
Reliable Workflow in a Distributed Environment

William Cook, Jayadev Misra,
David Kitchin, Adrian Quark,

Andrew Matsuoka, John Thywissen

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

(University of Texas at Austin) 1 / 38



Orc Reliable Workflow HCSS Project

Orc
◮ Structured Concurrent Programming
◮ Workflow/Internet Scripting Language
◮ Ongoing project for last 5 years

HCSS Project Topics
◮ Time-based Semantics
◮ Implementation (Demo)
◮ Simulation/Logical Time
◮ Secure/Adaptive Workflow
◮ Data and Transactions

(Present research directions)

(University of Texas at Austin) 2 / 38



Internet Scripting Example

Contact two airlines simultaneously for price quotes

Buy a ticket if the quote is at most $300

Buy the cheapest ticket if both quotes are above $300

Buy a ticket if the other airline does not give a timely quote

Notify client if neither airline provides a timely quote

-

(University of Texas at Austin) 3 / 38



Orchestrating Components (services)

Acquire data from services
Calculate with these data
Invoke yet other services with the results

Additionally
Invoke multiple services simultaneously for failure tolerance
Repeatedly poll a service
Ask a service to notify the user when it acquires the appropriate data
Download a service and invoke it locally
Have a service call another service on behalf of the user
...

(University of Texas at Austin) 4 / 38



Structured Concurrent Programming

Structured Sequential Programming: Dijkstra circa 1968
Component Integration in a sequential world.

Structured Concurrent Programming:
Component Integration in a concurrent world.

This is a significant challenge that needs focus from community

(University of Texas at Austin) 5 / 38



Orc, an Orchestration Theory

Site: Basic service or component

Concurrencycombinatorsfor integrating sites

Theory includes nothing other than the combinators

No notion of data type, thread, process, channel, synchronization,
parallelism · · ·

New concepts are programmed using the combinators

(University of Texas at Austin) 6 / 38



Examples of Sites

+ − ∗ && || < = ...

println, random, Prompt, Email ...

Ref, Semaphore, Channel, Database ...

Timer

External Services:Google Search, MySpace, CNN, ...

Any Java Class instance

Sites that create sites: MakeSemaphore, MakeChannel ...

Humans
...

(University of Texas at Austin) 7 / 38



Sites

A site is called like a procedure with parameters.

Site returns at most one value.

The value ispublished.

Site calls arestrict.

(University of Texas at Austin) 8 / 38



Structure of Orc Expression

Simple: just a site call,CNN(d)
Publishes the value returned by the site

Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning

(University of Texas at Austin) 9 / 38



Structure of Orc Expression

Simple: just a site call,CNN(d)
Publishes the value returned by the site

Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning

(University of Texas at Austin) 9 / 38



Structure of Orc Expression

Simple: just a site call,CNN(d)
Publishes the value returned by the site

Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning

(University of Texas at Austin) 9 / 38



Structure of Orc Expression

Simple: just a site call,CNN(d)
Publishes the value returned by the site

Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning

(University of Texas at Austin) 9 / 38



Symmetric composition:f | g

Evaluate f and g independently

Publish all values from both

No direct communication or interaction betweenf and g.
They can communicate only through sites

Examples

CNN(d) | BBC(d): callsboth CNNand BBCsimultaneously
Publishes values returned by both sites (0, 1 or 2 values)

WebServer() | MailServer() | LinuxServer()
May not publish any value

(University of Texas at Austin) 10 / 38



Sequential composition:f >x> g

For all values published byf do g
Publish only the values fromg

CNN(d) >x> Email(address, x)

◮ Call CNN(d)
◮ Bind result (if any) tox
◮ Call Email(address, x)
◮ Publish the value, if any, returned byEmail

(CNN(d) | BBC(d)) >x> Email(address, x)

◮ May call Email twice
◮ Publishes up to two values fromEmail

(University of Texas at Austin) 11 / 38



Schematic of Sequential composition

f

g1g0 g2

Figure:Schematic off >x> g

(University of Texas at Austin) 12 / 38



Pruning: (f <x< g)

For some value published byg do f .

Evaluate f and g in parallel.

◮ Site calls that needx are suspended.
◮ see (M() | N(x)) <x< g

When g returns a (first) value:

◮ Bind the value tox.
◮ Terminateg.
◮ Resume suspended calls.

Values published byf are the values of(f <x< g).

(University of Texas at Austin) 13 / 38



Example of Pruning

Email(address, x) <x< (CNN(d) | BBC(d))

Binds x to the first value fromCNN(d) | BBC(d).
Sends at most one email.

(University of Texas at Austin) 14 / 38



Some Fundamental Sites

if (b): booleanb,
returns asignalif b is true; remainssilent if b is false

Rtimer(t): integer t, t ≥ 0, returns a signalt time units later

stop: never responds. Same asif (false)

signal: returns a signal immediately. Same asif (true)

(University of Texas at Austin) 15 / 38



Time-out

Publish M’s response if it arrives before timet,
Otherwise, publish signal

z <z< (M() | Rtimer(t)))

(University of Texas at Austin) 16 / 38



Some Target Applications

Account management in a bank(Business process management):
Workflow lasting over several months
Security, Failure, Long-lived Data

Extended 911:
Using humans as components
Components join and leave
Real-time response

Network simulation:
Experiments with differing traffic and failure modes
Animation

Managing a city: (A proposal to EU)
Components integrated dynamically
The scope of software is nebulous

(University of Texas at Austin) 17 / 38



Expression Definition

def MailOnce(a) =
Email(a, m) <m< (CNN(d) | BBC(d))

def MailLoop(a, d) =
MailOnce(a) ≫ Rtimer(d) ≫ MailLoop(a, d)

Expression is called like a procedure.
It may publish many values.MailLoop does not publish

Site calls are strict; expression calls non-strict

def metronome() = signal | (Rtimer(1) ≫ metronome())
metronome() ≫ stockQuote()

(University of Texas at Austin) 18 / 38



Orc as Programming Language

Operators to Site calls:
1 + (2 + 3) to add(1, x) <x< add(2, 3)

if E then F else G:
(if (b) ≫ F | not(b) >c> if (c) ≫ G) <b< E

val x = G followed by F:
F <x< G

Data Structures, Patterns: Site calls and variable bindings

Demo!

(University of Texas at Austin) 19 / 38



Laws Based on Kleene Algebra

(Zero and | ) f | stop= f
(Commutativity of | ) f | g = g | f
(Associativity of | ) (f | g) | h = f | (g | h)
(Idempotence of| ) NO f | f = f
(Associativity of ≫ ) (f ≫ g) ≫ h = f ≫ (g ≫ h)
(Left zero of ≫ ) stop≫ f = stop
(Right zero of≫ ) NO f ≫ stop= stop
(Left unit of ≫ ) signal≫ f = f
(Right unit of ≫ ) f >x> let(x) = f
(Left Distributivity of ≫ over | ) NO f ≫ (g | h) = (f ≫ g) | (f ≫ h)
(Right Distributivity of ≫ over | ) (f | g) ≫ h = (f ≫ h | g ≫ h)

(University of Texas at Austin) 20 / 38



Adaptive Workflow  •  J. Thywissen

Adaptive Workflow

—This is no standard formal definition of workflow

□Automated process with human participants
—Problem: How to upgrade active workflows?

□Example: add time-out check/handler
—Van der Alst defined 20 Workflow patterns

□Characterize workflow constructs
•Sequence, Parallel, Split, Choice, Merge
Instantiation, Termination, Milestone, ...

□Can be expressed in Orc

1



Adaptive Workflow  •  J. Thywissen

The WfMC Basic Workflow Model

2

TC 1011 Issue 3.0 (Feb 99) Terminology & Glossary Printed 11/05/99

© 1994 - 1999 Workflow Management Coalition Page 7 of 65

2 - BASIC CONCEPTS

This section identifies basic concepts and terminology associated with workflow as a

general topic.

Workflow Glossary - Relationships between basic terminology

Business Process

Process Definition

is defined in a 

composed of

Manual Activities

(i.e.. what is intended to happen)

(a representation of what

 is intended to happen)

Sub-Processes

Activities

is managed by a

Workflow Management System

Process Instances

which may be

Automated Activities

(which are not managed as

part of the Workflow System)

(controls automated aspects 

of the business process)

via

or

used to create

& manage

(a representation of what 

is actually happening)

include one

or more

Activity Instances
during execution

are represented by
which

include

and/or

Work Items
Invoked 

Applications

(tasks allocated to a

workflow participant)

(computer tools/applications

used to support an activity)

Figure 1 - Relationships between basic terminology

Figure from: Workflow Management Coalition. 1999. Terminology & Glossary. WfMC-TC-1011. p. 7.



TC 1011 Issue 3.0 (Feb 99) Terminology & Glossary Printed 11/05/99

© 1994 - 1999 Workflow Management Coalition Page 7 of 65

2 - BASIC CONCEPTS

This section identifies basic concepts and terminology associated with workflow as a

general topic.

Workflow Glossary - Relationships between basic terminology

Business Process

Process Definition

is defined in a 

composed of

Manual Activities

(i.e.. what is intended to happen)

(a representation of what

 is intended to happen)

Sub-Processes

Activities

is managed by a

Workflow Management System

Process Instances

which may be

Automated Activities

(which are not managed as

part of the Workflow System)

(controls automated aspects 

of the business process)

via

or

used to create

& manage

(a representation of what 

is actually happening)

include one

or more

Activity Instances
during execution

are represented by
which

include

and/or

Work Items
Invoked 

Applications

(tasks allocated to a

workflow participant)

(computer tools/applications

used to support an activity)

Figure 1 - Relationships between basic terminology

Adaptive Workflow  •  J. Thywissen

Mapping WfMC Model → Orc

3

Orc Program

Executing
Orc Program

Orc Runtime

Executing
Orc Expression

Orc Expression



Adaptive Workflow  •  J. Thywissen

Types of Adaptive Workflow

—Ad hoc

□Hand-upgrade active workflows
—Systematic

□Instantaneous
•Upgrade all active workflows at once

□Incremental
•Run old and new in parallel
•Incrementally migrate processes

—Wait for appropriate time

4



Adaptive Workflow  •  J. Thywissen

Wf Change Hazards

From RINDERLE, S., REICHERT, M., AND DADAM, P. 2004. Correctness criteria for dynamic 
changes in workflow systems: a survey. Data Knowl. Eng. 50, 1 (Jul. 2004), p. 15.

5

needlessly exclude instances from migrating to a new schema solely based on the fact that the
respective changes concern loops.

(3) Dangling States (DS). The DS problem arises in conjunction with approaches not distinguish-
ing between activated and started activities (see Fig. 3(3)). As a consequence, very often
such approaches either forbid the deletion of activated activities––what is too restrictive––
or they allow the deletion of already started activities––what leads, for example, to loss of
work.

(4) Order Changing (OC). The OC problem refers to correctly adapting instance markings when
applying order changing operations like parallelization, sequentialization, and swapping of
activities (see Fig. 3(4)).

(5) Parallel Insertion (PI). As opposed to (4) the PI problem arises when inserting a new parallel
branch. Concerning Petri-Nets, for example, after such a change we may have to insert addi-
tional tokens to avoid deadlocks in the sequel (see Fig. 3(5)). The OC and PI problems are
closely related to the dynamic change bug as it has been presented in [28].

In the following we refer to these characteristic problems as the dynamic change problems, and
we show how the different approaches supporting adaptive workflows deal with them.

3.2. Approaches based on graph equivalence

The approaches discussed in this section base their particular correctness criteria on graph
equivalence [1,28,29,33,34]. Here we can further distinguish between approaches which do [1,34]
and which do not use instance execution histories [28] for checking compliance.

Fig. 3. Five typical problems regarding dynamic workflow change.

S. Rinderle et al. / Data & Knowledge Engineering 50 (2004) 9–34 15



Adaptive Workflow  •  J. Thywissen

Adaptive Workflow in Orchard

—Define correspondence between old and new

□      f >> g      ⇝    f >> h >> g

—Migrate active processes

□Manage dependencies

□Not necessarily behaviorally compatible

6

>>

f g

>>

f >>

h g



Secure Information Flow

How can confidential data be leaked?

Direct channels:

Site calls
◮ Memory
◮ File system
◮ Inter-process communication
◮ Network access

Covert channels:

Control flow

Exceptions

Termination

Timing

Scheduler

Cache behavior

Resource exhaustion

Power

(University of Texas at Austin) 21 / 38



Secure Information Flow

Denning and Denning [1977].

Security labels: associated with input and output variables. Form a
lattice.

Non-interference: High-security inputs cannot affect low-security
outputs.

Information flow : the value of one variable affects another.

(University of Texas at Austin) 22 / 38



Non-interference

ProgramP denotes a function on statesS:

P : S→ S∪ {⊥}

Equivalence relation=L, where L is a label:

s =L s′ iff ∀v ∈ L′ ⊑ L. s(v) = s′(v)

Non-interference: for all input statessand s′

s =L s′ ⇒ P(s) =L P(s′)

Kinds of Equivalence

Setof possible outputs (possibilistic)

Distribution of possible outputs (probabilistic)

Program trace (observational determinism or bisimulation)

(University of Texas at Austin) 23 / 38



Language-Based Information Flow

Volpano, Smith and Irvine [1996] describe a type system for proving
non-interference.

Types are security labels

Expression type: level of information revealed by its value

Statement type: level of information revealed by the execution of the
statement

Well-typed terminating programs obey non-interference

(University of Texas at Austin) 24 / 38



Type System

As used by JIF, roughly.
Expression

Γ ⊢ e : l Γ ⊢ e′ : l′

Γ ⊢ e⋆ e′ : l ⊔ l′

Conditional

Γ ⊢ e : l l ′ = Γ(pc) ⊔ l Γ,pc : l′ ⊢ a Γ,pc : l′ ⊢ b
Γ ⊢ if e then a else b

Assignment
Γ(v) = l Γ ⊢ e : l′ Γ(pc) ⊔ l′ ⊑ l

Γ ⊢ v := e

(University of Texas at Austin) 25 / 38



Issues in Orc

Why can’t Orc use such a type system?

No separation between functional expressions and effectful statements.

Data races can leak information.

(Non-)Termination can leak information.

(University of Texas at Austin) 26 / 38



Examples

Halting

if h then l := true else l := false

which is sugar for:

if(h) >> public(true)
| if(~h) >> public(false)

insecure due to non-termination!

(University of Texas at Austin) 27 / 38



Examples

Synchronization

Semaphore(0) >s>
public(false) >>
( s.acquire() >> public(true)
| if(h) >> s.release()
)

insecure due to non-termination!

(University of Texas at Austin) 28 / 38



Examples

Non-termination

def loop(x) =
if ~x then loop(x)

else Rtimer(1)

( public(false)
| loop(h) >> public(true)
)

insecure due to non-termination and data race!

(University of Texas at Austin) 29 / 38



Examples

Internal Timing

( Rtimer(50) >> public(true)
| (if h then Rtimer(100)

else signal) >>
public(false)

)

insecure due to data race!

(University of Texas at Austin) 30 / 38



Examples

External Timing

public(true) >>
(if h then Rtimer(100)

else signal) >>
public(false)

insecure due to data race!

(University of Texas at Austin) 31 / 38



Typing Sites

What information goes into a site call?

The fact that it was called

The time that it was called

The value passed for each argument

What information leaves a site call?

The fact that it published

The time that it published

The value returned

(University of Texas at Austin) 32 / 38



Typing Expressions

Generalize thepc label used in static typing approach.

What can we infer at any program point?

We can infer that certain expressions published.

Represent publication conditions as predicates over program variables.

(University of Texas at Austin) 33 / 38



Example 1

(if h then h’ := true
else h’ := false) >>

l := true

Desugared:

( if(h) >> private(true)
| if(~h) >> private(false)
) >>
public(true)

(University of Texas at Austin) 34 / 38



Example 1

( if(h) >> private(true)
| if(~h) >> private(false)
) >>
public(true)

Assume that private always publishes.
F ≡if(h) >> private(true) publishes iff h.
G ≡if(not(h)) >> private(false) publishes iff ¬h.
F | G publishes iff h∨ ¬h ≡true.
Thereforepublic(true) is always called and is secure.

(University of Texas at Austin) 35 / 38



Example 2

(if h then if(l) >> private(true)
else private(false)) >>

public(true)

Desugared:

( if(h) >> if(l) >> private(true)
| if(~h) >> private(false)
) >>
public(true)

(University of Texas at Austin) 36 / 38



Example 2

( if(h) >> if(l) >> private(true)
| if(~h) >> private(false)
) >>
public(true)

F ≡if(h) >> if(l) >> private(true) publishes iff h∧ l.
G ≡if(not(h)) >> private(true) publishes iff ¬h.
F | G publishes iff (h∧ l) ∨ ¬h ≡ l ∨ ¬h.
Therefore callingpublic(true) depends on the value ofh and is insecure.

(University of Texas at Austin) 37 / 38



Summary

Orc: Structured Concurrent Programming
Direct representation of common concurrency structures
Sites act as channels for more complex scenarios

Applications to Workflow
Organizing human-centric processes
Direct representation of common concurrency structures
Sites act as channels for more complex scenarios

◮ Adaptive Workflow
Updating a process that is running

◮ Secure Information in Workflow
Connecting information flow theory to practical workflow problems

All work in progress

Seehttp://orc.csres.utexas.edu

(University of Texas at Austin) 38 / 38


	Overview
	Orc Language
	Laws
	Secure Information Flow
	Classical Approach
	Orc Approach


