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Abstract— The integration of control systems with modern
information technologies has posed potential security threats
for critical infrastructures. The communication channels of
the control system are vulnerable to malicious jamming and
Denial-of-Service (DoS) attacks, which lead to severe time-
delays and degradation of control performances. In this paper,
we design resilient controllers for cyber-physical control systems
under DoS attacks. We establish a coupled design framework
which incorporates the cyber configuration policy of Intrusion
Detection Systems (IDSs) and the robust control of dynamical
system. We propose design algorithms based on value iteration
methods and linear matrix inequalities for computing the
optimal cyber security policy and control laws. We illustrate
the design principle with an example from power systems.
The results are corroborated by numerical examples and
simulations.

I. INTRODUCTION

Recent years have witnessed the migration from propri-
etary standards for communications towards open interna-
tional standards for modern critical infrastructures. However,
it is difficult to update software and hardware applications
for legacy control systems. Malicious attackers, on the other
hand, can easily launch an attack since the amount of knowl-
edge needed to successfully execute an attack is decreasing.
As a consequence, many incidents related to damages of
cyber attacks on Industrial Control Systems (ICSs) have
already been reported in [1]. In [2], the traffic air control
system tower at Worchester Regional Airport (MA) USA
was shut down by hacker. In [3], it has been reported
that the power grid in the U.S. was penetrated by cyber
spies and some key infrastructure was compromised by the
intrusion. It is also reported in [3] that the Siemens Supervi-
sory Control And Data Acquisition (SCADA) systems have
been attacked by computer worm, Stuxnet. ICSs are widely
used in electric, water, oil and gas industries and they are
critical to the operation of the U.S. critical infrastructures.
The aforementioned attacks have incurred environment and
financial losses. The information technologies employed in
ICSs are vastly vulnerable and have a direct effect on the
physical component of the system. Hence it is essential to
take into account cyber security when designing ICSs.

Research was supported in part by an AFSOR MURI Grant (FA9550-10-
1-0573), and in part by an NSA Grant through the Information Trust Institute
at the University of Illinois. Y. Yuan and F. Sun are with Department of
Computer Science and Technology, Tsinghua University, Beijing, P.R. China
100084, Email: yuanyuan@illinois.edu and fcsun@mail.tsinghua.edu.cn; Q.
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The critical issues of cyber security in ICSs give rise to a
new class of control problems which require a holistic and
cross-layer design approach for controller designs of inte-
grated cyber-physical systems. Recently, the concept of re-
silient control has been proposed in [4] and [5], emphasizing
the controller design in an adversarial cyber environment. A
resilient control system aims to maintain an acceptable level
of operational normalcy in response to both the disturbance
from the physical environment and malicious adversary from
the cyber environment. Hence resilience represents the ability
of the system to defend against adversaries and recover from
cyber attacks in addition to being reliable and robust to
disturbances. Design of such systems requires a system per-
spective towards cyber-physical systems against threats and
malicious behavior. [6] discusses the state awareness of ICSs
under attacks and provides some future research directions.
In [7], an Adaptive Neural Control (ANC) architecture is
used for control within a resilient control framework. The
parameters of the attacked plant change and are controlled
to match the reference model. A passivity combined with
adaptive sampling approach to design a control architecture
is proposed in [8], and the method shows certain robustness
to network uncertainties. However, little effort has been made
to consider the integrated design of defense mechanisms in
the cyber layer and controller design in the physical layer.
There is a need for new methodologies and principles for
integrated design since the cyber systems of the ICSs are
not isolated from the physical systems for defense against
malicious adversaries in practical situations.

In this paper, we use dynamical systems to capture the
physical layer of the system, and focus on Intrusion De-
tection Systems (IDSs) at the cyber layer of the system
for defense against malicious behavior. IDSs are often used
to detect and raise alarms for cyber attacks such as the
Denial of Service (DoS) attack, which can cause delays
and congestions in the communication channel. For ICSs
equipped with IDSs, the integrated design involves both IDSs
configuration and controller design. In [9] and [10], the
authors have addressed this issue by proposing a coupled
optimality criteria for designing resilient control systems.
The cyber state and controlled plant are modeled as a coupled
continuous Markov process and the controllers are designed
via an iterative method. In this article, we consider a specific
cyber defense mechanism, DoS attack, and study its impact
on ICSs.

A. Attacks on ICSs

According to [1], attacks on the ICSs can be summarized
in Fig. 1. A3 and A5 represent deception attacks, where the
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Fig. 1. The control system can be subject to many attacks. They can be
on the controller, the plant and the communication networks. The IDSs are
used for defending the networked control system.

false information ỹ ̸= y and ũ ̸= u are sent from sensors
and controllers. A1 and A4 represent direct attacks against
the actuators or the plant. A2 is the DoS attack, where the
controller is prevented from receiving sensor measurement
and actuator from receiving control signals. Note that DoS
attacks are most commonly used by the adversary which
involve jamming the communication channels, compromis-
ing devices and attacking the routing protocols, etc. We will
restrict our attention to DoS attacks in this article, leaving
the deception attacks to a future study. Since IDSs is often
designed to detect unauthorized uses of networks [12], we
will use IDSs configuration as the defense mechanism.

B. Contributions

In this paper, we propose a methodology to co-design
the IDSs configuration policy at the cyber layer and the
controller at the physical layer. The contributions are sum-
marized as follows:

1) We use a discrete-time hybrid system model to study
the effect of the IDSs cyber security policies on the
control system under DoS attacks.

2) We use a stochastic game to capture interactions be-
tween the IDSs and the adversary. We find the optimal
configuration of IDSs by taking into account its impact
on the underlying control performance.

3) We couple the design at cyber and physical layers of
the system and propose a co-design algorithm based on
value iteration and linear matrix inequalities (LMIs) to
compute the H∞ optimal control for physical dynam-
ical system and the optimal IDSs configuration policy.

4) The interdependencies of the cyber system and the
underlying physical layer control system is studied.

C. Organizations

The rest of the paper is organized as follows. We first
describe the system framework in Section II-A and then
establish a game-theoretic model for studying defense mech-
anism against DoS attacks in Section II-B. In Section II-C,
H∞ optimal control problem is formulated and addressed. A
co-design algorithm is proposed in Section II-D. In Section
III, the method proposed is applied to the control of a power

 

Fig. 2. The system framework contains two decision problems. (i) The
decision problem at the cyber layer is a competitive Markov decision
problem, capturing the interactions between an attacker and a defender
whose actions (f ,g) affect the cyber state θ and the transition probabilities.
(ii) The decision problem at the physical layer is to design an optimal
controller of a dynamical system with S-C delay δθ and C-A delay βθ

for achieving control performance γθ . The two decision problems are
interleaved and coupled.

system and the results are corroborated by numerical simu-
lations. In Section IV, conclusions are drawn and directions
for future study are identified.

Notation: The standard notation is used throughout this
paper. For a matrix M , M > 0 (M < 0) means that M
is positive definite (negative definite). MT stands for the
transpose of M . The element in the ith row and jth column
of matrix M is denoted as [M ]ij . we use ∗ as an ellipsis for
the terms that are introduced by symmetry. l2[0,∞) is the
space of square-integrable vector functions over [0,∞).

II. RESILIENT AND H∞ OPTIMAL CONTROL

In this section, we consider the problem where the adver-
sary launches DoS attacks on a networked control system. A
hybrid discrete-time dynamical system model is established
consisting of IDSs at the cyber layer and the underlying
physical layer dynamical system. Fig. 2 illustrates the in-
terplay between cyber and physical layers of the system.
A Markov chain is used to capture the dynamics of the
cyber state, while the physical layer dynamics under DoS
attacks are captured by a discrete-time model with sensor-
to-controller (S-C) and controller-to-actuator (C-A) delays,
which are distributed according to a Bernouli Distribution.
The configuration policies against the attacker at the cyber
layer affect the control system through S-C and C-A delays.
In addition, the control system performance under best-effort
controller at the physical layer needs to be taken into account
when designing a configuration policy. The resilient control
design involves the co-design of the cyber configuration
policy as well as the optimal controller for the physical
dynamical system.

A. System Framework
This subsection provides the system framework of resilient

control. The controlled plant under DoS attacks is described
by the model as follows.{

xk+1 = Axk +B2uc,k +B1ωk,
zk = Dxk,

(1)

where xk ∈ Rn and uc,k ∈ Rm are the state variable and the
control signal received by the actuator, ωk is the disturbance
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belonging to l2[0,∞). A,B1, B2 and D are matrices with
appropriate dimensions. The measurement with randomly
varying communication delays is described by{

yk = Cxk,
yc,k = (1− δθ)yk + δθyk−1,

(2)

where yc,k ∈ Rp is the measured output and yk ∈ Rp is the
actual output. θ ∈ Θ := {θ1, θ2, . . . , θs} is the failure state
in the cyber layer of the system. The stochastic variable δθ

is distributed according to a Bernouli distribution:

δ̄θ := Pr{δθ = 1} = E{δθ},
Pr{δθ = 0} = 1− E{δθ} = 1− δ̄θ

(3)

In this paper, we propose an observer-based control strategy
described by{

x̂k+1 = Ax̂k +B2uc,k + Lθ(yc,k − ȳc,k),
ȳc,k = (1− δ̄θ)Cx̂+ δ̄θCx̂k−1,

(4){
uk = Kθx̂k,

uc,k = (1− βθ)uk + βθuk−1,
(5)

where uk ∈ Rm is the control signal generated by the
controller and uc,k is the signal received by the actuator.
K ∈ Rm×n and L ∈ Rn×p denote the controller gains
and observer gains which are to be designed. The stochastic
variable βθ, mutually independent of δθ, is also a Bernoulli
distributed white sequence with expected value β̄θ. Note that
the S-C delay is described by the situation that δθ = 1 and
the C-A delay is described by βθ = 1. In the sequel, the
optimal strategy designed in different layers will be shown
and the coupled design for the holistic hybrid model will be
presented at the end.

B. Optimal Defense Mechanism

Since IDSs are designed to detect unauthorized uses of
systems and networks, we use them to defend the networked
control system. In practice, IDSs are deployed at different
levels to monitor the traffic of applications and networks, that
is, the IDSs is configured with different security enforcement.
In this paper, we use the IDSs configuration to represent the
cyber defense strategy.

An attacker launches its attack from his attack space
A := {a1, a2, · · · , aM}. The set L := {L1, L2, · · · , LN}
denotes the defense library and L̄ denotes the set of all
possible sets of L, with cardinality |L̄| = 2N . Let Fi ∈ L̄, i ∈
{1, 2, · · · , 2N} be a configuration set of all libraries. As
shown in Fig. 3, we need different configurations of libraries
to detect different attacks. Stationary mixed strategy is used
in which f(θ, Fi) and g(θ, aj) are the probabilities of the
detector and attacker choosing actions Fi ∈ L̄ and aj ∈ A,
respectively. We denote f(θ, Fi) and g(θ, aj) as fi(θ) and
gj(θ). Note that fi(θ) and gj(θ)) are functions of the random
jump process {θn}. {θn} is a finite state discrete Markov
jump process, that is, θ takes discrete values in a given finite
set Θ := {θ1, θ2, · · · , θs}. Functions fi : Θ −→ [0, 1], i ∈
{1, 2, · · · , 2N} and gj : Θ −→ [0, 1], j ∈ {1, 2, · · · ,M},
need to satisfy

∑2N

i=1 fi(θ) = 1 and
∑M

j=1 gj(θ) = 1. The cy-
ber system switches among different states and the transition

1
a

2
a

1
L

2
L

3
L

1
L

2
L

3
L

1
a

2
a

1
L

2
L

1
L

2
L

1
F

2
F

Fig. 3. An example to illustrate the necessity of different IDSs configura-
tions: Library configurations F1 and F2 are used to detect different attacks
a1 and a2; F2 outperforms F1 for detecting a1 since F1 uses more libraries
than F2 does, and degrades the system performance. However, F1 can detect
a2 better than F2 does, since a2 is not fully detectable by F2.

probabilities P(θ′(n+1) |θ(n), aj , Fi ), θ′(n+1), θ(n) ∈ Θ
are dependent on the defense mechanism and attack strategy
and ∑

θ′∈Θ

P(θ′ |θ(n), Fi, aj ) = 1.

Function r : Θ × A × L̄ −→ R defines the cost of the
possible action pair (Fi, aj) for a certain cyber state θ. The
defender can be seen as the minimizer, who minimizes the
cost function r(θ, Fi, aj), and the attacker can be seen as the
maximizer, who maximizes the cost function, Assuming that
the game between the attacker and the defender is zero-sum,
we have the relation

r(θ, Fi, aj) = ra(θ, Fi, aj)

= −rl(θ, Fi, aj). (6)

We augment the distribution vectors over all the cyber states
Θ and have

f(θ) := [f1(θ), · · · , f2N (θ)]T ,

g(θ) := [g1(θ), · · · , gM (θ)]T ,

Fs := [f(θ1), · · · , f(θs)]T ∈ F,
Gs := [g(θ1), · · · , g(θs)]T ∈ G,

θ ∈ Θ := {θ1, θ2, · · · θs}.

vβ : Θ× F × G −→ R is the β-discounted payoff if

vβ =
∑∞

n=0
βnEf(θ),g(θ)r(θ, Fi, aj),

where β ∈ (0, 1) is a discount factor.
Remark 1: Note that the distribution of stochastic vari-

ables δθ and βθ, which reflect the Quality-of-Service (QoS)
of the communication network, is actually dependent on the
attack and defense mechanism in the cyber layer. Let us
define four mappings H1 : Θ×F×G → R, W1 : Θ×F×G →
R, H2 : Θ× L̄×A → R and W2 : Θ× L̄×A → R. δ̄θ and
β̄θcan be seen as the result of these mappings;

δ̄θ := H1(θ, f(θ), g(θ)) = f(θ)TH(θ) g(θ),
β̄θ := W1(θ, f(θ), g(θ)) = f(θ)TW (θ) g(θ),

where [H(θ)]ij = H2(θ, Fi, aj) and [W (θ)]ij =
W2(θ, Fi, aj).
The following definition captures the characterization of the
optimal defense mechanism.
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Definition 1: (Saddle-Point Equilibrium) Let

vβ = [vβ(θ1), · · · , vβ(θs)]T ,

A pair (F∗
s,G∗

s) is a saddle-point of the β-discounted game
if

vβ(F∗
s,Gs) ≤ vβ(F∗

s,G∗
s) ≤ vβ(Fs,G∗

s), (7)

in which F∗
s,G∗

s are the saddle-point equilibrium defense and
attack strategies.
The algorithm to find the optimal defence mechanism F∗

s

iteratively is presented in the following theorem.
Theorem 1: The discounted zero-sum stochastic game

possesses a value vβ for ∀Fi ∈ L̄, aj ∈ A, which is the
unique solution of equations

vN+1
β (θ) = val{R(θ)}, (8)

[R(θ)]ij = r(θ, Fi, aj) + β
∑
θ′∈Θ

P(θ′ |θ, Fi, aj )v
N
β (θ′)].(9)

where val is a function that yields the game value of a
zero-sum matrix game. Then, we can obtain the saddle-point
equilibrium strategies to achieve the value with

(f∗(θ), g∗(θ)) ∈ arg val{R(θ)},

where arg val yields the mixed strategies that yield the value
of the game.

C. H∞ Optimal Control

Dynamic system model described by (1)-(5) is a hybrid
discrete model which has been investigated earlier in [11].
We extend the idea and propose H∞ index for the discrete
hybrid model which is the expectation over f(θ) and g(θ)
for a given θ. If the initial condition is zero, the H∞ index
γθ satisfies

E f(θ), g(θ)
{∑∞

k=0
{∥zk∥2}

}
< γ2

θ

∑∞

k=0
{∥ωk∥2} (10)

for all θ ∈ Θ. The theorem below indicates how to convert
the conditions satisfying H∞ index into linear matrix in-
equalities (LMIs) which are easy to calculate using available
tools.

Theorem 2: Given scalars γθ > 0 and the strategy pair
(f(θ), g(θ)) or all θ ∈ Θ. The hybrid model described by
(1)-(5) is exponentially mean-square stable and the H∞-
norm constraint (10) is achieved for all nonzero ωk if
there exist positive definite matrices P θ

11 ∈ Rm×m, P θ
22 ∈

R(n−m)×(n−m), Sθ
1 ∈ Rn×n and P θ

2 ∈ Rn×n and Sθ
2 ∈

Rn×n, and real matrices Mθ ∈ Rm×n, Nθ ∈ Rn×p such
that the following LMIs hold, where

P θ
1 := UT

1 P θ
11U1 + UT

2 P θ
22U2,

and U1 ∈ Rm×n and U2 ∈ R(n−m)×n satisfies[
U1

U2

]
B2V =

[
Σ
0

]
, Σ = diag{σ1, σ2, · · · , σm},

and σi(i = 1, 2, · · · ,m) are eignvalues of B2. The controller
gain and observer gain are given by:

Kθ = V Σ−1P θ
11

−1
ΣV TMθ, Lθ = Sθ

1

−1
Nθ. (11)

Πθ =

[
Πθ

11 ∗
Πθ

21 Πθ
22

]
< 0, (12)

where

Πθ
11 =


P θ
2 − P θ

1 ∗ ∗ ∗ ∗
0 Sθ

2 − Sθ
1 ∗ ∗ ∗

0 0 −P θ
2 ∗ ∗

0 0 0 −Sθ
2 ∗

0 0 0 0 −γ2
θI

 ,

Πθ
22 =


−P θ

1 ∗ ∗ ∗ ∗
0 −Sθ

1 ∗ ∗ ∗
0 0 −P θ

1 ∗ ∗
0 0 0 −Sθ

1 ∗
0 0 0 0 −I

 ,

Πθ
21 =

[
Πθ

21(1, 1) Πθ
21(1, 2)

Πθ
21(2, 1) Πθ

21(2, 2)

]
,

Πθ
21(1, 1) =

[
P θ
1A+ (1− β̄θ)B2M

θ −(1− β̄θ)B2M
θ

0 Sθ
1A− (1− δ̄θ)NθC

]
,

Πθ
21(1, 2) =

[
β̄θB2M

θ −β̄θB2M
θ P θ

1B1

0 −δ̄θNθC Sθ
1B1

]
,

Πθ
21(2, 1) =

 αθ
1B2M

θ −αθ
1B2M

θ

αθ
2N

θC 0
D 0

 ,

Πθ
21(2, 2) =

 −αθ
1B2M

θ αθ
1B2M

θ 0
−αθ

2N
θC 0 0

0 0 0

 ,

αθ
1 = [(1− β̄θβ̄θ]1/2,

αθ
2 = [(1− δ̄θ δ̄θ]1/2.

Proof: The proof follows the steps described in [11]
and hence is omitted here due to page limitation.
Note that the LMIs in Theorem 2 lead to the convex
optimization problem as follows:

γ̂θ := min
P11>0,P22>0,P2>0
S1>0,S2>0,M,M

γθ (13)

subject to (12)

Since γθ is influenced by the cyber state and strategy, it
is actually dependent on the triple (θ, f(θ), g(θ)). Let us
define two mappings C1 : Θ × F × G → R and C2 : Θ ×
L̄ × A → R. γ̂θ can be seen as the value of the mapping:

γ̂θ = C1(θ, f(θ), g(θ)) = f(θ)TC(θ) g(θ),

where [C(θ)]ij = C2(θ, Fi, aj). Since the design in the phys-
ical layer and cyber layer have been specified, respectively.
the co-design procedure will be discussed in the next section.

D. Coupled Design

In this subsection, we provide a cross layer design based
on the previous results to demonstrate how to design the
resilient controller using a holistic view. The main problem
we address is formulated as below:

Problem 1: The resilient control of the cyber-physical
system against the DoS attack is to find a set of control
and observer gains Kθ and Lθ in (4) and (5) satisfying H∞
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optimal performance γ̂θ, and the optimal cyber policy F∗
s

and G∗
s .

The coupled design here means that, on the one hand,
cyber defense mechanism takes into account the H∞ in-
dex, in which r(θ, Fi, aj) = C2(θ, Fi, aj). On the other
hand, the H∞ optimal controller is designed with δ̄θ =
f∗(θ)TH(θ) g(θ)∗ and β̄θ = f∗(θ)TW (θ) g(θ)∗. We pro-

pose the following algorithm for the coupled design. Note

Algorithm 1 Algorithm for Coupled Design
Given: H2(θ, Fi, aj) and W2(θ, Fi, aj) for all θ ∈
Θ, Fi ∈ L̄, aj ∈ A,
Output: Kθ and Lθ for all θ ∈ Θ; F∗

s and G∗
s .

1) Initialization:
2) Initialize v0β and β = 0.5.
3) Iterative update:
4) while (vh+1

β − vhβ > [ε, ε, · · · , ε]′) do
5) Solve the convex optimization problem (13) and

obtain C2(θ, Fi, aj) to establish r(θ, Fi, aj) =
C2(θ, Fi, aj).

6) Calculate the cost matrix R(θ) using (9)
7) Find vh+1

β (θ) using the following LMIs

(LMG) vh+1
β (θ) = max

ỹ
ỹ′1m

s.t RT (θ) ỹ ≤ 1n

ỹ ≥ 0

8) end while
9) Obtain F∗

s using f∗(θ) = ỹvβ(θ) and solve the dual
problem of (LMG), which can be found in [14] to
get G∗

s and g∗(θ)
10) Use Theorem 2 to obtain the controller gain and the

observer gain for all θ ∈ Θ with

Kθ = V Σ−1P θ
11

−1
ΣV TMθ, Lθ = Sθ

1

−1
Nθ.

that the proposed algorithm above involves a value iteration
method for computing the stationary mixed saddle-point
equilibrium for the stochastic game, in which a linear pro-
gram (LMG) is solved at each step. “LMG” stands for linear
program for matrix games. The mixed Nash equilibrium of
a matrix game is computed by solving a linear program
(LMG). The algorithm also invokes the computational tools
for solving a set of LMIs for obtaining H∞ robust controller
in the form of (4) and (5) that achieve optimal control system
performances.

III. NUMERICAL SIMULATION

In this section, we investigate the resilient control problem
associated with the uninterrupted power system (UPS). UPS
usually provides uninterrupted, high quality and reliable
power for vital loads, such as life supporting system, data
storage systems or emergency equipment. Thus, the re-
silience and robustness of the UPS is essential. We perform
an integrated design of the optimal defense mechanism for
IDSs and the optimal control strategy for PWM inverter such

that the output AC voltage can maintain desired setting under
the influence of DoS attacks. The discrete-time model at half-
load operating point can be found in [11]:

A =

 0.9226 −0.6330 0
1.0 0 0
0 1.0 0

 ,

B1 =

 0.5
0
0.2

 , B2 =

 1
0
0

 ,

D =
[
0.1 0 0

]
,

C =
[
23.738 20.287 0

]
.

For the cyber layer, two states are considered: a normal state
θ1 and a compromised state θ2. We use library l1 to detect a1
and use l2 to detect a2. Suppose that the system can only load
one library at a time. We provide the following tables with
elements to be the action pairs (H2(θ, Fi, aj),W2(θ, Fi, aj)).
At θ1, we have

a1 a2
F1 (0.01,0.01) (0.05,0.05)
F2 (0.03,0.03) (0.01,0.01)

and the transition probabilities are

a1 a2
F1 (1,0) (0,1)
F2 (0,1) (1,0)

At state θ2, we have

a1 a2
F1 (0.06,0.06) (0.1,0.1)
F2 (0.08,0.08) (0.06,0.06)

and the transition probabilities are the same as in θ1. Then,
using Theorem 1, we have the cost/reward table for state θ1,

a1 a2
F1 0.0994 0.1641
F2 0.1232 0.0994

and for state θ2,

a1 a2
F1 0.1961 0.8084
F2 0.3148 0.1961

respectively. Using Algorithm 1, we obtain the game values
at states θ1 and θ2 to be v0.5 = [0.3370 0.5299]T The
optimal mixed strategies are f∗(θ1) = [0.4273 0.5726]T ,
f∗(θ2) = [0.2329 0.7671]T , g∗(θ1) = [0.5726 0.4273]T and
g∗(θ2) = [0.7671 0.2329]T . In Fig. 4, we show the cyber
states and physical system performance when an attacker
launches an attack a1. Fig. 4(a) shows cyber state of the
system under the saddle-point configuration policy. Fig. 4(b)
shows the steady-state performance of the dynamical system
under co-designed controller when it switches between two
cyber states. Fig. 4(c) shows the H∞ control result under
different cyber states, and Fig. 4(d) shows the performance
under an H∞ robust controller without considering cyber-
layer of the system. Comparing Fig. 4(d) with Fig. 4 (b),
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Fig. 4. Control performance under resilient control against DoS attack: Fig. 4(a) shows cyber state of the system under the saddle-point configuration
policy. Fig. 4(b) shows the steady-state performance of the dynamical system under co-designed controller when it switches between two cyber states. Fig.
4(c) shows the H∞ control result under different cyber states, and Fig. 4(d) shows the performance under an H∞ robust controller without considering
cyber-layer of the system.

we can see that the H∞ performance in Fig. 4(b) is much
better than the one in Fig. 4(d), and the system in Fig. 4(d)
is more vulnerable to attacks and moves to the compromised
state more frequently.

IV. CONCLUSION

Industrial control systems in many critical infrastructures
are subject to malicious cyber attacks. The goal of resilient
control system is to protect the system from such attacks
and maintain an acceptable level of operation in the face
of cyber attacks and uncertainties. In this paper, we have
proposed a methodology to design the IDSs configuration
policy at the cyber-layer and the controller for the physical
layer dynamical system. We have used a co-design algorithm
based on value iterations and LMIs to compute the H∞

optimal control and the cyber security policy. Using numer-
ical examples, we have shown that the design methodology
yield a controller that outperforms the H∞ controller without
taking cyber defense into account. The paper has focused on
the denial-of-service attacks and their impact on the cyber
security policies and performance of the dynamical system.
As future work, we can consider different cyber attack
models and study more sophisticated defense strategies. In
addition, H∞ control problem can also be viewed as a
game problem between disturbances and controller [14].
By adopting a game-theoretic perspective, we will employ
the concepts and tools from our recent initiative on multi-
resolution and multi-layer games.
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