Reliable Workflow in a Distributed Environment

William Cook, Jayadev Misra,
David Kitchin, Adrian Quark,
Andrew Matsuoka, John Thywissen

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

(University of Texas at Austin) 1/38

Orc Reliable Workflow HCSS Project

o Orc
» Structured Concurrent Programming
» Workflow/Internet Scripting Language
» Ongoing project for last 5 years
@ HCSS Project Topics
» Time-based Semantics
Implementation (Demo)
Simulation/Logical Time
Secure/Adaptive Workflow
Data and Transactions

@ (Present research directions)

v vy VvYyYy

(University of Texas at Austin) 2/38

Internet Scripting Example

©

Contact two airlines simultaneously for price quotes

Buy a ticket if the quote is at most $300

@ Buy the cheapest ticket if both quotes are above $300

Buy a ticket if the other airline does not give a timely quote

©

Notify client if neither airline provides a timely quote

(University of Texas at Austin) 3/38

Orchestrating Components (services)

Acquire data from services
Calculate with these data
Invoke yet other services with the results

Additionally

Invoke multiple services simultaneously for failure telece
Repeatedly poll a service

Ask a service to notify the user when it acquires the appatpriata
Download a service and invoke it locally

Have a service call another service on behalf of the user

(University of Texas at Austin) 4/38

Structured Concurrent Programming

@ Structured Sequential Programmirigjjkstra circa 1968
Component Integration in a sequential world.

@ Structured Concurrent Programming
Component Integration in a concurrent world.

This is a significant challenge that needs focus from comtpuni

(University of Texas at Austin) 5/38

Orc, an Orchestration Theory

@ Site Basic service or component
@ Concurrencycombinatordor integrating sites
@ Theory includes nothing other than the combinators

No notion of data type, thread, process, channel, synchation,
parallelism - - -

New concepts are programmed using the combinators

(University of Texas at Austin) 6/38

Examples of Sites
0o + — x && || < =..

@ println, random Pronpt, Email ...
@ Ref, Semaphor e, Channel , Dat abase ...

@ Ti nmer

External ServicesGoogle Search, MySpace, CNN, ...

©

Any Java Class instance
o Sites that create siteMakeSemaphor e, MakeChannel ...

@ Humans

(University of Texas at Austin) 7138

Sites

@ Asite is called like a procedure with parameters.
@ Site returns at most one value.
@ The value ispublished

Site calls arestrict.

(University of Texas at Austin) 8/38

Structure of Orc Expression

@ Simple just a site call, CNN(d)
Publishes the value returned by the site

@ Compositionof two Orc expressions:

(University of Texas at Austin) 9/38

Structure of Orc Expression

@ Simple just a site call, CNN(d)
Publishes the value returned by the site

@ Compositionof two Orc expressions:

dof andgin parallel f|g Symmetric composition

(University of Texas at Austin) 9/38

Structure of Orc Expression

@ Simple just a site call, CNN(d)
Publishes the value returned by the site

@ Compositionof two Orc expressions:

dof andgin parallel f|g Symmetric composition
for all xfromf dog f >x>g Sequential composition

(University of Texas at Austin) 9/38

Structure of Orc Expression

@ Simple just a site call, CNN(d)
Publishes the value returned by the site

@ Compositionof two Orc expressions:

dof andgin parallel f|g Symmetric composition
for all xfromf dog f >x>g Sequential composition
for somexfromgdof f <x<g Pruning

(University of Texas at Austin) 9/38

Symmetric compositionf | g

o Evaluatef and gindependently
@ Publish all values from both

@ No direct communication or interaction betweémnd g.
They can communicate only through sites

Examples

o CNN(d) | BBC(d): callsboth CNN and BBCsimultaneously
Publishes values returned by both sit€s (L or 2 values)

° WebServel) | MailServer) | LinuxServef)
May not publish any value

(University of Texas at Austin) 10/38

Sequential compositionf >x> g

For all values published by do g
Publish only the values frong
@ CNN(d) >x> Email(addressx)

» Call CNN(d)

» Bind result (if any) tox

» Call Email(addressx)

» Publish the value, if any, returned dymail

@ (CNN(d) | BBC(d)) >x> Email(addressx)

» May call Emailtwice
» Publishes up to two values frofamail

(University of Texas at Austin) 11/38

Schematic of Sequential composition

g0

gl g2

Figure:Schematic off >x> g

= & = E DA
(University of Texas at Austin)

Pruning: (f <x<g)

For some value published by do f.

o Evaluatef and gin parallel.

» Site calls that need are suspended.
» see (M() |N(x)) <x<g

@ When greturns a (first) value:

» Bind the value tox.
» Terminateg.
» Resume suspended calls.

@ Values published by are the values off <x< g).

(University of Texas at Austin) 13/38

Example of Pruning

Email(addressx) <x< (CNN(d) | BBC(d))

Binds x to the first value fromCNN(d) | BBC(d).
Sends at most one email.

(University of Texas at Austin) 14/38

Some Fundamental Sites

o if(b): booleanb,
returns asignalif bis true; remainsilentif bis false

o Rtimer(t): integert, t > 0, returns a signat time units later
@ stop never responds. Same #gfalse)

@ signat returns a signal immediately. Same istrue)

(University of Texas at Austin) 15/38

Time-out

Publish M’s response if it arrives before timg
Otherwise, publish signal

z <z< (M() | Rtime(t)))

(University of Texas at Austin) 16/38

Some Target Applications

@ Account management in a bafBusiness process management):
Workflow lasting over several months
Security, Failure, Long-lived Data

o Extended 911
Using humans as components
Components join and leave
Real-time response

@ Network simulation
Experiments with differing traffic and failure modes
Animation

@ Managing a city (A proposal to EU)
Components integrated dynamically
The scope of software is nebulous

(University of Texas at Austin) 17/38

Expression Definition

def MailOncea) =
Emailla,m) <m< (CNN(d) | BBC(d))

def MailLoop(a,d) =
MailOnce(a) > Rtimer(d) > MailLoop(a, d)

o Expression is called like a procedure.
It may publish many valuesMailLoop does not publish
o Site calls are strict; expression calls non-strict

def metronomé) = signal | (Rtimer(1) > metronome))
metronome) > stockQuotg)

(University of Texas at Austin) 18/38

Orc as Programming Language

©

Operators to Site calls:
1+ (24 3)to add(1,x) <x< add(2,3)

o if EthenF else G:
(if (b) >F | not(b) >c>if(c) >G) <b<E

e val x= Gfollowed by F:
F <x< G

Data Structures, Patterns: Site calls and variable bisding

Demo!

©

(University of Texas at Austin) 19/38

Laws Based on Kleene Algebra

(Zeroand|) f | stop=f
(Commutativity of |) flg=g|f

(Associativity of |) (flg) |h=f|(g]|h)
(Idempotence of|) NO flf=f

(Associativity of) (f>g)>h=Ff>(g>h)
(Left zero of) stop>>f = stop

(Right zero of >) NO f > stop= stop

(Left unit of) signal>f =f

(Right unit of) f >x> let(x) = f

(Left Distributivity of > over |)NO f(g|h)=(f>g)| (f>h)
(Right Distributivity of > over |) (flg)>h=(f>h|g>h)

(University of Texas at Austin) 20/38

Adaptive Workflow

—This is no standard formal definition of workflow
cAutomated process with human participants

—Problem: How to upgrade active workflows?
oExample: add time-out check/handler

—Van der Alst defined 20 Workflow patterns
nCharacterize workflow constructs

*Sequence, Parallel, Split, Choice, Merge
Instantiation, Termination, Milestone, ...

nCan be expressed in Orc

Adaptive Workflow e J. Thywissen 1

The WfMC Basic Workflow Model

Business Process
(i.e.. what is intended to happen)

is defined in a is managed by a
— — — B Process Definition Workflow Management System
\ (a representation of what (controls automated aspects

\ is intended to happen) used to create of the business process)

Sub-Processes & manage via
4 composed of
Process Instances
Activiti (a representation of what
ctivities

is actually happening)

which may be include one

or more
or

Manual Activities Automated Activities ——————p» Activity Instances

(which are not managed as during execution which
part of the Workflow System) are represented by include

Invoked
Work Items Applications
(tasks allocated to a (computer tools/applications
workflow participant) used to support an activity)

Figure 1 - Relationships between basic terminology

Figure from: Workflow Management Coalition. 1999. Terminology & Glossary. WIMC-TC-1011. p. 7.

Adaptive Workflow e J. Thywissen 2

Mapping WfMC Model — Orc

Business Process
(i.e.. what is intended to happen)

is defined in a is managed by a
Orc Program
— — —P» Process Definition Workflow Management System :
| o W Tanas Y Orc Runtime
\ (a representation of what (controls automated aspects

used to create of the business process)

& manage via ¢

Process Instances Executin g

(a representation of what
is actually happening) O rc P rog ram

\ is intended to happen)

Sub-Processes
4 composed of

Orc Expression Activities

which may be include one

or more
or

Manual Activities Automated Activities ——————p» Activity Instances E :
: : xecutin
(which are not managed as during execution which ecu g
part of the Workflow System) are represented by include Orc EXpI’GSSlOﬂ
Invoked
Work Items Applications
(tasks allocated to a (computer tools/applications
workflow participant) used to support an activity)

Figure 1 - Relationships between basic terminology

Adaptive Workflow e J. Thywissen 3

Types of Adaptive Workflow

—Ad hoc
oHand-upgrade active workflows
-Systematic
olnstantaneous
*Upgrade all active workflows at once
olncremental
*Run old and new in parallel
*Incrementally migrate processes
—Wait for appropriate time

Adaptive Workflow e J. Thywissen 4

Wf Change Hazards

Correctness Criteria Based Problems

1) Changing the Past (CP) 2) LT: Loop Tolerance) DS: Dangling States
lon S:
lon S: ; 4 lon S: C activated or started?
COMPLETED
Yo B
A B C D
A B C ((
\((f loop_back
Marking Adaptation Problems
4) OC: Order Changing Problem 5) PI: Parallel Insertion Problem
lon S: lon S§’'? |l on S: lon S§'?

Inserting parallel branch

NREIREIREI =N} D
Y g © alllellclio] [al,y cl,p

Parallelizing B and C ((\(

“\w

Fig. 3. Five typical problems regarding dynamic workflow change.

From RINDERLE, S., REICHERT, M., AND DADAM, P. 2004. Correctness criteria for dynamic
changes in workflow systems: a survey. Data Knowl. Eng. 50, 1 (Jul. 2004), p. 15.

Adaptive Workflow e J. Thywissen 5

Adaptive Workflow in Orchard

—Define correspondence between old and new
o f>g =~ f>>h>>g¢g

—Migrate active processes
oManage dependencies
oNot necessarily behaviorally compatible

Adaptive Workflow e J. Thywissen 6

Secure Information Flow

How can confidential data be leaked?
Covert channels:

o Control flow

Resource exhaustion

Direct channels: o Exceptions
o Site calls o Termination
> Memory e Timing
» File system
» Inter-process communication @ Scheduler
» Network access @ Cache behavior
°
°

Power

(University of Texas at Austin) 21/38

Secure Information Flow

Denning and Denning [1977].

@ Security labels associated with input and output variables. Form a
lattice.

@ Non-interference High-security inputs cannot affect low-security
outputs.

o Information flow : the value of one variable affects another.

(University of Texas at Austin) 22/38

Non-interference

Program P denotes a function on state®
@ P:S—Su{l}
Equivalence relation=|, where L is a label:
o s= giff el CL.s(v)=5(v)
Non-interference: for all input statesand s
@ s=_ 5 = P(s)=_P(d)
Kinds of Equivalence
@ Setof possible outputs (possibilistic)
@ Distribution of possible outputs (probabilistic)
@ Program trace (observational determinism or bisimulation

(University of Texas at Austin) 23/38

Language-Based Information Flow

Volpano, Smith and Irvine [1996] describe a type system fowing
non-interference.

o Types are security labels

o Expression type: level of information revealed by its value

o Statement type: level of information revealed by the exeoutf the
statement

o Well-typed terminating programs obey non-interference

(University of Texas at Austin) 24/38

Type System

As used by JIF, roughly.
Expression

F'kFe:l TH€:I
I'Fexée: Ul

Conditional

'te:l I'=T(pc)ul T,pc:I'ta T,pc:I'+b
I'Hif ethen aelse b

Assignment

I'vy=1 T'ke:l" I'(pc)ul'Cl
'-v:=e

(University of Texas at Austin) 25/38

Issues in Orc

Why can't Orc use such a type system?

@ No separation between functional expressions and effestHtements.
o Data races can leak information.
@ (Non-)Termination can leak information.

(University of Texas at Austin) 26/38

Examples

Halting
if hthenl|l :=true else | := false
which is sugar for:

i f(h) >> public(true)
| if(~h) >> public(false)

insecure due to non-termination!

(University of Texas at Austin) 27138

Examples

Synchronization

Semaphor e(0) >s>
public(false) >>

(s.acquire() >> public(true)
| if(h) >> s.rel ease()

)

insecure due to non-termination!

(University of Texas at Austin) 28/38

Examples

Non-termination

def loop(x) =
if ~x then | oop(x)
el se Rtimer(1)

(public(false)

| loop(h) >> public(true)
)

insecure due to non-termination and data race!

(University of Texas at Austin) 29/38

Examples

Internal Timing

(Rtimer(50) >> public(true)
| (if h then Rtinmer(100)
el se signal) >>
public(fal se)

)

insecure due to data race!

(University of Texas at Austin) 30/38

Examples

External Timing

public(true) >>

(if h then Rtiner(100)
el se signal) >>

public(false)

insecure due to data race!

(University of Texas at Austin) 31/38

Typing Sites

What information goes into a site call?

@ The fact that it was called

@ The time that it was called

@ The value passed for each argument
What information leaves a site call?

@ The fact that it published

@ The time that it published

@ The value returned

(University of Texas at Austin) 32/38

Typing Expressions

Generalize th@c label used in static typing approach.
@ What can we infer at any program point?
@ We can infer that certain expressions published.
@ Represent publication conditions as predicates over progariables.

(University of Texas at Austin) 33/38

Example 1

(if hthen h" := true

else ' := false) >>
| :=true
Desugared:

(if(h) >> private(true)

| if(~h) >> private(false)
) >>

public(true)

(University of Texas at Austin) 34/38

Example 1

(if(h) >> private(true)

| if(~h) >> private(false)

) >>

public(true)

Assume that private always publishes.

F=if(h) >> private(true) publishesiffh.

G=if(not(h)) >> private(false) publishesiff -h.
F| G publishes iff hv —h =true.

Thereforepublic(true) is always called and is secure.

(University of Texas at Austin) 35/38

Example 2

(if hthen if(l) >> private(true)
el se private(false)) >>
public(true)

Desugared:

(if(h) >>if(l) >> private(true)
| if(~h) >> private(false)

) >>

public(true)

(University of Texas at Austin) 36/38

Example 2

(if(h) >>if(l) >> private(true)
| if(~h) >> private(false)

) >>

public(true)

F=if(h) >> if(l) >> private(true) publishesiffhAl.
G=if(not(h)) >> private(true) publishesiff-h.
F| Gpublishesiff(hAl)vV =h=1V =h.

Therefore callingpublic(true) depends on the value df and is insecure.

(University of Texas at Austin) 37/38

Summary

@ Orc: Structured Concurrent Programming
Direct representation of common concurrency structures
Sites act as channels for more complex scenarios

@ Applications to Workflow
Organizing human-centric processes

Direct representation of common concurrency structures
Sites act as channels for more complex scenarios

» Adaptive Workflow
Updating a process that is running
» Secure Information in Workflow
Connecting information flow theory to practical workflow ptems

o Allwork in progress

Seehttp://orc.csres.utexas.edu

(University of Texas at Austin) 38/38

	Overview
	Orc Language
	Laws
	Secure Information Flow
	Classical Approach
	Orc Approach

