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a b s t r a c t 

Masking strategies for cyberdefense (i.e., disguising network attributes to hide the real state of the net- 

work) are predicted to be effective in simulated experiments. However, it is unclear how effective they 

are against human attackers. We address three factors that challenge the effectiveness of the masking 

strategies in practice: (1) we relax the assumption of rationality of the attackers made by Game The- 

ory/Machine Learning defense algorithms; (2) we provide a cognitive model of human attackers that 

can inform these defense algorithms; and (3) we provide a way to generate data on attacker’s deci- 

sions through simulation with a cognitive model. Two masking strategies of defense were generated using 

Game Theory and Machine Learning (ML) algorithms. The effectiveness of these two masking strategies 

of defense, risk averse and rational , are compared in an experiment with human attackers. We collected 

attacker’s decisions against the two masking strategies. With the limited human participant’s data, the 

results indicate that the risk averse strategy can reduce the defense losses compared to the rational mask- 

ing strategy. We also propose a cognitive model based on Instance-Based Learning Theory that accurately 

represents and predicts the attacker’s decisions in this task. We demonstrate the model’s process by gen- 

erating simulated data and comparing it to the attacker’s actual actions in the experiment. The model 

is able to capture the data at the aggregate and at the individual levels of attackers making decisions 

in both rational and risk averse defense algorithms. We propose that this model can be used to inform 

game theoretic defense algorithms and to produce synthetic data that can be used by ML algorithms to 

generate new defense strategies. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The growth of cybercrime has increased the interest in design- 

ng effective cyberdefense strategies using game-theory and Ma- 

hine Learning (ML) approaches ( Goel and Perlroth, 2016; Gutzmer, 

017 ). One cyberdefense strategy is deception (i.e, planned actions 
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aken to mislead attackers for taking, or not taking certain ac- 

ions Cohen, 1998 ). Masking is a cyberdeception strategy used to 

amouflage the network attributes to conceal information that can 

e confiscated by the attackers during the reconnaissance phase 

 De Gaspari et al., 2016; Ferguson-Walter et al., 2017; Heckman 

t al., 2013; Thinkst, 2015 ). To date most research on masking 

trategies has been either theoretical or tested only in simulations. 

hus, it is unclear whether such defense strategies would be effec- 

ive in practice, against human attackers. In fact, in a recent study, 

e found that a masking strategy that appeared successful in the- 

ry, was ineffective against human attackers: it was not better than 

 random camouflage strategy ( Aggarwal et al., 2020b ). 

One possible explanation for the current results in masking 

trategies is the assumption of “rationality” of human attackers 

ade by these algorithms. Generally, humans are limited cogni- 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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ively in various ways, and they can only be boundedly rational 

 Simon, 1956; Tversky and Kahneman, 1979 ). Humans are lim- 

ted in their memory and engage in sequential processing of in- 

ormation, which often results in decision making biases ( Lemay 

nd Leblanc, 2018; Sawyer and Hancock, 2018 ). Attackers maybe 

ulnerable to such biases and thus make cybersecurity-relevant 

istakes. To illustrate, Gutzwiller et al. (2018) used oppositional 

uman factors to exploit biases and deficiencies, related to lim- 

ted attention, to disrupt cyberattacks. Gutzwiller et al. (2018) ob- 

erved various kinds of biases including illusion of control, sunk 

ost fallacy, irrational escalation and attentional tunneling. Sim- 

larly, among cybersecurity experts, Gutzwiller et al. (2019) ob- 

erved decision making biases such as anchoring bias, confirma- 

ion bias, and take-the-best heuristic bias. Unfortunately, current 

efense algorithms ignore the biases generated by human mem- 

ry, instead of exploiting them to the benefit of cyberdefense. 

n addition, cyberdefense algorithms also ignore defender’s biases 

hich may become a bottleneck in their defense actions. In a 

etwork defense scenario, Bos et al. (2016) demonstrated the ef- 

ect of gain and loss framing biases on defenders decisions. De- 

enders that began with gain framing (i.e. with a network al- 

eady in quarantine) used a quarantine system more compara- 

le to those that started in loss framing. To date, There has not 

een much work in how to mitigate such biases in defenders. On 

he attacker’s side, Cranford et al. (2020) have demonstrated how 

efense algorithms can take advantage of biases (e.g., confirma- 

ion bias) in human attackers with the use of cognitive models 

hat emulate the attacker’s decision process computationally. Us- 

ng a simple task, Cranford et al. (2020) have shown that it is 

ossible to provide information about the attacker’s behavior to 

he defense algorithms and improve the game theory/ML algo- 

ithms by making them more adaptive to the individual attacker’s 

ctions. 

In this paper, we advance prior work in cyberdeception (i.e., 

asking techniques) by addressing two factors that limit the 

rogress on the design of effective masking strategies against 

uman attackers. First, we relax the assumption of attacker ra- 

ionality that most ML and game theory approaches of defense 

ake ( Alpcan and Ba ̧s ar, 2010; Laszka et al., 2015; Schlenker 

t al., 2017; Serra et al., 2015 ). Assuming that humans will 

hoose the best option available, in terms of expected values, is 

roblematic, as psychologists have known for decades that hu- 

ans can only be boundedly rational ( Kahneman, 2003; Simon, 

956 ) and act according to simple heuristics ( Gigerenzer and 

odd, 1999 ). This was demonstrated recently in a human-subject 

xperiment that evaluated an optimal defense strategy (proposed 

y Schlenker et al. (2018) ) compared to a random strategy of mask- 

ng ( Aggarwal et al., 2020b ). Their findings showed that the opti- 

al strategy, which was theoretically most effective, only slightly 

educed attacker’s outcome compared to a random masking strat- 

gy (reduced by 10% whereas simulations predicted 20% reduc- 

ion). The analysis by Aggarwal et al. (2020b) suggests that attack- 

rs acted in agreement with risk aversion , a form of boundedly- 

ational behavior, where humans appeared to attack machines 

ith low rewards and high probability of success. This human at- 

acker data was used to develop a new “risk averse” algorithm 

hakoor et al. (2020) . In this paper, we examine human attacker 

ehavior in a new human-in-the-loop experiment, comparing the 

ew risk averse masking strategy Thakoor et al. (2020) to a ratio- 

al masking strategy proposed by Schlenker et al. (2018) . 

In addition, we demonstrate a strategy to improve game the- 

ry and ML defense algorithms by providing large amounts of 

ata from a well-calibrated cognitive model of attackers’ behav- 

or. To make an accurate estimation of the parameters required by 

hakoor et al. (2020) ’s algorithm, large amounts of human data are 

equired. Unfortunately, ML models may learn inaccurate estimates 
2 
f the parameters of the attacker model without sufficient human 

ttacker data. To address this challenge, we developed an Instance- 

ased Learning (IBL) model ( Gonzalez et al., 2003 ), that represents 

he process by which attackers make decisions and predicts the 

ttacker’s actions in a cyber attack situation. In this paper, we 

resent the process by which human data collection can be used 

o calibrate the parameters of game theory and ML algorithms; 

e develop an IBL model of the human attacker to demonstrate 

he capability of the cognitive model to emulate the attacker’s ac- 

ions collected in a human experiment. The results suggest that 

his model can inform the adaptive cyber defense algorithms and 

ay be used to generate large amounts of synthetic data regard- 

ng the attacker’s actions to improve ML-based boundedly rational 

asking algorithms. 

. Background 

Gonzalez et al. (2020) proposed a research framework for gen- 

rating dynamic, adaptive, and personalized defense strategies us- 

ng cognitive models. In this framework, game-theory defense al- 

orithms are developed and deployed in experimental testbeds. An 

xperimental testbed is used with human participants (e.g., attack- 

rs) for evaluating the performance (i.e., defender’s utility) of de- 

ense algorithms. Importantly, cognitive models are used for emu- 

ating human decisions to inform the game-theory algorithms for 

daptive defense. This general idea of adaptive cybersefense based 

n cognitive models has been used by Cranford et al. (2020) to 

emonstrate the generation of adaptive and personalized signals in 

 simple insider attack game. In this paper, we leverage this work 

y first deploying defense strategies developed by game-theory/ML 

lgorithms on an experimental testbed, CyberVAN ( Chadha et al., 

016 ), conducting human experiments to evaluate the perfor- 

ance of the algorithms, and developing a cognitive model to 

imulate the attackers’ decisions in a complex cyberdeception 

cenario. 

In cyber camouflage games ( Schlenker et al., 2018; Thakoor 

t al., 2019a ), game theoretic models determines how the de- 

ender can mask the configurations of the machines to create un- 

ertainty in an attacker’s potential rewards. Almost all such mod- 

ls assume that the attacked machine is guaranteed to provide 

tility to the attacker. Furthermore, most of these models assume 

 rational attacker. However, these assumptions do not hold in 

ractice ( Chicoisne and Ordóñez, 2016; Cooney et al., 2019a ). To 

ddress the issue of rationality assumptions in Stackelberg secu- 

ity games, Yang et al. (2011) developed optimal strategies against 

rospect Theory models ( Kahneman and Tversky, 1979 ). However, 

heir model relies on using parameters from previous literature, ig- 

oring the fact that model parameters could be population depen- 

ent. 

ML models, such as decision trees and neural networks have 

lso been deployed to learn human behavior ( Cooney et al., 2019b ). 

n addition to Yang et al. (2011) , two particular defense algorithms 

ATCH ( Pita et al., 2012a ) and COBRA ( Pita et al., 2012b ) also

rovide defense mechanisms against deviations from rational be- 

avior. However, they are only applicable to strictly competitive 

ames. Thakoor et al. (2020) developed a game-theoretic/ML so- 

ution to strategically obfuscate the features of machines to re- 

uce a defender’s expected losses against boundedly rational at- 

ackers. In our work, we follow the defense strategies proposed 

n Thakoor et al. (2020) which we discuss in more detail in 

ection 2.1 . 

One of the challenges with game-theoretic/ML algorithms is 

hat the predictive power of such models typically relies on large 

mounts of data to fit the model parameters. To understand how 

ifferent def ense algorithms would work in real scenarios usu- 

lly requires human intervention and collecting large volumes of 
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uman decisions in domains such as cybersecurity. Unfortunately, 

uch interventions are very challenging. Generally, cognitive mod- 

ls are starting to play a direct role in applications where predic- 

ive models of human decision-making take the role of people in 

he task. For example, Sycara et al. (2015) developed a cognitive 

odel based on the Adaptive Control of Thought-Rational (ACT- 

) ( Anderson, 1996 ) architecture that simulates human cognition 

or training a ML model in the control of a robotic swarm simula- 

ion. Similarly, Trafton et al. (2020) developed an ACT-R cognitive 

odel for generating synthetic data that was used for a complex 

ask. In cybersecurity, collecting data from actual human attackers 

nd defenders has been a key challenge. In this research, we ad- 

ress the challenge of limited attackers’ decisions, by generating 

arge amounts of data on simulated human decisions using cogni- 

ive models. Specifically, we rely on Instance-Based Learning (IBL) 

heory ( Gonzalez et al., 2003 ) to construct this cognitive model. 

BL Theory proposes basic principles and a process of how hu- 

ans make decisions from experience: Decision makers recognize 

he similarity between a current decision situation and decisions 

ade in the past to evaluate the expected benefits of available de- 

ision alternatives, and they learn from feedback on the decisions 

ctually made ( Gonzalez et al., 2003 ). 

IBL models have been used for decades in a wide range of do- 

ains including repeated binary choice decisions ( Lejarraga et al., 

012 ), multi-choice sequential decisions ( Gonzalez and Ben- 

sher, 2014 ), prediction of human reliance on automation 

 Lebiere et al., 2021 ), prediction of human Theory of Mind in 

ridworlds ( Nguyen and Gonzalez, 2021 ), and prediction of cog- 

itive biases in human decision making (including confirmation 

ias,anchoring and adjustment, probability matching, and base rate 

eglect) Lebiere et al. (2013) . In the domain of cybersecurity, IBL 

odels have been widely used to replicate human decision pro- 

esses in a variety of tasks involving deception in insider attack 

ames Cranford et al. (2018, 2021) , intrusion detection systems 

 Aggarwal et al., 2017; 2020a ) and susceptibility to phishing emails 

 Cranford et al., 2019; 2021 ). Yet, despite this success, existing IBL 

odels of human attackers often involve relatively simplistic tasks 

bstracting the complexity of cyber scenarios. Moreover, such tasks 

nvolve repeated attacker-defender interactions, since that helps 

BL models capture the experiential learning process and develop 

ore accurate predictions. In this paper, we demonstrate that IBL 

odels can replicate human decisions in complex and more real- 

stic cyber scenarios that rely on a large number of features and 

imited repeated interaction of attackers and the task. 

.1. Thakoor et al. (2020) Masking strategy 

Thakoor et al. (2020) proposed a Risk-Based Cyber Camouflage 

ame (i.e., masking algorithm) to modify the responses to attack- 

rs’ queries during the network reconnaissance. Their algorithm is 

ased on a general sum Stackelberg game model, in which the de- 

ender configures the network with a deception strategy (i.e., how 

he system should respond to scan queries from an attacker) and 

he attacker scans the network and chooses a system to attack 

ased on the system’s responses. In this scenario, the rewards for 

ttackers and losses for defenders could be different. The masking 

lgorithm assumes the worst-case scenario against a risk-averse at- 

acker (i.e., considers the minimum utility that a particular decep- 

ion strategy would yield, and consequently, aims to compute the 

trategy that maximizes such utility). The authors show that this 

roblem is NP hard and provides a mixed-integer linear program 

o compute the optimal solution. 

A network comprises of a set of machines and each machine 

as a certain True Configuration (TC) reflecting its various attributes 

nd vulnerabilities. The defender tries to obfuscate the attributes 

o that the Observed Configuration (OC) from the attacker’s perspec- 
3 
ive can significantly differ from the TC of a machine. Any machine 

aving TC i has associated values v a 
i 

and v d 
i 

that the attacker gains 

nd the defender loses respectively, if the machine is successfully 

ttacked. The interaction between the attacker and the defender is 

odeled as a Stackelberg Security Game (SSG) owing to the se- 

uential nature of the decisions. The defender is the leader who 

nows the true state of the network (i.e., the number of machines 

f TC i ). Given this information, the defender masks the TCs with 

Cs, and this assignment strategy is represented as an integer ma- 

rix � where each entry �i j denoting how many machines having 

C i are masked with OC j. Deploying these strategies have several 

omain constraints: 1) feasibility constraint (i.e., some OCs can’t 

easibly mask with some TCs) and 2) masking any TC with an OC 

re capped by a budget for the defender. Under these constraints, 

 defender strategy � is generated. 

Given the defender strategy �, the attacker chooses a pair 

i, j) indicating that an exploit for TC i is launched on a machine 

asked with OC j. The attack is successful if the attacked machine 

s among the �i j machines of TC i masked by OC j. Since OC j

asks �i �i j machines in total, the success probability is �i j / �i �i j 

nd consequently, the expected attacker ( U 

a ) and defender ( U 

d ) 

tilities are: 

 

a (�, i, j) = 

�i j ∑ 

i �i j 
v a 

i 
, U 

d (�, i, j) = 

�i j ∑ 

i �i j 
v d 

i 
. 

A rational attacker attacks a pair (i, j) that maximizes the ex- 

ected utility. In case of indifference, the defender must consider 

he worst-case tie-breaking for the attacker due to the restriction 

o a pure strategy, which leads to Weak Stackelberg Equilibria (WSE; 

reton et al., 1988 ). Hence, the defender tries to choose a strat- 

gy to maximize utility, assuming a utility-maximizing rational at- 

acker. We refer to this strategy as WSE Model , which assumes ra- 

ional attackers. 

For risk-averse attackers, prospect theory ( Tversky and Kahne- 

an, 1979 ) asserts that their decisions are governed by a value 

ransformation function R that is monotone increasing, and con- 

ave. Any reward v (namely, attacked machine’s value), gets per- 

eived as R (v ) . A typical parametric form proposed in literature is 

 λ(v ) = c(v /c) λ, with λ ≤ 1 capturing the risk-aversion of the at-

acker, and c, a suitable constant. Learning the parameter λ is a 

hallenging task. This can be done by obtaining attacker responses 

n randomly generated strategies and computing a maximum like- 

ihood estimate of λ given the observed instances. Once λ is es- 

imated, the defender computes an optimal strategy for the risk- 

verse attacker by simply modifying the WSE algorithm and re- 

lacing the valuations v a 
i 

with the transformed values R λ(v a 
i 
) . We 

efer to this strategy as Prospect Theory (PT) Model . 

In this paper, we test the WSE and PT masking algorithms de- 

eloped in Thakoor et al. (2020) using human-subject experiments. 

e generated WSE and PT strategies using the algorithm briefly 

iscussed above (refer to Thakoor et al., 2019b for more details). 

he generation of PT strategy requires a risk-aversion parameter λ. 

o learn the risk-aversion (parameter λ), we collected human data 

here attackers play against a random strategy. Different subjects 

ay have a different degree of risk aversion (parameter λ). How- 

ver, since defenders cannot estimate the level of risk-aversion of 

n individual attacker in advance when deploying the strategy, we 

im to estimate a λ that is representative of the whole population 

of attackers) and compute the optimal strategy against an attacker 

ith this λ. We do so by obtaining the maximum likelihood esti- 

ate given the data collected. 

We recruited 35 subjects in the random condition playing 10 

ounds each, we have |N | = 350 observations. To create a diverse 

ataset, for each participant, matrices for 10 rounds were randomly 

hosen from a pool for 50 matrices. Each observation n ∈ N corre- 

ponds to a particular round played by a particular human par- 

icipant — suppose the subject plays against a defense strategy 
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Table 1 

Attacker’s Rewards and Defender’s Losses per True Configuration. 

TC Attacker’s Rewards Defender’s Losses 

slackware 15 9 

xbox 11 10 

ubuntu8 2 6 

winxpemb 13 4 

avayagw 14 3 

freebsd 11 10 

winxp 2 14 

win2008 11 2 

win2k 7 8 

win7pro 10 5 

win7ent 9 8 

openwrt 7 12 

openbsd 15 15 

linux 6 15 

cisco2500 13 12 

�  

B

i

T  

i

i

c

p

w

i  

s

f

l

e

I

3

h

(

t

T

f

e

t

l

e  

f

c

s

s

w

i

i

p

m

t

h

V

t

c

r

m

t

3

w

t

m

n

c

s

t

s

t

w

m

t

i

r

t  

s

t

w

p

fi

p

e

r

p

t

t

t

S

U

a

I

e

t

p

a

i

i

m

a

t

s

t

t

a

d

e

o

t

f

t

s

d

m

w

w

a

t

r

w

a  
n , and decides to attack an (i n , j n ) that maximizes its prospect.

ased on the collected data, we computed the λ parameter us- 

ng the Maximum Likelihood Estimation approach described in 

hakoor et al. (2019b) and obtained λ = 0 . 75 . The data collected

n the random condition was only used to develop the � matrices 

n the PT masking algorithm. Thus, we do not analyze the random 

ondition data otherwise. 

As the PT model has been adapted to the risk aversion of the 

articipants, we expect that defenders’ losses using the PT model 

ould be smaller compared to the WSE model. Similar to the study 

n Aggarwal et al. (2020b) , we also expect to observe the risk aver-

ion bias in both models (WSE and PT), i.e., participants would pre- 

er a surer option even when the payoffs are lower. In what fol- 

ows, we will evaluate the effectiveness of two masking strategies, 

.g., WSE and PT, against human attackers, before we present an 

BL model. 

. Human experiment 

In this experiment, we tested two masking strategies against 

uman attackers: (1) WSE (i.e., “rational”) masking, and (2) PT 

i.e., “boundedly rational”) masking. The WSE strategy generates 

he � matrices according to Thakoor et al. (2020) ’s algorithm. 

hakoor et al. (2020) ’s algorithm minimizes the utility of the per- 

ectly rational attacker and reduces the expected losses for defend- 

rs against a rational attacker. The PT strategy generates the � ma- 

rices similar to the WSE algorithm, but it minimizes the expected 

osses for defenders against a risk-averse attacker. The utilities for 

ach TC are defined in Table 1 . The WSE strategy does not per-

orm any transformations and assumes that attackers would per- 

eive the utilities as defined in Table 1 . We compute an optimal 

trategy for the attacker playing according to PT transformation by 

imply modifying the WSE algorithm, replacing the valuation v a 
i 

ith the transformed values R λ(v a 
i 
) . Given the number of systems 

n each matrix, the number of matrices to produce, and feasibil- 

ty constraints (i.e., the list of TCs that cannot be masked with a 

articular OC), the WSE and PT algorithms produce the strategy 

atrices ( �) with the mapping of TCs to OCs. 

To test the effectiveness of these strategies, we develop a 

ask in CyberVAN, a realistic cybersecurity testbed for conducting 

uman-in-the-loop experiments ( Chadha et al., 2016 ). The Cyber- 

AN testbed provides capabilities such as virtual networks, syn- 

hetic traffic, substantial tools for scanning and attack, and a spe- 

ific set of vulnerabilities to conduct sophisticated cybersecurity 

esearch ( Chadha et al., 2016 ). For this experiment, we use virtual 

achines, scanning tools and Honeyd service for deploying decep- 

ion. 
4 
.1. Experimental setup in cyberVAN 

In the CyberVAN testbed, we assigned 5 honeyd servers where 

e configure honeyd files to mask the TCs of virtual machines 

o OCs using the strategy matrices. The honeyd configuration file 

asks the operating systems and ports of TCs with OCs to trick the 

etwork scanning tools ( Provos, 2003 ). Each of the Honeyd servers 

ould communicate to a range of IP addresses via a router that as- 

ociates various virtual machines to these Honeyd machines. 

Participants were provided a link and login credentials to a vir- 

ual machine running Kali operating system. As shown in Fig. 1 , 

tep 1, participants login to the virtual machine using the creden- 

ials provided to them. These virtual machines were configured 

ith a scanning tool (i.e., zenmap) and attack scripts. Using these 

achines, participants scanned and attacked various machines. The 

ask consists of 10 rounds (preceded by 1 practice round). Partic- 

pants were provided a different pre-generated � matrix in each 

ound that provides TC to OC mapping of 15 virtual machines. 

After logging in to the virtual machine, participants were asked 

o start the task via the start script as shown in Fig. 1 . The start

cript provides the IP address range and � matrix for the prac- 

ice round. Similar information is provided for the main rounds as 

ell. The � matrix describes the type and number of machines 

resent in the network (TC) and their corresponding masked con- 

guration (OC). The � matrices were randomly selected for each 

articipant and the configuration of virtual machines was differ- 

nt in each round. Specific details of the � matrices used in each 

ound are provided in the Appendix A . Fig. 2 presents an exam- 

le of a � matrix used in one of the conditions. To help interpret 

he matrix, participants were given information regarding the way 

he TCs were mapped into OCs. For example, in the sample ma- 

rix, there are 6 TCs (avayagw, Ubuntu8, Win7pro, Win7ent, WinXP, 

lackware) which are mapped to 3 OCs (freeBSD, Win7pro, and 

buntu8). In the given matrix, for example, 5 machines are shown 

s freebsd, out of which 3 are actually avayagw and 2 are Ubuntu8. 

n addition to the mapping information, we provide the utility of 

ach TC along with the matrix. Participants were allowed to use 

his information to calculate their probability of success and ex- 

ected utility of attacking a particular machine. 

In each round, participants perform two phases: exploration 

nd attack. In the exploration phase, we provided Zenmap util- 

ty for using nmap commands in the exploration phase as shown 

n Fig. 1 . Participants probe the machines using the nmap com- 

and to obtain information of the open ports, operating systems, 

nd running services (according to the OC). Participants are free 

o probe any machines in any order. The participants received ob- 

ervable features on scanning the machines as a response from 

he nmap command. After the exploration phase, participants go 

hrough the attack phase, where they decide which machine to 

ttack and what type of exploit to use to conduct the attack. To 

ecide which machine to attack after exploration, rational attack- 

rs are expected to consider the potential utility and probability 

f success of using the correct exploit during an attack. Note that 

he utility for the attacker is different than the losses of the de- 

ender for each TC. Participants were provided the rewards that 

hey would obtain if they were successful in their attack. In real 

cenarios, attacker’s usually gather information about the machines 

uring the reconnaissance phase and estimate the utility of the 

achines. For the simplicity of our experiment, we provide the re- 

ards for the successful attack of each system upfront. These re- 

ards are presented in Table 1 . Note, the participants were only 

ware of their rewards, not the defender’s loss. The attacker’s utili- 

ies are randomly allocated between a range of 2 and 15 to rep- 

esent the low, medium, and high valued machines in the net- 

ork. The corresponding defender’s losses were assigned with an 

ssumption that the value of a TC may or may not be the same for
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Fig. 1. Steps involved in the CyberVAN Task for Human participants. 

Fig. 2. Sample � Matrix: columns represent the observable configuration and rows 

represent the true configuration. 
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he attacker and defender. Thus, some TCs have equal defender’s 

osses and others are either lower or higher than the attacker’s 

ain. The attacker’s rewards and defender’s losses for the TCs re- 

ained the same across all 10 rounds. Participants earned the sum 

f the points accumulated across the 10 rounds, which were di- 

ectly translated into a bonus monetary earning to the participant. 

.2. Participants 

Participants were recruited through advertisements via various 

niversity email groups, social media, and cybersecurity targeted 

roups. To be qualified to participate, participants were required 

o pass an online test of basic cybersecurity knowledge, which in- 

luded questions on various attacks, network protocols, scanning 

ools for networks, etc. The prescreening questions are included 

n Appendix C of the paper. The questions were adopted from 

reviously published research by Ben-Asher and Gonzalez (2015) . 

nly qualified participants were scheduled for an online study of 

0 min. 

An a priori power analysis was conducted using pwr library in R 

o test the difference between two independent group means us- 

ng an ANOVA test, with a medium effect size ( d = 0 . 40 ), and an

lpha of.05. Results showed that a total sample of participants with 

wo equal sized groups of n = 25 was required to achieve a power 
5 
f.80. Due to the highly specialized testbeds that require partici- 

ants with good knowledge of cybersecurity, we could only recruit 

5 participants in the WSE and 20 in the PT condition. In WSE con- 

ition, 84% participants reported themselves as male, (Age: Mean = 

4.4, SD = 4.2) and in the PT algorithm, 70% participants reported 

hemselves as male (Age: Mean = 28.7, SD = 5.8). Approximately 

3% reported having or pursuing a bachelor’s degree, 44% reported 

aving or pursuing master’s degree, 7% reported Ph.D degrees, and 

he rest reported to have another form of education. A majority 

f the participants reported having a type of hands-on experience 

87%), 5% of participants reported themselves as experts, and only 

% of participants had no practical cybersecurity experience. 

After the successful completion of the experiment, all partici- 

ants were paid a base payment of $18. In addition, for each suc- 

essful exploit, participants received 1 point, which accumulated 

nd were converted to a monetary bonus ($1 per 10 points). Partic- 

pants could earn up to $15 in bonus based on their performance. 

he maximum time taken to complete the experiment was 90 min. 

.3. Procedure 

First, participants provided informed consent and completed 

 demographic questionnaire. Next, they were asked to watch a 

ideo with instructions regarding the goal of the task and the gen- 

ral procedure. Participants were also provided with text instruc- 

ions to which they could refer to during the experiment. Instruc- 

ions were followed with a brief comprehension test. They received 

eedback if they incorrectly answered a question in the test. Partic- 

pants were provided the contact details of the research assistant 

nd they could ask any clarification questions before proceeding 

ith the experiment. 

During the instructions, participants were informed that the ex- 

eriment would take up to 90 min and would consist of 11 rounds. 

fter finishing the instructions, participants were provided with lo- 

in and password information for the virtual machine. Once logged 

nto their machine, participants could see a cheat sheet to help 

hem throughout the task. In the terminal window, participants 
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Fig. 3. Attacker’s Success Rate: a) Average success and b) Matrix-wise success in WSE and PT conditions. The error bars represent the standard error. 

Table 2 

ANOVA Table for all the dependent measures. 

Measure Effect WSE PT df F MSE p η2 

M SD M SD 

Success Condition 0.40 0.039 0.30 0.036 1, 42 3.02 0.33 0.08 0.07 

Matrix 9, 378 1.49 0.22 0.14 0.03 

Condition:Matrix 9, 378 1.76 0.21 0.07 0.04 

Attacker’s Utility Condition 2.54 0.27 3.17 0.39 1, 42 1.83 23.90 0.18 0.04 

Matrix 9, 378 1.56 21.92 0.12 0.03 

Condition:Matrix 9, 378 0.70 21.92 0.70 0.02 

Defender’s Loss Condition 4.04 0.47 2.16 0.28 1, 42 10.40 36.97 0.002 ∗ 0.20 

Matrix 9, 378 2.22 22.11 0.01 ∗ 0.05 

Condition:Matrix 9, 378 3.19 22.12 0.00 ∗ 0.07 

Note: MSE: Mean Square Error, η2 : partial eta-square. 
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tarted the task and received information such as IP addresses, the 

matrix, and payoffs during each round. In each round, partici- 

ants were asked to probe the machines using an nmap command 

ike “nmap -O 172.16.31.31” to learn about open ports and oper- 

ting systems on this IP address. They were also allowed to scan 

 specified range of IP addresses in each round together using a 

ommand like “nmap -O 172.16.31.31-61”. After probing the ma- 

hines, participants were allowed to calculate the likelihood of the 

rue configuration of the machines by looking at the utilities of 

ach of the configurations and the � matrices. Next, using the at- 

ack script, they decided what IP addresses to attack by selecting 

n appropriate exploit. Participants received points if the exploit 

atched with the true configuration; otherwise, they received zero 

oints. Once they finished all rounds, we asked for their feedback 

egarding the experiment. 

.4. Experiment results 

Participants generally scanned all machines before launching an 

ttack. In the practice round, each participant exploited between a 

inimum of 1 and a maximum of 7 machines. 

We analyzed the data collected in the WSE and PT conditions 

uring the 10 actual rounds. We randomly allocated 10 matrices to 

he participants during the 10 rounds. To measure the effectiveness 

f each matrix, we measured the average attacker’s utility, their 

uccess rate, and their attacker’s preferred option for the attack. 

e also analyzed the algorithm (i.e., defender) loss. 

.4.1. Attacker’s success rate 

We calculated the rate with which participants used the correct 

xploit. Fig. 3 (a) shows the average success rate of participants in 

he WSE and PT conditions. The difference in participants’ average 

uccess rate when paired with the WSE than the PT algorithm was 

ot statistically significant and an extremely low effect size was 

ound (0.40 ∼ 0.30; F (1, 42) = 3.02, p = 0.09, η2 = 0 . 07 ). The de-

ailed statistics are presented in Table 2 . The success rates in each 
6 
atrix of 10 rounds are shown in Fig. 3 (b). Although it appears 

hat human attackers exploited the machines more successfully in 

he WSE than the PT condition (except matrix 1), in most of the 

atrices the difference between WSE and PT was not significant. 

The attacker’s utility for each condition is shown in Fig. 4 (a & 

). For each successful exploit, the attacker gained points in accor- 

ance to Table 1 . We observe that although the attackers gained 

lightly more points in the PT masking algorithm compared to WSE 

lgorithm, however, the statistical test revealed no significant dif- 

erence between the masking conditions, (2.54 ∼ 3.17; F (1, 42) = 

.83, p = 0.18, η2 = 0 . 04 ) with a low effect size and power. None of

he differences within each matrix was significant ( p > 0 . 05 ) (see

able 2 ). The dotted line represents the utility when the best op- 

ion based on expected values is selected. We observe in Fig. 4 (a) 

hat overall human attackers earned fewer points compared to the 

est option utility. The matrix-wise analysis in Fig. 4 (b) shows that 

uman attackers consistently earned fewer points when working 

gainst the WSE algorithm. We also observe lower attacker’s util- 

ty compared to the optimal utility in the majority of the matrices 

or WSE and PT algorithms. 

.4.2. Defender’s losses 

The losses for each of the two defense algorithms against hu- 

ans are shown in Fig. 5 (a & b). For each successful exploit, the 

ttacker gained points and the defender lost points in accordance 

ith Table 1 . According to Fig. 5 (a), overall, the defender’s losses 

ere higher in WSE condition compared to the PT condition. We 

lso observed that defenders’ losses are higher than the expected 

osses in both the conditions. To support these observations, we 

onduct a mixed-ANOVA to evaluate the effect of conditions and 

atrices. 

The statistical test revealed a significant difference between 

he masking conditions (4.04 > 2.16; F (1, 42) = 10.40, p < 0.002, 
2 = 0 . 20 ). We also found that there is a significant differences be-

ween matrices ( F (9, 378) = 2.23, p = 0.02, η2 = 0 . 05 ) and interac-

ion between conditions and matrices, ( F (9, 378) = 3.19, p < 0.001, 
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Fig. 4. a) Average Attacker’s Utility and b) Matrix-wise Attacker’s Utility in WSE and PT conditions. The dotted lines represent the average expected utility for the attacker. 

The error bars represent the standard error. 

Fig. 5. (a) Average Defender’s Losses in WSE and PT conditions. (b) Matrix-wise Defender’s Losses in WSE and PT conditions. The dotted lines represent the average expected 

losses. 
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2 = 0 . 07 ). The detailed statistics are presented in Table 2 . The av-

rage defender’s losses per defense strategy ( � matrix) are shown 

n Fig. 5 (b). The defender’s losses were higher for WSE algorithm 

ompared to the PT algorithm for all matrices except matrix 1. We 

lso performed the post-hoc analysis to evaluate the effect of the 

ondition in each matrix. The post-hoc analysis shows that Ma- 

rix 1 (2.5 < 6.25; F (1, 42) = 6.10, p < 0.05, η2 = 0 . 13 ), Matrix 3

5.71 > 1.5; F (1, 42) = 8.38, p < 0.01, η2 = 0 . 17 ), Matrix 5 (2.5 >

.20; F (1, 42) = 7.02 p < 0.01, η2 = 0 . 14 ), Matrix 7 (5.17 > 0.90; F (1,

2) = 8.06 p < 0.01, η2 = 0 . 16 ) and Matrix 9 (6.75 > 1.5; F (1, 42) =
.36 p < 0.01, η2 = 0 . 17 ) shows a significant difference in defender’s

osses in the two conditions. 

To explore the contrast between attacker utility and defender 

oss, we plotted the frequency of attacks on each machine in each 

f the matrices. Fig. 8 presents these results for WSE and PT in 

uman experiments (and IBL model discussed later). The machines 

re sorted based on their expected value: in each matrix, the left- 

ost bar is the machine with the lowest expected value, and the 

ight-most bar is the machine with the highest expected value. The 

orresponding attacker’s payoff and probability of success for each 

f the TCs are provided at the top of each bar. 

We observe that participants in the WSE condition prefer a 

ore certain option compared to the one with more uncertainty. 

or example, in Matrices 3, 4, 6, and 7 in Fig. 8 , a significant num-

er of participants attacked the TC with utility 2 and probability 

f success 1.0. This observation is in agreement with past findings 

egarding risk aversion in Aggarwal et al. (2020b) where humans 
t

7 
ended to attack targets that were more likely to result in success, 

egardless of reward. 

In the PT condition of Fig. 8 , only Matrix 1 has a TC with a

uccess probability of 1.0. We observe that even though the poten- 

ial reward for this machine is low (i.e., only worth 2 points for a 

uccessful attack), a significant number of participants chose that 

achine compared to the other machines in that matrix. The sure 

ption resulted in the loss of 14 points to the PT defender, which 

ontributed to the heavy losses observed under phi Matrix 1. This 

esult suggests that the PT algorithm helped avoid the certainty ef- 

ect by reducing the number of matrices that would have machines 

ith a certain outcome. However, even with the PT algorithm, one 

f the matrices had one machine with a safe option, and we ob- 

erve how human participants once again fell into the trap of the 

isk aversion and certainty bias found in our previous experiment 

ith CyberVAN ( Aggarwal et al., 2020b ). Humans preferred a sure 

ption regardless of the low benefits. 

. Instance-based learning (IBL) model 

To gain a better understanding of human decision making in 

he task, we developed a cognitive model of attack decisions in 

he CyberVAN scenario using IBLT ( Gonzalez et al., 2003 ). Accord- 

ng to IBLT, a human makes decisions by generalizing across past 

xperiences that are similar to the present decision situation. Each 

xperience (i.e, an instance) is represented as a triplet, including 

he contextual features of the selected target, the decision, and 
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utcome. Instances are accumulated in memory when options are 

valuated and decisions are made in the environment. 

.1. IBL Theory 

Generally, the IBL procedure is as follows. When a new deci- 

ion is to be made, the similarity is computed between the current 

ituation and the existing instances in memory. For each possible 

ecision, the model computes an expected utility, using a blending 

echanism involving the average across past outcomes weighted 

y their probability of memory retrieval. The memory retrieval 

robability is calculated by weighing the memory activation of an 

nstance against all the instances in memory. The activation of an 

nstance is a concept formalized in the ACT-R cognitive architecture 

 Anderson et al., 2004 ). The activation depends on the contextual 

imilarity to past instances, on the frequency of experiencing simi- 

ar instances, and on the recency with which an instance has been 

xperienced in the past. According to IBLT, after evaluating the al- 

ernatives and determining their blended value, a decision is made 

or the option that has the highest blended value (i.e., the highest 

xpected utility). Finally, the expected utility is updated with an 

xperienced utility once the outcome of a decision made is known. 

hese instances are reused for making future decisions. 

The blended value V k,t of option k at trial t is computed as fol- 

ows: 

 k,t = 

n ∑ 

i =1 

P i,k,t ∗ X i,k,t (1) 

here X i,k,t represents the outcome of an instance i for option k at 

rial t and P i,k,t represents the probability of retrieval of an instance 

 for option k at any trial t (value of k is the options in each round).

he retrieval probability of an instance i is the ratio of activation 

f the i th instance corresponding to the activation of all instances 

1, 2, . . . , n; where n is total instances) created within the option k 

t trial t . The retrieval probability is defined as: 

 i,k,t = 

e A i,k,t /τ∑ n 
i =1 e 

A i,k,t /τ
(2) 

ere, τ = σ ∗
√ 

2 and τ is a free noise parameter. Noise captures 

he inaccuracy of remembering past experiences from memory. 

At each trial, t , activation of an instance i on option k repre- 

ents the linear aggregation of three cognitive elements: frequency 

nd recency, the similarity of the instance to past experiences, 

nd the noise that introduces stochasticity in the activation value 

 Anderson et al., 2004 ): 

 i,k,t = ln 
∑ 

t i =1 .t−1 

(t − t i ) 
−d + MP 

∑ 

k 

Sim (v k , c k ) + σ ∗ ln 

(
1 − γi,k,t 

γi,k,t 

)
(3) 

The first term reflects the power law of experience and forget- 

ing. t i represents all the previous trials where the instance i was 

ither created or its activation was reinforced due to its recurrence. 

 j is the time since the jth occurrence of instance i and d is the 

ecay rate of each occurrence which is set to the default ACT-R 

alue of 0.5. The activation of an instance can increase with the 

requency of observing that outcome, as well as with the recency 

i.e., by small differences in t − t i ). This term represents the fre- 

uency and recency of events in the memory. The decay parame- 

er accounts for the rate of forgetting the experienced events: the 

igher the decay, the faster will be the rate of forgetting the past 

vents and the reliance on recent events will increase. 

The second term is a partial matching process reflecting the 

imilarity between the current situation (c k ) and the instances that 

re stored in memory (V ) , scaled by a mismatch penalty (set to
k 

8 
.5). Similarity between numerical slot values are computed on a 

inear scale from 0.0, an exact match, to -1.0. Symbolic values are 

ither an exact match or maximally different. 

The third term represents the Gaussian noise mechanism for 

apturing the variability in individual choices and γi,k,t is a ran- 

om number drawn uniformly between 0 and 1. The σ (i.e., the 

ariance in the noise term) is set to the default ACT-R value of 0.5. 

.2. IBL model of attacker 

Fig. 6 , represents the IBLT decision process for the human at- 

acker model in CyberVAN. We learned through a post-survey 

uestionnaire and interactions with human participants that par- 

icipants combine the number of TCs and the number of OCs to 

alculate the probability of success. Participants then use the prob- 

bility of success and payoffs to decide among the options. The 

ontextual information in CyberVAN involves the TC, OC, the num- 

er of TCs, the number of OCs and payoffs, and in the instances we 

sed, TC, OC, and the expected value of the option (i.e. the ratio of 

he number of TCs to the number of OCs multiplied by the payoff), 

ssuming that participants are able to calculate such probabilities 

rom the information provided and compute the expected values. 

he decision in the instance is the OC/TC combination to exploit, 

nd the payoffs are the obtained utilities received after attacking 

ne of the available options (i.e., the attacker’s utility in 1 ). 

To begin the task, the model is initialized with instances in the 

ractice round corresponding to either successful attacks or failed 

ttacks. These initial instances represent the payoff expectations 

hat human participants are likely to acquire during the practice 

ound, which are used in the task rounds after practice. 

In each of the 10 rounds of the task, the model first processes 

ll decision options available in the � matrices. The attacker’s 

odel calculates the expected utility for each of the decision op- 

ions using the blending mechanism. The model stores each of 

hese instances of the options evaluated and their blended values. 

his process represents the way humans might scan different ma- 

hines during the exploration phase and develop expectations by 

rocessing the information given in the form of the � matrix. 

Once the model has calculated the expected utility of all op- 

ions, the model selects the option with the highest blended value 

o attack. The selected option with the experienced outcome is 

hen stored in the memory. 

The exploration and exploitation process is repeated for each 

f the 10 rounds in the task. Using this IBL model, we ran indi- 

idual simulations representing each individual attacker and eval- 

ated the model’s performance against the empirical results of the 

wo experimental conditions WSE and PT, explained above. The IBL 

odel described above was run 1500 times in each condition to 

enerate stable estimates of the participants’ performance during 

he CyberVAN experiment. Due to the stochasticity in the model, 

he data generated from the 1500 agents show variability just like 

n human data, but the large number of agents run in this sim- 

lation help in providing “stable” predictions of the model. Each 

un of the model (i.e., an agent) involved the same procedure that 

ach human participant went through. Next, we present the results 

rom the model’s simulation against empirical data in the WSE and 

T conditions. 

.3. IBL Model results 

We analysed the model’s success rate, average points earned in 

ach matrix, and the target selection preferences. We also com- 

ared the model’s results from each of these measures against hu- 

an data using the Root Mean Square Error (RMSE). The RMSE is 

alculated by subtracting the average human action from model 
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Fig. 6. IBL Model Process representing the 1) instance structure based on the task environment 2) process of comparing the new situation with existing instances using 

partial matching and calculating blended values and 3) making decisions based on the highest blended values and storing new instances in memory for future decisions. 

Fig. 7. (a) Success Rate in PT and WSE algorithms from Human Data (left) and IBL 

model (right) and (b) Defender’s Loss in PT and WSE algorithms from Human Data 

(left) and IBL model (right). 
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ctions using the following formula: 

M SE = 

√ 

1 

n 

n ∑ 

i =1 

(Human i − M odel i ) 2 (4) 

Fig. 7 (a) and (b) show the overall average success rate and the 

efender’s utility in the WSE and PT conditions, resulting from the 

uman data and the simulations of IBL model. As observed, the 

eneral patterns of the model results correspond well with those 

f human participants. The overall RMSE between the human data 

nd the model data is 0.079 for the success rate in the WSE strat- 

gy and 0.106 for the PT strategy. Similar to human data, the model 
9 
redicts that the success rate is slightly higher for the WSE than 

he PT strategies in most of the matrices. The RMSEs for the suc- 

ess rates between human and model data for individual matrices 

re shown in Table 3 . These values suggest that the model is able

o predict the human data in most of the matrices quite accurately. 

The defender algorithm’s losses calculated from the IBL simula- 

ions are shown in Fig. 7 (b). Again, the IBL model reproduces the 

eneral trends found in human data: the model predicts greater 

efender losses in the WSE than the PT defense strategy, overall 

nd for each of the matrices. The RMSE values comparing the de- 

ender’s losses between the human and model data for each ma- 

rix and overall are presented in Table 3 . Note that we compute 

he RMSEs for the defender’s loss after normalizing the defender’s 

oss between 0 to 1. The corresponding values of RMSE for the de- 

ender’s losses are 0.076 and 0.069 for the WSE and PT strategies, 

espectively. Generally, the RMSE values for defender losses in both 

SE and PT algorithms suggest that the IBL model is able to pre- 

ict the defender’s losses accurately in a majority of matrices. 

Individual Selection Behaviour The results of the IBL model 

howed that it is able to predict defender’s loss and success rate 

easonably well for both the PT and WSE conditions at the average 

evel. However, a model that makes good predictions at the aver- 

ge level, might not be able to predict the individual decision vari- 

bility ( Dutt and Gonzalez, 2015 ). In this section, we analyze the 

istribution of the selection of individual machines as predicted by 

he IBL model against the human data. 

Fig. 8 shows the distribution of individual machines organized 

ccording to their outcome (X-axis) and their probability of suc- 

ess (Y-axis). The figure overlays the human data with the model’s 

redictions of selection preferences. The size of the circle repre- 

ents the normalized frequency of participants in that particular 

ption. The IBL model is generally able to capture the distributions 

f human preferences in both the WSE and PT strategies. The IBL 

odel not only predicts human actions on the aggregate level but 

lso captures the selection behavior in both the conditions. The fig- 

re also makes some differences apparent and the possible reason 

or those differences is the noise within the IBL model. 
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Fig. 8. Frequency of Selection of individual option from the human participants and the IBL model across 10 Matrices in WSE and PT algorithm. The RMSEs on each matrix 

represent the deviation of frequency among human and model participants for each option. 

Table 3 

Average success rate and defender’s losses for each matrix and overall in WSE and PT algorithms for Human and IBL Model and their corresponding RMSE 

values. The visual representation for this table is included in the Appendix B of the paper. 

Matrix Success Rate Defender’s Loss 

WSE PT WSE PT 

Human IBL RMSE Human IBL RMSE Human IBL RMSE Human IBL RMSE 

1 0.375 0.306 0.069 0.7 0.351 0.349 2.5 2.087 0.028 6.25 2.63 0.241 

2 0.292 0.362 0.070 0.250 0.359 0.109 3.542 4.196 0.044 2.550 4.238 0.113 

3 0.542 0.446 0.096 0.25 0.321 0.071 5.708 4.409 0.087 1.501 2.052 0.037 

4 0.458 0.691 0.232 0.2 0.345 0.145 5.167 8.063 0.193 2.601 2.493 0.007 

5 0.333 0.350 0.016 0.101 0.326 0.226 2.501 1.805 0.046 0.201 1.179 0.065 

6 0.375 0.412 0.037 0.25 0.252 0.002 2.5 2.695 0.013 1.701 1.260 0.029 

7 0.458 0.351 0.108 0.301 0.299 0.002 5.167 2.627 0.169 0.901 1.444 0.036 

8 0.333 0.374 0.041 0.350 0.318 0.032 4.458 4.455 0.004 3.150 3.517 0.024 

9 0.458 0.396 0.062 0.250 0.346 0.096 6.750 4.801 0.130 1.501 3.365 0.128 

10 0.375 0.325 0.049 0.400 0.372 0.027 2.083 1.291 0.053 1.250 0.999 0.017 

Mean 0.399 0.401 0.0781 0.305 0.329 0.106 4.037 3.643 0.076 2.160 2.318 0.069 
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. Discussion 

In the cybersecurity domain, it is difficult to gain an un- 

erstanding of the attacker’s decision-making due to the lack 

f such decision data. Defense algorithms often rely on the as- 

umption that attackers are rational decision makers and that 

hey take the best course of action. Using human experiments, 

ggarwal et al. (2020b) demonstrated that human attackers have 

 risk-aversion bias while making cyber-attack decisions. To exploit 

he risk-aversion bias of human attackers, Thakoor et al. (2020) de- 

eloped a masking strategy using Prospect Theory (PT). Specifi- 

ally, Thakoor et al. (2020) developed two masking algorithms: one 

trategy that assumes full rationality (WSE) while the other strat- 

gy exploits bounded rationality in the form of risk-aversion (PT). 

n this paper, we test PT and WSE masking strategies of defense 

gainst human attackers in an experiment. 

The PT strategy developed by Thakoor et al. (2020) was cal- 

brated using human attacker’s data collected in an experiment 

here humans were pitted against random strategies. This data 

et helped in estimating the risk-averse parameter, λ = 0.75, for 

he PT strategy. The results from the comparison between WSE 

nd PT strategies showed that the strategies were not different 
10 
ith respect to the attackers success, but they were different 

ith respect to the defender loss. The PT strategy resulted in 

ower defender losses compared to WSE. These results against hu- 

an attackers are in agreement with the numerical findings in 

hakoor et al. (2020) which evaluated these strategies against sim- 

lated risk-averse attacker populations. In other words, these re- 

ults support the idea that game theoretic and ML methods that 

ccount for human bounded rationality can produce better defense 

trategies than methods that assume full rationality, both in theory 

nd in practice, against human attackers. 

Importantly, the PT algorithm would try to avoid generating φ
atrices in which there was a true configuration that would ex- 

ctly correspond to an observable configuration, given the human 

ias towards a safe option ( Aggarwal et al., 2020b ). We observed 

hat the only situation in which the PT algorithm produced a larger 

efender loss and larger attacker success than the WSE algorithm 

as the case in which the matrix (Matrix 1, Fig. 5 ) had one sure

ption. This again, suggests that such human bias towards cer- 

ainty is inescapable for humans, and that the PT algorithm would 

eed to be revised to ensure that such cases are prevented. 

According to Instance-Based Learning Theory, human decisions 

n complex and uncertain environments, such as cyberdefense, are 
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ade through exploration of the available options and the aggre- 

ation of past decisions using the similarity of situations, recency, 

nd frequency of events ( Gonzalez et al., 2003 ). In this paper, we

sed IBL models to replicate human attacker’s decisions in the 

resence of a cyberdeception strategy (i.e., masking). Humans gen- 

rate expectations while exploring machines using the nmap com- 

and and a φ matrix. Similar to humans, the IBL model also gen- 

rates expectations about the utility of attacking various options 

sing the information in the φ matrix. The model makes a choice, 

electing a machine with the maximum value. The IBL model of 

he attacker is able to predict human actions in both WSE and 

T algorithms. The IBL model also predicts the decision making 

ias (i.e., risk-aversion as observed in human data). Past research 

as also demonstrated the applications of IBL models in predicting 

iases such as confirmation bias, probability matching, anchoring 

ias and representativeness ( Lebiere et al., 2013 ). The IBL model 

n this paper reflects the probability matching behaviour and cap- 

ure the risk averseness among human participants. Thus, the IBL 

odel could be used to predict attacker decisions and cognitive 

iases, which could help build better defense algorithms. 

Game theory/ML algorithms of defense are often data driven 

nd usually do not consider insights about human behavior. The 

ognitive models in such situations could be used in multiple 

ays, including providing interpretation of human behaviour and 

cting as a data source for ML algorithms by generating accu- 

ate predictions about human data. Through human experimenta- 

ion, Aggarwal et al. (2020b) provided insights about human’s risk- 

version bias and Thakoor et al. (2020) developed a masking al- 

orithm to exploit such behavior in attacker’s decisions. To accu- 

ately represent the risk-aversion, we collected human data with a 

andom masking strategy and adapted the PT model to the risk- 

version parameter. This research validates the numerical findings 

f Thakoor et al. (2020) ’s masking algorithm in a human experi- 

ent. Furthermore, the IBL model of an attacker replicates human 

ecisions and provides a methodology to generate accurate pre- 

ictions of human decisions when data is limited. The IBL model 

ith accurate representation of human data could help in validat- 

ng new defense algorithms given that human data is challeng- 

ng to collect. Moreover, the IBL model could be used to calibrate 

odel parameters in real-time and game-theory models could be 
d

Fig. A.1. WSE M

11 
dapted to new behavioral patterns. Similar to the adaptive decep- 

ion strategies in Cranford et al. (2020) , by leveraging the capabil- 

ty of an IBL model, the masking algorithms could predict human 

iases in real time and exploit them using defense algorithms. For 

xample, we demonstrated that IBL model agents also produced 

ertainty bias as observed in human data. 

A potential limitation in our conclusions from the human ex- 

eriment comes from the fact that our experiment is underpow- 

red, given the low number of participants. Recruiting participants 

ith specialized expertise such as cybersecurity knowledge is al- 

ays challenging, and collecting 45 participants implied a signifi- 

ant effort in data collection. However, the close replication of the 

ecisions with the IBL model allows us to simulate many more par- 

icipants in each condition. Although the algorithm and the exper- 

ments in this paper have been conducted for a limited number of 

odes and simple network structures, the masking algorithms are 

apable of including network constraints that apply in other realis- 

ic settings. Similarly, the IBL models could also adapt to different 

ybersecurity scenarios with a possible limitation of the run time, 

hich could be a bottleneck for large applications. Through exper- 

ments and models, we developed an understanding of how hu- 

an attackers make decisions. Attackers are not rational; instead 

hey act according to decision biases including certainty and risk- 

version. Human attackers shift from the expected optimal actions 

hat some defense algorithms assume; they make suboptimal deci- 

ions. When defense algorithms are designed to exploit such biases 

n attacker decision making, they could reduce the overall losses 

ncurred from cyberattacks. 
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ppendix A. � matrices for WSE and PT algorithms 

We include the � matrices that were provided to human par- 

icipants during the experiment. Fig. A.1 represents the WSE con- 

ition and Fig. A.2 represents the PT condition. 
atrices. 
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Fig. A.2. PT Matrices. 

Fig. B.1. Defender’s Losses in PT and WSE for IBL Model (matrix-wise). 
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ppendix B. Matrix-wise Comparison for Human and IBL 

odel 

We include a matrix-wise comparison of the average success 

ate and defender’s losses obtained from IBL model and human 

articipants in WSE and PT algorithms. Fig. B.1 represents the de- 

ender’s loss and Fig. B.2 represents the success rate. 

efender’s Loss for Human and IBL Model 

Fig. B.1 presents the matrix-wise defender’s losses from human 

articipants (top panel) and IBL model (bottom panel). We observe 

hat, similar to human participants, IBL model also produces higher 

efender’s losses except in matrix 1 in WSE condition compared 

o the PT model. The difference of defender’s loss between WSE 
12 
nd PT is not well captured by the IBL model. We have earlier dis- 

ussed the RMSE values in Table 2 which reflect the model perfor- 

ance across all matrices. 

ttack Success Rate for Human and IBL Model 

Fig. B.2 presents the matrix-wise attacker’s success rate for hu- 

an participants (top panel) and IBL model (bottom panel). We 

bserve that similar to human participants, the IBL model also pro- 

uces higher success in all matrices except in matrix 1 in WSE con- 

ition compared to PT model. The model better captures humans 

n WSE condition compared to the PT condition. The RMSE values 

ere earlier presented in Table 2 , which reflect the model perfor- 

ance across all matrices. 
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Fig. B.2. Success Rate in PT and WSE for IBL Model (matrix-wise). 
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ppendix C. Survey Questions 

creening Test 

The following questions relate to your practical knowledge 

n network and information security.We have marked correct 

nswers in bold-italic font for the readers. 

Note: In order to participate in the main study, you need to get 

 out 10 questions right. Please attempt carefully. 

Q1: What does the “https://” at the beginning of a URL de- 

ote, as opposed to “http://” (without the “s”)? 

• That the site has special high definition 

• That information entered into the site is encrypted 

• That the site is the newest version available 
• That the site is not accessible to certain computers 
• None of the above 
• Not sure 

Q2: Criminals access someone’s computer and encrypt the 

ser’s personal files and data. The user is unable to access this 

ata unless they pay the criminals to decrypt the files. This 

ractice is called: 

• Botnet 
• Ransomware 
• Driving 
• Spam 

• None of the above 
• Not sure 

Q3: Which of the following statements are true? 

• Secure File Transfer Protocol (SFTP) runs by default on port 22 
• Secure Shell (SSH) runs by default on port 22 
• File Transfer Protocol over TLS/SSL (FTPS) runs by default on 

port 22 
• Trivial File Transfer Protocol (TFTP) runs by default on port 22 

Q4: TCP port 80 is assigned to: 

• Hypertext Transfer Protocol (HTTP) 
• Hypertext Transfer Protocol over TLS/SSL (HTTPS) 
• Internet Message Access Protocol (IMAP) 
•
 Lightweight Directory Access Protocol (LDAP) 

13 
Q5: A command-line tool that can be used for banner grab- 

ing is called: 

• tcpdump 

• netcat 
• Nmap 

• Wireshark 

Q6: Which of the command-line utilities listed below can be 

sed to perform a port scan? 

• Zenmap 

• Nmap 

• tcpdump 

• nslookup 

Q7: Zero-day attack exploits are: 

• New accounts 
• Patched software 
• Vulnerability that is present in already released software but 

unknown to the software developer 
• Well known vulnerability 

Q8: Which of the following is not checked by the Nmap com- 

and? 

• services different hosts are offering 
• what OS they are running 
• what kind of firewall is in use 
• what type of antivirus is in use 

Q9: What are the port states determined by Nmap? 

• Active, inactive, standby 
• Open, half-open, closed 

• Open, filtered, unfiltered 

• Active, closed, unused 

Q10: Which of the following is not an objective of scanning? 

• Detection of the live system running on network 
• Discovering the IP address of the target system 

• Discovering the services running on target system 

•
 Detection of spyware in a system 
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ost-Survey Questions 

Q1: What strategy did you use for attacking a machine? 

• Randomly chose among available options 
• Calculated the probability of a OC being TC using phi matrix 
• Carefully studied the nmap command output 
• Used additional commands to identify the true configuration 

• Attacked the option with highest payoff
• Attacked the option with sure success 

Q2: What strategy did you use for scanning the machines in 

ach round before launching an attack? 

• Scanned all the systems and carefully studied output of nmap 

command 

• Scanned one machine at time and carefully studied output of 

nmap command 

• Did not scan the machines 

RediT authorship contribution statement 

Palvi Aggarwal: Conceptualization, Methodology, Methodology, 

ata curation, Formal analysis, Writing – original draft. Omkar 

hakoor: Conceptualization, Investigation, Writing – original draft. 

hahin Jabbari: Conceptualization, Investigation, Writing – review 

 editing. Edward A. Cranford: Conceptualization, Formal analy- 

is, Writing – original draft. Christian Lebiere: Conceptualization, 

ormal analysis, Writing – original draft. Milind Tambe: Conceptu- 

lization, Investigation, Writing – review & editing. Cleotilde Gon- 

alez: Conceptualization, Data curation, Formal analysis, Methodol- 

gy, Writing – original draft. 

eferences 

ggarwal, P. , Gonzalez, C. , Dutt, V. , 2017. Modeling the effects of amount and tim-

ing of deception in simulated network scenarios. In: 2017 International Con- 
ference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber 

SA). IEEE, pp. 1–7 . 
ggarwal, P. , Moisan, F. , Gonzalez, C. , Dutt, V. , 2020a. Learning about the effects of

alert uncertainty in attack and defend decisions via cognitive modeling. Hum. 
Factors . 0018720820945425 

ggarwal, P. , Thakoor, O. , Mate, A. , Tambe, M. , Cranford, E.A. , Lebiere, C. , Gonza-

lez, C. , 2020b. An exploratory study of a masking strategy of cyberdeception 
using cyberVAN. HFES . 

lpcan, T. , Ba ̧s ar, T. , 2010. Network security: a decision and game-theoretic ap-
proach . 

nderson, J.R. , 1996. ACT: a simple theory of complex cognition. Am. Psychol. 51 (4),
355 . 

nderson, J.R. , Bothell, D. , Byrne, M.D. , Douglass, S. , Lebiere, C. , Qin, Y. , 2004. An

integrated theory of the mind. Psychol. Rev. 111 (4), 1036 . 
en-Asher, N. , Gonzalez, C. , 2015. Effects of cyber security knowledge on attack de-

tection. Comput. Hum. Behav. 48, 51–61 . 
os, N. , Paul, C.L. , Gersh, J.R. , Greenberg, A. , Piatko, C. , Sperling, S. , Spitaletta, J. ,

Arendt, D.L. , Burtner, R. , 2016. Effects of gain/loss framing in cyber defense deci-
sion-making. In: Proceedings of the Human Factors and Ergonomics Society An- 

nual Meeting, vol. 60. SAGE Publications Sage CA: Los Angeles, CA, pp. 168–172 .

reton, M. , Alj, A. , Haurie, A. , 1988. Sequential stackelberg equilibria in two-person
games. J. Optim. Theory Appl. . 

hadha, R. , Bowen, T. , Chiang, C.Y.J. , Gottlieb, Y.M. , Poylisher, A. , Sapello, A. , Ser-
ban, C. , Sugrim, S. , Walther, G. , Marvel, L.M. , et al. , 2016. CyberVAN: a cyber

security virtual assured network testbed. In: MILCOM 2016-2016 IEEE Military 
Communications Conference. IEEE, pp. 1125–1130 . 

hicoisne, R. , Ordóñez, F. , 2016. Risk averse stackelberg security games with quantal 

response. In: International Conference on Decision and Game Theory for Secu- 
rity. Springer, pp. 83–100 . 

ohen, F. , 1998. A note on the role of deception in information protection. Comput.
Secur. 17 (6), 483–506 . 

ooney, S. , Vayanos, P. , Nguyen, T.H. , Gonzalez, C. , Lebiere, C. , Cranford, E.A. ,
Tambe, M. , 2019a. Warning time: optimizing strategic signaling for security 

against boundedly rational adversaries. In: Proceedings of the 18th International 
Conference on Autonomous Agents and MultiAgent Systems, pp. 1892–1894 . 

ooney, S. , Wang, K. , Bondi, E. , Nguyen, T. , Vayanos, P. , et al. , 2019b. Learning to sig-

nal in the goldilocks zone: improving adversary compliance in security games. 
ECML/PKDD . 

ranford, E. , Gonzalez, C. , Aggarwal, P. , Cooney, S. , Tambe, M. , Lebiere, C. , 2020.
Adaptive cyber deception: cognitively informed signaling for cyber defense. In: 

Proceedings of the 53rd Hawaii International Conference on System Sciences . 
14 
ranford E.A., Lebiere C., Gonzalez C., Cooney S., Vayanos P., Tambe M.. 
Learning about cyber deception through simulations: predictions of hu- 

man decision making with deceptive signals in stackelberg security games. 
2018. 

ranford, E.A. , Lebiere, C. , Rajivan, P. , Aggarwal, P. , Gonzalez, C. , 2019. Modeling cog-
nitive dynamics in (end)-user response to phishing emails. In: Proceedings of 

the 17th Annual Meeting of the International Conference on Cognitive Mod- 
elling, Montreal, CA. . 

ranford, E.A. , Singh, K. , Aggarwal, P. , Lebiere, C. , Gonzalez, C. , 2021. Modeling phish-

ing susceptibility as decisions from experience. In: Proceedings of the 19th An- 
nual Meeting of the International Conference on Cognitive Modelling, Montreal, 

CA. . 
e Gaspari, F. , Jajodia, S. , Mancini, L.V. , Panico, A. , 2016. AHEAD: a new architecture

for active defense. SafeConfig . 
utt, V. , Gonzalez, C. , 2015. Accounting for Outcome and Process Measures in 

Dynamic Decision-Making Tasks through Model Calibration. Technical Report. 

Carnegie Mellon University Pittsburgh United States . 
erguson-Walter, K. , LaFon, D. , Shade, T. , 2017. Friend or faux: deception for cyber

defense. J. Inf. Warfare . 
igerenzer, G. , Todd, P.M. , 1999. Simple Heuristics That Make Us Smart. Oxford Uni-

versity Press, USA . 
oel V., Perlroth N.. Yahoo says 1 billion user accounts were hacked; 2016. https: 

//www.nytimes.com/2016/12/14/technology/yahoo-hack.html . 

onzalez, C. , Aggarwal, P. , Lebiere, C. , Cranford, E. , 2020. Design of dynamic and
personalized deception: a research framework and new insights. In: Proceedings 

of the 53rd Hawaii International Conference on System Sciences . 
onzalez, C. , Ben-Asher, N. , 2014. Learning to cooperate in the prisoner’s dilemma:

robustness of predictions of an instance-based learning model. In: Proceedings 
of the Annual Meeting of the Cognitive Science Society, vol. 36 . 

onzalez, C. , Lerch, J.F. , Lebiere, C. , 2003. Instance-based learning in dynamic deci-

sion making. Cogn. Sci. 27 (4), 591–635 . 
utzmer I.. Equifax announces cybersecurity incident involving consumer in- 

formation; 2017. https://investor.equifax.com/news- and- events/news/2017/ 
09- 07- 2017- 2130 0 0628 . 

utzwiller, R. , Ferguson-Walter, K. , Fugate, S. , Rogers, A. , 2018. “Oh, Look, A But- 
terfly!” a framework for distracting attackers to improve cyber defense. In: Pro- 

ceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 62. 

SAGE Publications Sage CA: Los Angeles, CA, pp. 272–276 . 
utzwiller, R.S. , Ferguson-Walter, K.J. , Fugate, S.J. , 2019. Are cyber attackers think- 

ing fast and slow? Exploratory analysis reveals evidence of decision-making 
biases in red teamers. In: Proceedings of the Human Factors and Ergonomics 

Society Annual Meeting, vol. 63. SAGE Publications Sage CA: Los Angeles, CA, 
pp. 427–431 . 

eckman, K.E. , Walsh, M.J. , Stech, F.J. , O’boyle, T.A . , DiCato, S.R. , Herber, A .F. , 2013.

Active cyber defense with denial and deception: a cyber-wargame experiment. 
Comput. Secur. 37, 72–77 . 

ahneman, D. , 2003. A perspective on judgment and choice: mapping bounded ra- 
tionality. Am. Psychol. 58 (9), 697 . 

ahneman, D. , Tversky, A. , 1979. On the Interpretation of Intuitive Probability: A 
Reply to Jonathan Cohen. Elsevier Science . 

aszka, A. , Vorobeychik, Y. , Koutsoukos, X.D. , 2015. Optimal personalized filtering 
against spear-phishing attacks. AAAI . 

ebiere, C. , Blaha, L.M. , Fallon, C.K. , Jefferson, B. , 2021. Adaptive cognitive mecha-

nisms to maintain calibrated trust and reliance in automation. Front. Rob. AI 8, 
135 . 

ebiere, C. , Pirolli, P. , Thomson, R. , Paik, J. , Rutledge-Taylor, M. , Staszewski, J. , Ander-
son, J.R. , 2013. A functional model of sensemaking in a neurocognitive architec- 

ture. Comput. Intell. Neurosci. 2013 . 
ejarraga, T. , Dutt, V. , Gonzalez, C. , 2012. Instance-based learning: a general model

of repeated binary choice. J. Behav. Decis. Mak. 25 (2), 143–153 . 

emay, A. , Leblanc, S. , 2018. Cognitive biases in cyber decision-making. In: 
Proceedings of the 13th International Conference on Cyber Warfare and 

Security, p. 395 . 
guyen, T.N. , Gonzalez, C. , 2021. Theory of mind from observation in cognitive mod-

els and humans. Top. Cogn. Sci. . 
ita, J. , John, R. , Maheswaran, R. , Tambe, M. , Kraus, S. , 2012a. A robust approach to

addressing human adversaries in security games. In: ECAI, pp. 660–665 . 

ita, J. , John, R. , Maheswaran, R. , Tambe, M. , Yang, R. , Kraus, S. , 2012b. A ro-
bust approach to addressing human adversaries in security games. In: AAMAS, 

pp. 1297–1298 . 
rovos, N. , 2003. Honeyd-a virtual honeypot daemon. In: 10th DFN-CERT Workshop, 

Hamburg, Germany, vol. 2, p. 4 . 
awyer, B.D. , Hancock, P.A. , 2018. Hacking the human: the prevalence paradox in 

cybersecurity. Hum. Factors 60 (5), 597–609 . 

chlenker, A. , Thakoor, O. , Xu, H. , Fang, F. , Tambe, M. , Tran-Thanh, L. , Vayanos, P. ,
Vorobeychik, Y. , 2018. Deceiving cyber adversaries: a game theoretic approach. 

AAMAS . 
chlenker, A. , Xu, H. , Guirguis, M. , Kiekintveld, C. , Sinha, A. , Tambe, M. , Sonya, S. ,

Balderas, D. , Dunstatter, N. , 2017. Don‘t bury your head in warnings: 
A game-theoretic approach for intelligent allocation of cyber-security alerts. IJ- 

CAI . 

erra, E. , Jajodia, S. , Pugliese, A. , Rullo, A. , Subrahmanian, V.S. , 2015. Pareto-optimal
adversarial defense of enterprise systems. ACM Trans. Inf. Syst. Secur. (TISSEC) 

17 (3), 11 . 
imon, H.A. , 1956. Rational choice and the structure of the environment. Psychol. 

Rev. 63 (2), 129 . 

http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0022
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0026
https://investor.equifax.com/news-and-events/news/2017/09-07-2017-213000628
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0041
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0041
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0045
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0045
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0045
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0045
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0045
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0045
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0046
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0046


P. Aggarwal, O. Thakoor, S. Jabbari et al. Computers & Security 117 (2022) 102671 

S  

T  

T  

T  

T

T  

T  

Y  

P
L

I  

m

b
s

m

i
s

O
a

C

d
m

s
t

S  

p
i

w
m

t

E

U
a

b

t
t

i
s

a
g

t

C
M

e
c

a
a

C

P
e

r

M

t

r  

s

i
S

a  

P

v

C
s

T
i

w
m

t

l

ycara, K. , Lebiere, C. , Pei, Y. , Morrison, D. , Tang, Y. , Lewis, M. , 2015. Abstraction of
analytical models from cognitive models of human control of robotic swarms. 

In: Proceedings of ICCM 2015-13th International Conference on Cognitive Mod- 
eling. University of Pittsburgh, pp. 13–18 . 

hakoor, O. , Jabbari, S. , Aggarwal, P. , Cleotilde, G. , Tambe, M. , Vayanos, P. , 2020. Ex-
ploiting bounded rationality in risk-based cyber camouflage games. In: Interna- 

tional Conference on Decision and Game Theory for Security . 
hakoor, O. , Tambe, M. , Vayanos, P. , Xu, H. , Kiekintveld, C. , Fang, F. , 2019a. Cyber

camouflage games for strategic deception. In: International Conference on Deci- 

sion and Game Theory for Security. Springer, pp. 525–541 . 
hakoor, O. , Tambe, M. , Vayanos, P. , Xu, H. , Kiekintveld, C. , Fang, F. , 2019b. Cyber

camouflage games for strategic deception. GameSec . 
hinkst. Canary; 2015. https://canary.tools/ . 

rafton, J.G. , Hiatt, L.M. , Brumback, B. , McCurry, J.M. , 2020. Using cognitive mod-
els to train big data models with small data. In: Proceedings of the 19th 

International Conference on Autonomous Agents and MultiAgent Systems, 

pp. 1413–1421 . 
versky, A. , Kahneman, D. , 1979. Prospect theory: an analysis of decision under risk.

Econometrica 47 (2), 263–291 . 
ang, R. , Kiekintveld, C. , Ordonez, F. , Tambe, M. , John, R. , 2011. Improving resource

allocation strategy against human adversaries in security games. In: IJCAI Pro- 
ceedings-International Joint Conference on Artificial Intelligence, vol. 22. Cite- 

seer, p. 458 . 

alvi Aggarwal is a Postdoctoral Research Fellow at the Dynamic Decision Making 
ab, Carnegie Mellon University. She earned her Ph.D in cybersecurity from Indian 

nstitute of Technology, Mandi, India. Prior to IIT Mandi, she did a master’s in infor-
ation security and a bachelor’s degree in Computer Science. Her research interests 

roadly include the application of human factors and cognitive modeling to cyber- 
ecurity and human-machine teaming. Palvi studies how experiments and cognitive 

odels could be used to understand the behavioral aspects of cybersecurity actors, 

.e., attackers, defenders, and end-users to develop better defense algorithms and a 
afe cyber space. 

mkar Thakoor is a fourth year Ph.D student in the Computer Science department 
t the University of Southern California. He previously earned his master’s degree in 

omputer Science at the University of Illinois at Urbana-Champaign, and bachelor’s 

egree from Indian Institute of Technology, Bombay. His research aims at providing 
athematical modelling and analysis for diverse real-world problems, notably cyber 

ecurity, and primarily deploying techniques from Artificial intelligence and Game 
heory. 

hahin Jabbri is a CRCS postdoctoral fellow in the School of Engineering and Ap-

lied Sciences at Harvard hosted by Milind Tambe. He recently completed his Ph.D 
n the Computer and Information Science Department at University of Pennsylvania 
15 
here he was advised by Michael Kearns. Shahin study the interactions between 
achine learning and a variety of contexts, ranging from crowdsourcing to game 

heory, AI for social good and algorithmic fairness. 

dward A. Cranford earned his Ph.D in Cognitive Science from Mississippi State 

niversity in 2016 and is currently a postdoc in the Department of Psychology 
t Carnegie Mellon University, in the Functional Modeling Systems group, directed 

y Christian Lebiere. His research interests broadly include comprehension, predic- 

ion/anticipation, problem-solving, learning, and decision making, and the applica- 
ion of cognitive models to human-machine interactions. Drew’s current research 

s focused on understanding and modeling the human decision making of adver- 
aries in a cyber-security domain, modeling end-user responses to phishing attacks, 

nd developing adaptive, personalized interventions. In other research, he investi- 
ates how experts generate and select appropriate courses of action in dynamic and 

ime-pressured situations. 

hristian Lebiere is a Research Faculty in the Psychology Department at Carnegie 
ellon University, having received his Ph.D from the CMU School of Computer Sci- 

nce. During his graduate career, he studied connectionist models and was the 
oauthor with Scott Fahlman of the Cascade-Correlation neural network learning 

lgorithm. Since 1991, he has worked on the development of the ACT-R cognitive 
rchitecture and was co-author with John R. Anderson of the 1998 book The Atomic 

omponents of Thought. Most recently, he has been involved with John Laird and 

aul Rosenbloom in defining the Common Model of Cognition, a community-wide 
ffort to consolidate and formalize the scientific progress resulting from the 40-year 

esearch program in cognitive architectures. 

ilind Tambe is Gordon McKay Professor of Computer Science and Director of Cen- 

er for Research on Computation and Society at Harvard University; he is also Di- 

ector “AI for Social Good” at Google Research India. He is a fellow of AAAI (As-
ociation for Advancement of Artificial Intelligence), ACM (Association for Comput- 

ng Machinery) and has received the IJCAI John McCarthy Award, as well asACM 

IGART Autonomous Agents Research Award. Previous to his positions at Harvard 

nd Google, he was Helen N. and Emmett H. Jones Professor in Engineering and a
rofessor of Computer Science and Industrial and Systems Engineering at the Uni- 

ersity of Southern California, Los Angeles. 

leotilde Gonzalez is a Research Professor in the Department of Social and Deci- 
ion Sciences at CMU. She earned a Ph.D in Management Information Systems from 

exas Tech University in 1996. Her research lies at the intersection of Human Behav- 
oral Decision Making and Technology. Her research program is motivated by real- 

orld decision making and by the challenges involved in studying dynamic decision 
aking in the laboratory. Her research is embedded within a theoretical framework 

hat emphasizes the role and development of decisions from experience, the simi- 

arity of contexts, and the cognitive abilities of decision makers. 

http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0047
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0047
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0047
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0047
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0047
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0047
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0047
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0049
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0049
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0049
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0049
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0049
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0049
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0049
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0050
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0050
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0050
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0050
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0050
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0050
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0050
https://canary.tools/
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0052
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0052
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0052
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0052
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0052
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0053
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0053
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0053
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0054
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0054
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0054
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0054
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0054
http://refhub.elsevier.com/S0167-4048(22)00070-0/sbref0054

	Designing effective masking strategies for cyberdefense through human experimentation and cognitive models
	1 Introduction
	2 Background
	2.1 Thakoor et al. (2020) Masking strategy

	3 Human experiment
	3.1 Experimental setup in cyberVAN
	3.2 Participants
	3.3 Procedure
	3.4 Experiment results
	3.4.1 Attacker’s success rate
	3.4.2 Defender’s losses


	4 Instance-based learning (IBL) model
	4.1 IBL Theory
	4.2 IBL model of attacker
	4.3 IBL Model results

	5 Discussion
	Declaration of Competing Interest
	Appendix A  matrices for WSE and PT algorithms
	Appendix B Matrix-wise Comparison for Human and IBL Model
	Defender’s Loss for Human and IBL Model
	Attack Success Rate for Human and IBL Model

	Appendix C Survey Questions
	Screening Test
	Post-Survey Questions

	CRediT authorship contribution statement
	References


