y = y;. This gives



a K x L table for customer ¢ that looks like

a1,1 a1,2 ceralL 1
az.1 a2 T AL r2
(4)
OGg,1 OK2 *'* OKL|TK
C1 Co s Cr, n

where ¢; = Zszl ar, is a column sum, ry = ZZL:1 a, is a row sum, and n = 25:1 rE = ZlL:l q is
the total number of transactions in the priming data for customer i. A standard x? statistic [12]
can then be computed from the table to test whether the conditioning variable Y is important for
signature variable X for customer ¢, as long as the counts in the table are not too small. The text
book answer to “how small is too small” is five, but this is often too conservative [12]. Here we
just assume that there is a threshold T' for too small and apply the following algorithm to each
customer’s table separately.

1. Remove rows with r, = 0 and columns with ¢; = 0.
2. Compute the expected table with entry Ey; = (r x ¢;)/n for cell (k,1).

3. If the smallest expected cell count, say Ej y, is smaller than 7', then compare 74 and ¢y. If
rjr is less than ¢y, compare ri_1 and rg 1. If 7 is smaller, collapse row k' with row &' — 1
in the table. If rys_; is larger, collapse row k' with row k' + 1. If 7y 1 = rp1q, collapse row
k' with either row &' — 1 or row k' + 1. An analogous procedure, substituting columns for
rows, is applied when ri > cp.

4. Re-compute the expected cell counts for the collapsed table from Step 3.
5. Repeat Steps 3 and 4 until there are no expected cell counts below the threshold T'.

6. If the final collapsed table from Step 5 for customer ¢ has only one row or one column, then
discard the table and do not continue with the test for customer 3.

7. Suppose the table from Step 5 has K’ > 1 rows and L' > 1 columns. Then compute the test

statistic
& (rper/n — agy)?
2 _ )

8. The p-value for customer 4 is defined to be the probability that a chi-squared random variable
with (K’ — 1) x (L' — 1) degrees of freedom exceeds the computed value of the test statistic

x2.

Following standard statistical practice, the smaller the p-value, the stronger the evidence that the
signature of X should be conditioned on Y for customer 3.

Because any conditioning variable Y for X is either used for everyone or used for no one, we
require some evidence that Y is useful for a majority of customers and strong evidence that it
is useful for some customers. For example, the p-value should be less than 0.05 for at least 50%
of all customers and less than 0.01 for at least 10% of all customers. Exactly how small the p-
value should be and exactly what fraction of customers should have a p-value that small to justify



conditioning on Y depends on the application. The general form of this “good for most, best for
some” criterion is that at least 10091 % of the p-values must be smaller than o and at least 10002%
of the p-values must be smaller than as, with as < @1 to condition X on Y. We represent this
criterion by (a1, 01, g, d2).

To illustrate the selection procedure, let us consider again the wireless calls database example.
Suppose we want to find conditioning variables for call duration and the candidate set includes
call direction (incoming or outgoing) and an indicator of peak/off-peak calls. Figure 2 presents the
cumulative percentage of p-values for the chi-square tests of independence between call duration
and the candidate conditioning variables, based on a priming dataset with about 20,000 customers.
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Figure 2: Cumulative percentage of p-values for the chi-square test of independence between call
duration and call direction and call duration and peak/off-peak indicator. A square-root scale is
used for the p-values.

The plots indicate that call direction has a very significant association (p-value < 0.01) with call
duration for about 40% of the customers and a significant association (p-value < 0.05) for about 55%
of the customers. The peak/off-peak indicator, however, has a very significant association with call
duration only for 1.2% of the customers and a significant association only for 4% of the customers.
Assuming a (0.05,0.50,0.01,0.10) “good for most, best for some” criterion, the conclusion is that
call direction should be chosen as the single conditioning variable for call duration.

The above selection procedure is applied to each candidate conditioning variable for X in
turn. If no candidate conditioning variable satisfies the (a1, 01, g, d2) criterion, then the marginal
distribution of X is used as a signature component. If exactly one candidate variable Y satisfies
the criterion, then X is conditioned Y and each possible value of Y gives a different signature
component for X. If more than one candidate Y satisfies the criterion, then the one with the
largest fraction of customers with p-values below «; is selected. At this point we have the first
conditioning variable (if any), say Y7.

The next step is to decide whether conditioning on Y] alone is sufficient or conditioning on an
additional variable Y5 would be helpful. To do that, each of the conditional histograms for X given
one of the possible values of Y is further partitioned according to each of the remaining candidate
variables in C. For example, suppose the conditioning variable Y; that has already been selected has
L, possible values and the candidate conditioning variable Y5 under consideration has Lo possible



values. Then a table analogous to Table 4 is built with L; x Lo columns, one for each of the
possible combinations of Y; and Y5 and K rows, one for each of the possible values of X. The steps
outlined above are then applied to the table, giving a x? p-value. Again, the candidate variables, if
any, that satisfy the (a1, 01, g, d9) criterion are found, and of those the one with the largest value
of a is chosen. The selection procedure is iterated until no further conditioning variable satisfies
the selection criterion, or all candidate conditioning variables are chosen. Note that the choice
of (a1,01, az,d2) controls the amount of conditioning, and thus the number of histograms in the
signature for representing X.

Note that the decomposition (1) constrains the set of candidate conditioning variables for any
signature variable X. For example, the variable X; can only be conditioned on variables that are
derived from Xi,...,X; 1 or are unrelated to Xy,...,Xg. Also, the procedure here can easily
be modified to handle signatures that are not based on histograms by replacing the x? test with
another test that is more appropriate for the signature component.

3.3 Quantizing Histogram Cells

If each signature component is represented by a histogram, and each cell of the histogram contains
a probability, then the amount of space allocated to each probability has a major effect on the
amount of space needed to store the signature and a major effect on the ability to represent small
probabilities accurately. Suppose, for example, that each cell probability is allocated one byte, so
256 different cell entries are possible. If the interval [0, 1] is cut into 256 equal segments and the
midpoint of each of the 256 intervals is used to represent the probability, then the smallest nonzero
probability that can be represented is 1/512. This may not be small enough for applications, such
as fraud detection, in which the target behavior is rare.

The smallest probability that can be monitored with a byte can be nearly halved as follows. For
a given signature component, find the cell with the largest probability (or one of the cells with the
largest probability in case of a tie.) The probability for that cell can be found by subtracting the
sum of the probabilities of the other cells from 1, so there is no need to store it. The probability of
each of the other cells cannot exceed 0.5, so now it is enough to quantize the half interval [0, 0.5)
into 255 subintervals labelled 0 through 254, reserving the value 255 to mark the cell with the
largest probability. Thus, the smallest quantized probability is now 1/1020 instead of 1/512. The
quantized probability for the maximum probability cell is then 1 minus the sum of the quantized
probabilities for the other cells.

Even 1/1020 may be too big when the target behavior is rare. For those applications, the
interval [0,0.5] must be broken into unequal pieces. For example, the log probabilities to some
base, instead of the raw probabilities, can be quantized. A minimum quantized probability of p,
can then be achieved by taking a log-uniform quantization on [0,0.5) to a base b, = (2p,)~ /2545,
The labels 0 through 254 are then assigned according to

0, 05<p<1
q(p) =255+ < |log, 2p], p« <p<0.5  with b, = (Qp*)71/254'5,
—255, P < Ps.

where ¢(p) is the quantized value for p and [z] denotes the largest integer less than or equal to x.
Quantization is reversed by computing

p1=2%45 /9, 0<q< 255
p(Q) = 1 - Zk:qk<255 p(qk)7 q =255, Nmax =1 ,
0.5, Nmax = 2.



where npax is the number of cells with the largest probability. Note that the log-based quantization
gives more precise small probabilities than uniform quantization does, but at the expense of less
precise large probabilities. For example, if the logarithm base is chosen so that the minimum
probability that can be recovered from the quantized values is p, = 1075, then the maximum
absolute difference between raw and quantized probabilities is 2.54 x 10™> when p < 1073, but the
maximum absolute difference is 0.0127 when 0.1 < p < 0.5. If necessary, the error in p over several
intervals can be controlled by breaking the interval [0, 0.5] into subintervals and bounding the error
in each subinterval.

4 Initializing a Signature for a New Customer

Our goal is to track customers dynamically, starting as soon as the customer begins to make
transactions. To do that, we need to assign an initial signature to a customer who has made only
one or a few transactions. This task resembles customer segmentation, in the sense that there
is a set of initial signatures (or customer segments) and the customer is assigned to one of these
sets based on the information available at the time of the assignment. In our approach, however,
the customer is assumed to belong to multiple segments, one for each signature component. For
example, the initial signature component for duration of incoming calls and the initial signature
component for duration of outgoing calls are assigned independently in our model. This allows a
huge number of different initial signatures — namely, the product of the number of initializations
for each signature component. Having a rich set of initial signatures is important for expressing
nuances in customer behavior. Again, the product representation (1), along with the elimination
of some conditional terms in the product during signature design, enable this richness.

To illustrate the ideas, suppose that the signature component for X that is conditional on
Y = y is represented by a normalized histogram (cells summing to one) p; = (pi1,... ,pix) for
each customer ¢ and that the initial values of p; are “filled in” according to rules that depend
on a set of index variables Z that are computed from customer i’s first two transaction records.
Thus, each value of Z points to a representative signature component rz = (rz1,...,rzK) for
X conditional on Y. The goal is to find rules for assigning representative signature components
so that rz describes a new customer accurately. More precisely, given a set of priming data, as
described in Section 3, the goal is to find rules for which the initial assignment r, is close to the
summarized transaction history p, for each customer 4.

As in signature design, there is a list of candidate index variables, each of which takes on at
most several values. (So candidate variables that have many possible values need to be coarsened,
for example.) The candidate index variables do not have to be a subset of the signature and
conditioning variables, and they may be binned differently from the signature and conditioning
variables. For example, day-of-week may have seven values as a signature variable, three values
(weekday, Saturday, Sunday) as a conditioning variable, and only the two values (weekday, weekend)
as an index variable. The only requirement is that the index variables must be able to be evaluated
when a representative signature is assigned.

Our procedure for choosing index variables for a signature component X conditional on Y is
sequential, adding candidate index variables one at a time until the incremental benefit from adding
any remaining candidate is insignificant. To start, suppose the histogram for X conditional on Y
has K bins, the candidate index variable Z has J levels labelled 1,... ,J, and no index variable
has been chosen yet. Then index selection has the following steps.

1. For the i*" customer in the priming data with Z = j, find the histogram Pij = (Pij1y--- »Pij,K)

10



of X conditional on Y = y. Suppose there are IN; such customers.

. Find the average signature p,; = (pj1,-.. ,D; ) for the customers found in Step 1, where

1%
Dk = Fj ;pi,j,k-

. Compute the average signature component p, that would be used ignoring Z; namely,

1 LY
POk = =7 Z ZPi,g’,b

Zj:l Nj j=1i=1
. Compute the bin distances

b — 4 o8 @ik/pik)l pijr >0
Zajyk - - y
— log (P k) otherwise.

b llog (pi,jk/Pok)|l Pijxr >0
7,0, — log(po.x) otherwise.

Then define the effect of using index variable Z for the signature component X conditional
on Y for a customer ¢ with Z = j as

K
Dij = (bijk = biok)-
k=1

The effect of Z = j is positive if p; is closer to the customer’s signature than the average
signature p,, which does not depend on Z. The average effect of Z over all customers with
Z = j is then

N
J NJ

. Because Z is known when a representative signature is needed, we can choose to use Z only
when Z = j for some j for which Dj > 0; that is, only when Z is, averaging all customers with
7 = j, useful. Therefore, define the candidate representative signature rz for X conditional
on Y by
TZ:{pj if Z; = j and D; >0
py if Z; =7 and D; <0.

. Let J* be the set of j for which Dj > 0; that is, the set of customers with a value Z = j
for which the representative signature is not just the initial average signature p,. Let N, j+ be
the number of customers ¢ for which Z = j, D; > 0, and D;; > 0; that is, the number of
customers in the priming data that would have representative signature p; and for which that
signature would be better than p,. The coverage of Z is defined as the fraction of customers
in the priming data for which indexing by Z is useful, so

Yjeq+ N
~ .
Zj:l N;
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Finally, the average value for a customer that is indexed by Z is

N.
E]’ej+ Eizjl D; ;
Zjej+ Nj

Vz =

Whether 7 is useful for indexing depends on its coverage and average value. Ideally, we would like
the indexing to be useful for all customers and to have a large effect on all customers, but often the
more customers an index applies to the smaller its average effects. Thus, it is necessary to balance
coverage and average value.

First, only consider indexing variables that exceed a minimum threshold (e.g., 30%) on coverage.
If no candidate index variable exceeds the coverage threshold, then index selection stops, without
adding an index variable. Otherwise, the relative importance of coverage and average value needs
to be balanced. For example, what does the average value of an index variable with 40% coverage
need to be to be equivalent to an index variable with 80% coverage and an average value of 0.27
More generally, suppose Z; has better coverage but worse average value than Zs so ¢;/ce > 1 and
va/v1 > 1. More importantly, suppose that there are constants ¢, and v, so that Z; and Zs would
be considered equivalent if ¢;/cy = ¢, > 1 and vg/v; = v, > 1. For example, Z; and Zy might
be equivalent if Z; has twice the coverage of Zy but Z5 has four times the average value of 77, so
¢« = 2 and v, = 4. Then we require a function that is increasing in C' and V' and that has the same
value at (C1,v.V1) and (¢.C2, V2). One such function is

g(C, V)=V x C'log(v«)/ log(ex)

Thus, the first index variable, if any, that is chosen is the one that maximizes g(C, V) among all
candidate index variables that exceed the minimum requirement for coverage.

For a concrete example, consider the indexing of the signature component corresponding to
duration of outgoing calls in the wireless calls database application. Assume that four candidate
index variables based on the first two calls are available: the average call duration, the number
of peak calls, the number of roaming calls, and the number of outgoing calls. A minimum cover-
age threshold of 30% is used. Figure 3 presents the coverage, average value, and g(C, V') value,
calculated using ¢, = 2 and v, = 4, for each candidate index variable.

Coverage Average Value g(C,Vv)
Duration [ ] ] ]
Peak/Non-Peak ] [ ] o
Incoming/Outgoing  |® ] [ ]
Local/Roaming [ ] [ ] [ ]
T i T T T T T T T T T T T T T T
20 30 40 50 0.5 0.7 0.9 1.1 3 4 5 6 7
Figure 3: Coverage, average value, and ¢(C,V’) value — calculated using ¢, = 2 and v, = 4

— corresponding to the duration of outgoing calls signature component indexed by average call
duration, number of peak calls, number roaming calls, and number of outgoing calls of the first two
calls.
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Only two of the candidate index variables, average call duration and number of peak calls,
satisfy the minimum coverage threshold of 30%. Average duration has larger coverage and smaller
average value than number of peak calls, and is the index variable selected by the ¢g(C, V') criterion.

Index variables are added sequentially, by making the following changes in the above procedure:
replace the average signature component p, with the current r, and take p;, to be the average
signature component over all customers for which Z = z; for the 4" possible combination of the
current and candidate index variables.

The final representative signature corresponding to index variables Z for the signature compo-
nent for X conditional on Y is then computed as follows.

1. Find all customers in the priming set for which ¥ =y and Z = z.

2. Find p;, the signature component of X conditional on Y = y, for each customer ¢ identified
in Step 1.

3. Set rz = (rz,1,...,rz k) equal to the average of the components found in Step 2. If there
are nz such customers, then

1 &

rZk = —— § Pik-
nz “ 1
1=

4. The representative signature component is then

w P if Z;=jand D; >0
77\ Py if Z;=j and D; <0,

where the subscript j now denotes the j** possible value of the index variables Z.

5 Updating Signature Components

A key feature of a signature is that it can be updated sequentially from the current transaction
record — no past record needs to be accessed — by methods that are no more difficult to compute
than weighted averaging. This ability to avoid looking at past transactions is important for both
processing and analysis. For example, reading and writing a transaction to a data warehouse
and retrieving it for analysis or summarization later is often much less efficient than updating a
summary or analysis when the record is written. If a signature is sufficiently short to be stored
in main memory, then nearly real-time applications, such as fraud detection, are possible using
signatures. Moreover, allowing a signature to evolve in time (measured in transactions) rather
than abruptly changing at the end of an arbitrary period, enables up-to-the minute data mining
because the data summaries are always current.

Histograms for record variables, like call duration or direction, that can be considered to be
randomly varying according to P,, the probability distribution that is used to predict behavior
at transaction n + 1, are particularly easy to update. If p,, are the histogram probabilities after
transaction n, and X1 is a vector of 0’s except for a 1 in the histogram cell that contains the
observed value, then the sequentially updated histogram probabilities are

/ﬁn+1 = (1 - wn+1)/ﬁn + wn+1Xn+17 (5)

where wy, 11 = 1/(n+1). The initial estimate of the signature component, p, can either be set to a
vector of zeroes, or initialized with a representative signature, using the methodology described in
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Section 4. Updating thus requires only the most recent histogram, the number of transactions made
so far and the current transaction. We call this kind of updating unweighted averaging, because p,,
weights each observed transaction X1,... , X, equally.

Unweighted averaging is appropriate for static databases, or dynamic databases in which a
customer’s behavior does not change over time. If behavior changes over time, then unweighted
averaging is inappropriate because recent transactions have no more influence on the histogram
than old transactions do. Evolving behavior is tracked better by exponentially weighted moving
averaging (EWMA ). The updated EWMA vector p,, | ; is given by equation (5) with w4 = w for
a fixed weight w, 0 < w < 1, that controls the extent to which p,, |, is affected by a new transaction
and the speed with which a previous transaction is “aged out.” For example, if w = 0.05, then
the probability assigned to the observed histogram bin increases by a constant amount w and the
probability of any other bin decreases by a factor of 0.95. Also, transaction n — 10, which was 10
transactions earlier than transaction n, has about 60% the weight of transaction n if w = 0.05, but
about 82% the weight of transaction n if w = 0.02. Thus, smaller w lead to more stable estimated
distributions. The initial probability estimate p, must be specified, as in the unweighted averaging
procedure. (See [13] for more information about EWMA.) Under some conditions, the EWMA
approximates the posterior mean under a Bayesian dynamic model [14].

Timing variables, like day of week and hour of day, are not randomly observed because they are
observed “in order.” For example, all the transactions for Tuesday of this week are observed before
all the transactions for Wednesday of this week. Nonetheless, timing distributions can be updated
in a way that is similar in spirit and in amount of computation to exponentially weighted moving
averaging (see [15]). Signature components that are represented as top categories plus “others”,
rather than as complete distributions, are only slightly more difficult to update sequentially. For
example, a move-to-the-front scheme can be used to update the labels of the top categories and
a variant of exponentially weighted moving averaging can be used to update the probabilities p,,.
(See [16] for the details of one possible approach.) A variant of exponentially weighted stochastic
approximation, which is similar in computational effort to exponentially weighted moving averaging,
can be used to update signature components that are vectors of quantiles (see [17] for details).

Although updating is conceptually simple, there can be challenges when probabilities are quan-
tized. For example, suppose the quantized probability 0.01 represents the interval from 0.005 to
0.015 and the updating weight is 0.005. Then an observation in that bin causes the bin proba-
bility 0.01 to be updated to 0.015, but the quantized value of 0.015 is again 0.01. Thus, the bin
probability in this example can never be updated by observations that fall in the bin unless the
updating scheme is modified. Obviously, similar problems can arise for bins with large probabilities.
Note that this problem cannot necessarily be avoided by choosing weights carefully because bin
probabilities can vary dramatically over a large customer base.

Probabilistic updating solves the problem of stagnant bins due to a mismatch in updating
weights and cell probabilities. Simply stated, we toss a coin with a certain probability of heads
every time that an observation falls in a stagnant cell and change the cell probability to an adjacent
quantized value if the coin turns up heads. Thus, the cell probability in the above example would
be moved to the quantized value below 0.01 if the coin showed heads, even though the quantized
probability by the standard updating rule should be 0.01 again. If the coin has the right probability
of heads, then on average the quantized probabilities and the probabilities that would have been
computed without any quantizing both take about the same number of updates to move to a
neighboring cell.

Let g, be the quantized level (e.g., a number between 0 and 254 or 255) after transaction n.
Suppose p, = p(¢y,) is the probability that is quantized to ¢,, and let u(gy,) be the minimum number
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of updates needed to move the raw probability p,, to a value that either has quantization level ¢, — 1
or ¢, + 1. A little work shows that the number of updates needed to move p, that much (assuming
no quantization) is

_ log[p(gn — 1)/p(an)]
uldn) = log(1 — w)

qn 21

? -

when ¢, has to be moved to ¢, — 1, and

_ log{[t = plgn + DI/[1 = plgn)}

w(an) log(1 — w)

)

when g, has to move to g, +1. Probabilistic updating then proceeds as follows. At each transaction,
the updated quantized level is moved to the appropriate neighboring bin with probability 1/u(qy,)
and stays at the current value with probability 1 — 1/u(g,). The number of transactions until a
quantized value is moved has a geometric(1/u(g,)) distribution, so on average u(gy,) transactions
are needed to move the bin probability, as desired.

6 Conclusions and Further Thoughts

This paper introduces a fixed-length data structure called a signature that represents massive
datasets of records on customers efficiently. Signatures do not attempt to give an exact accounting
of the past records, but rather to describe current customer behavior accurately. Thus, they are
appropriate for targeted analyses, such as detecting fraud or big spenders, especially when the goal
is to influence customer behavior in nearly real-time.

Designing a signature requires pre-processing some priming data to decide how much detail is
needed on each customer, in light of the need to save space but still represent customer behavior
accurately. There are three kinds of ways that we save space. First, signature variables are coarsened
or binned. Second, for each signature variable, some of the possible conditioning variables are
eliminated, keeping only those that are statistically significant for a majority of customers and
very important for some customers. These first two tasks are accomplished by applying methods
discussed in Sections 3.1 and 3.2 to the records for a representative set of customers. Third, each
histogram probability is represented by one byte, taking into account that small probabilities often
need special care because they are associated with the most interesting behaviors.

This paper also gives a statistically sound procedure for initializing a signature for a new
customer, after the customer makes at most a few transactions. The initialization rules are derived
from a set of priming data. The rules are such that they can be applied in real-time, so initializing
a signature is event-driven rather than time-driven. Initialization is also flexible, in the sense that
each signature component is initialized separately. Thus, the set of initial behaviors is rich.

Signatures can be updated sequentially, using fast procedures that require only the current
signature and the current transaction. Sequential updating based on exponentially weighted moving
averaging is particularly important with dynamic databases, in which individuals may change their
behavior over time. The adaptive updating allows the signature to track evolving behavior.

Signatures generally take little space to store, so a signature database takes only a fraction of
the space of the raw data. For example, in one application we had 33 gigabytes of raw wireless
calling records for about 1.5 million customers. The signature for each customer used about 200
bytes (including the space required to store the wireless phone number), so the signature database
required only about 300 megabytes to store. In an application to wireline calling, there were 90
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gigabytes of transaction records for about 1 million customers. Each signature required about 80
bytes to store, so the signature database required only about 80 megabytes.

Because signatures take so much less space than the original records, it is even possible to
maintain them in main memory in some applications. This can enable fast, approximate answers
to queries at the database and customer level. Signatures can also be used for more sophisticated
analyses, including classification (fraud detection, credit scoring) and clustering (customer segmen-
tation). Furthermore, many statistical algorithms, including most types of regression analysis, can
be easily adapted to work with signatures, opening the possibility for more in-depth analyses of big
databases. Again, reducing the raw data to signatures saves space, making some of the procedures
that would normally too costly to run on the raw data possible to apply to the signature data.

Signatures can also be thought of as a way to do real-time, individualized customer segmenta-
tion. A new customer is assigned to a segment (given an initial signature) that is determined from
past data using a procedure that is applied off-line, as segmentation methods typically are. But as
the customer makes transactions, this initial segment evolves until eventually the customer has a
personalized segment. The process for this is painless — no additional off-line processing is required
to change the customer’s segment. In particular, the database does not have to be re-clustered in
order to change a customer’s segment. Moreover, even the initial segments are richer than those
that would normally be provided by clustering or fitting trees, because each signature component
is initialized separately. Thus, the number of possible segments is the product of the number of
possible initializations for each segment.

Further research is needed to more formally determine the information loss associated with
data reduction using signatures. This information loss may be evaluated in the context of a specific
type of analysis (e.g., results of a regression analysis using the whole data and the individual
signatures), or, more generally, by estimating the differences between the true joint distribution
and the signature representation. Methods for efficiently and meaningfully displaying massive
datasets using individual signatures also require further investigation.
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