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ABSTRACT

Masking strategies for cyberdefense (i.e., disguising network attributes to hide the real state of the net-
work) are predicted to be effective in simulated experiments. However, it is unclear how effective they
are against human attackers. We address three factors that challenge the effectiveness of the masking
strategies in practice: (1) we relax the assumption of rationality of the attackers made by Game The-
ory/Machine Learning defense algorithms; (2) we provide a cognitive model of human attackers that
can inform these defense algorithms; and (3) we provide a way to generate data on attacker’s deci-
sions through simulation with a cognitive model. Two masking strategies of defense were generated using
Game Theory and Machine Learning (ML) algorithms. The effectiveness of these two masking strategies
of defense, risk averse and rational, are compared in an experiment with human attackers. We collected
attacker’s decisions against the two masking strategies. With the limited human participant’s data, the
results indicate that the risk averse strategy can reduce the defense losses compared to the rational mask-
ing strategy. We also propose a cognitive model based on Instance-Based Learning Theory that accurately
represents and predicts the attacker’s decisions in this task. We demonstrate the model’s process by gen-
erating simulated data and comparing it to the attacker’s actual actions in the experiment. The model
is able to capture the data at the aggregate and at the individual levels of attackers making decisions
in both rational and risk averse defense algorithms. We propose that this model can be used to inform
game theoretic defense algorithms and to produce synthetic data that can be used by ML algorithms to
generate new defense strategies.

© 2022 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

taken to mislead attackers for taking, or not taking certain ac-
tions Cohen, 1998). Masking is a cyberdeception strategy used to

The growth of cybercrime has increased the interest in design-
ing effective cyberdefense strategies using game-theory and Ma-
chine Learning (ML) approaches (Goel and Perlroth, 2016; Gutzmer,
2017). One cyberdefense strategy is deception (i.e, planned actions
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camouflage the network attributes to conceal information that can
be confiscated by the attackers during the reconnaissance phase
(De Gaspari et al., 2016; Ferguson-Walter et al., 2017; Heckman
et al., 2013; Thinkst, 2015). To date most research on masking
strategies has been either theoretical or tested only in simulations.
Thus, it is unclear whether such defense strategies would be effec-
tive in practice, against human attackers. In fact, in a recent study,
we found that a masking strategy that appeared successful in the-
ory, was ineffective against human attackers: it was not better than
a random camouflage strategy (Aggarwal et al., 2020b).

One possible explanation for the current results in masking
strategies is the assumption of “rationality” of human attackers
made by these algorithms. Generally, humans are limited cogni-
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tively in various ways, and they can only be boundedly rational
(Simon, 1956; Tversky and Kahneman, 1979). Humans are lim-
ited in their memory and engage in sequential processing of in-
formation, which often results in decision making biases (Lemay
and Leblanc, 2018; Sawyer and Hancock, 2018). Attackers maybe
vulnerable to such biases and thus make cybersecurity-relevant
mistakes. To illustrate, Gutzwiller et al. (2018) used oppositional
human factors to exploit biases and deficiencies, related to lim-
ited attention, to disrupt cyberattacks. Gutzwiller et al. (2018) ob-
served various kinds of biases including illusion of control, sunk
cost fallacy, irrational escalation and attentional tunneling. Sim-
ilarly, among cybersecurity experts, Gutzwiller et al. (2019) ob-
served decision making biases such as anchoring bias, confirma-
tion bias, and take-the-best heuristic bias. Unfortunately, current
defense algorithms ignore the biases generated by human mem-
ory, instead of exploiting them to the benefit of cyberdefense.
In addition, cyberdefense algorithms also ignore defender’s biases
which may become a bottleneck in their defense actions. In a
network defense scenario, Bos et al. (2016) demonstrated the ef-
fect of gain and loss framing biases on defenders decisions. De-
fenders that began with gain framing (i.e. with a network al-
ready in quarantine) used a quarantine system more compara-
ble to those that started in loss framing. To date, There has not
been much work in how to mitigate such biases in defenders. On
the attacker’s side, Cranford et al. (2020) have demonstrated how
defense algorithms can take advantage of biases (e.g., confirma-
tion bias) in human attackers with the use of cognitive models
that emulate the attacker’s decision process computationally. Us-
ing a simple task, Cranford et al. (2020) have shown that it is
possible to provide information about the attacker’s behavior to
the defense algorithms and improve the game theory/ML algo-
rithms by making them more adaptive to the individual attacker’s
actions.

In this paper, we advance prior work in cyberdeception (i.e.,
masking techniques) by addressing two factors that limit the
progress on the design of effective masking strategies against
human attackers. First, we relax the assumption of attacker ra-
tionality that most ML and game theory approaches of defense
make (Alpcan and Basar, 2010; Laszka et al, 2015; Schlenker
et al, 2017; Serra et al, 2015). Assuming that humans will
choose the best option available, in terms of expected values, is
problematic, as psychologists have known for decades that hu-
mans can only be boundedly rational (Kahneman, 2003; Simon,
1956) and act according to simple heuristics (Gigerenzer and
Todd, 1999). This was demonstrated recently in a human-subject
experiment that evaluated an optimal defense strategy (proposed
by Schlenker et al. (2018)) compared to a random strategy of mask-
ing (Aggarwal et al., 2020b). Their findings showed that the opti-
mal strategy, which was theoretically most effective, only slightly
reduced attacker’s outcome compared to a random masking strat-
egy (reduced by 10% whereas simulations predicted 20% reduc-
tion). The analysis by Aggarwal et al. (2020b) suggests that attack-
ers acted in agreement with risk aversion, a form of boundedly-
rational behavior, where humans appeared to attack machines
with low rewards and high probability of success. This human at-
tacker data was used to develop a new “risk averse” algorithm
Thakoor et al. (2020). In this paper, we examine human attacker
behavior in a new human-in-the-loop experiment, comparing the
new risk averse masking strategy Thakoor et al. (2020) to a ratio-
nal masking strategy proposed by Schlenker et al. (2018).

In addition, we demonstrate a strategy to improve game the-
ory and ML defense algorithms by providing large amounts of
data from a well-calibrated cognitive model of attackers’ behav-
ior. To make an accurate estimation of the parameters required by
Thakoor et al. (2020)’s algorithm, large amounts of human data are
required. Unfortunately, ML models may learn inaccurate estimates
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of the parameters of the attacker model without sufficient human
attacker data. To address this challenge, we developed an Instance-
Based Learning (IBL) model (Gonzalez et al., 2003), that represents
the process by which attackers make decisions and predicts the
attacker’s actions in a cyber attack situation. In this paper, we
present the process by which human data collection can be used
to calibrate the parameters of game theory and ML algorithms;
we develop an IBL model of the human attacker to demonstrate
the capability of the cognitive model to emulate the attacker’s ac-
tions collected in a human experiment. The results suggest that
this model can inform the adaptive cyber defense algorithms and
may be used to generate large amounts of synthetic data regard-
ing the attacker’s actions to improve ML-based boundedly rational
masking algorithms.

2. Background

Gonzalez et al. (2020) proposed a research framework for gen-
erating dynamic, adaptive, and personalized defense strategies us-
ing cognitive models. In this framework, game-theory defense al-
gorithms are developed and deployed in experimental testbeds. An
experimental testbed is used with human participants (e.g., attack-
ers) for evaluating the performance (i.e., defender’s utility) of de-
fense algorithms. Importantly, cognitive models are used for emu-
lating human decisions to inform the game-theory algorithms for
adaptive defense. This general idea of adaptive cybersefense based
on cognitive models has been used by Cranford et al. (2020) to
demonstrate the generation of adaptive and personalized signals in
a simple insider attack game. In this paper, we leverage this work
by first deploying defense strategies developed by game-theory/ML
algorithms on an experimental testbed, CyberVAN (Chadha et al.,
2016), conducting human experiments to evaluate the perfor-
mance of the algorithms, and developing a cognitive model to
simulate the attackers’ decisions in a complex cyberdeception
scenario.

In cyber camouflage games (Schlenker et al., 2018; Thakoor
et al, 2019a), game theoretic models determines how the de-
fender can mask the configurations of the machines to create un-
certainty in an attacker’s potential rewards. Almost all such mod-
els assume that the attacked machine is guaranteed to provide
utility to the attacker. Furthermore, most of these models assume
a rational attacker. However, these assumptions do not hold in
practice (Chicoisne and Ordoéfiez, 2016; Cooney et al.,, 2019a). To
address the issue of rationality assumptions in Stackelberg secu-
rity games, Yang et al. (2011) developed optimal strategies against
Prospect Theory models (Kahneman and Tversky, 1979). However,
their model relies on using parameters from previous literature, ig-
noring the fact that model parameters could be population depen-
dent.

ML models, such as decision trees and neural networks have
also been deployed to learn human behavior (Cooney et al., 2019b).
In addition to Yang et al. (2011), two particular defense algorithms
MATCH (Pita et al., 2012a) and COBRA (Pita et al., 2012b) also
provide defense mechanisms against deviations from rational be-
havior. However, they are only applicable to strictly competitive
games. Thakoor et al. (2020) developed a game-theoretic/ML so-
lution to strategically obfuscate the features of machines to re-
duce a defender’s expected losses against boundedly rational at-
tackers. In our work, we follow the defense strategies proposed
in Thakoor et al. (2020) which we discuss in more detail in
Section 2.1.

One of the challenges with game-theoretic/ML algorithms is
that the predictive power of such models typically relies on large
amounts of data to fit the model parameters. To understand how
different defense algorithms would work in real scenarios usu-
ally requires human intervention and collecting large volumes of
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human decisions in domains such as cybersecurity. Unfortunately,
such interventions are very challenging. Generally, cognitive mod-
els are starting to play a direct role in applications where predic-
tive models of human decision-making take the role of people in
the task. For example, Sycara et al. (2015) developed a cognitive
model based on the Adaptive Control of Thought-Rational (ACT-
R) (Anderson, 1996) architecture that simulates human cognition
for training a ML model in the control of a robotic swarm simula-
tion. Similarly, Trafton et al. (2020) developed an ACT-R cognitive
model for generating synthetic data that was used for a complex
task. In cybersecurity, collecting data from actual human attackers
and defenders has been a key challenge. In this research, we ad-
dress the challenge of limited attackers’ decisions, by generating
large amounts of data on simulated human decisions using cogni-
tive models. Specifically, we rely on Instance-Based Learning (IBL)
Theory (Gonzalez et al., 2003) to construct this cognitive model.
IBL Theory proposes basic principles and a process of how hu-
mans make decisions from experience: Decision makers recognize
the similarity between a current decision situation and decisions
made in the past to evaluate the expected benefits of available de-
cision alternatives, and they learn from feedback on the decisions
actually made (Gonzalez et al., 2003).

IBL models have been used for decades in a wide range of do-
mains including repeated binary choice decisions (Lejarraga et al.,
2012), multi-choice sequential decisions (Gonzalez and Ben-
Asher, 2014), prediction of human reliance on automation
(Lebiere et al., 2021), prediction of human Theory of Mind in
gridworlds (Nguyen and Gonzalez, 2021), and prediction of cog-
nitive biases in human decision making (including confirmation
bias,anchoring and adjustment, probability matching, and base rate
neglect) Lebiere et al. (2013). In the domain of cybersecurity, IBL
models have been widely used to replicate human decision pro-
cesses in a variety of tasks involving deception in insider attack
games Cranford et al. (2018, 2021), intrusion detection systems
(Aggarwal et al., 2017; 2020a) and susceptibility to phishing emails
(Cranford et al., 2019; 2021). Yet, despite this success, existing IBL
models of human attackers often involve relatively simplistic tasks
abstracting the complexity of cyber scenarios. Moreover, such tasks
involve repeated attacker-defender interactions, since that helps
IBL models capture the experiential learning process and develop
more accurate predictions. In this paper, we demonstrate that IBL
models can replicate human decisions in complex and more real-
istic cyber scenarios that rely on a large number of features and
limited repeated interaction of attackers and the task.

2.1. Thakoor et al. (2020) Masking strategy

Thakoor et al. (2020) proposed a Risk-Based Cyber Camouflage
Game (i.e., masking algorithm) to modify the responses to attack-
ers’ queries during the network reconnaissance. Their algorithm is
based on a general sum Stackelberg game model, in which the de-
fender configures the network with a deception strategy (i.e., how
the system should respond to scan queries from an attacker) and
the attacker scans the network and chooses a system to attack
based on the system’s responses. In this scenario, the rewards for
attackers and losses for defenders could be different. The masking
algorithm assumes the worst-case scenario against a risk-averse at-
tacker (i.e., considers the minimum utility that a particular decep-
tion strategy would yield, and consequently, aims to compute the
strategy that maximizes such utility). The authors show that this
problem is NP hard and provides a mixed-integer linear program
to compute the optimal solution.

A network comprises of a set of machines and each machine
has a certain True Configuration (TC) reflecting its various attributes
and vulnerabilities. The defender tries to obfuscate the attributes
so that the Observed Configuration (OC) from the attacker’s perspec-
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tive can significantly differ from the TC of a machine. Any machine
having TC i has associated values v{ and vl?’ that the attacker gains
and the defender loses respectively, if the machine is successfully
attacked. The interaction between the attacker and the defender is
modeled as a Stackelberg Security Game (SSG) owing to the se-
quential nature of the decisions. The defender is the leader who
knows the true state of the network (i.e., the number of machines
of TC i). Given this information, the defender masks the TCs with
0Cs, and this assignment strategy is represented as an integer ma-
trix ® where each entry ®;; denoting how many machines having
TC i are masked with OC j. Deploying these strategies have several
domain constraints: 1) feasibility constraint (i.e., some OCs can’t
feasibly mask with some TCs) and 2) masking any TC with an OC
are capped by a budget for the defender. Under these constraints,
a defender strategy & is generated.

Given the defender strategy &, the attacker chooses a pair
(i, j) indicating that an exploit for TC i is launched on a machine
masked with OC j. The attack is successful if the attacked machine
is among the ®;; machines of TC i masked by OC j. Since OC j
masks X;®;; machines in total, the success probability is ®;;/%;®P;;
and consequently, the expected attacker (U?) and defender (U9)
utilities are:

Ua(®, i, j) = z?iﬂ.-j"?’ Ud(d,i, j) = z?iﬁu Ve,

A rational attacker attacks a pair (i, j) that maximizes the ex-
pected utility. In case of indifference, the defender must consider
the worst-case tie-breaking for the attacker due to the restriction
to a pure strategy, which leads to Weak Stackelberg Equilibria (WSE;
Breton et al., 1988). Hence, the defender tries to choose a strat-
egy to maximize utility, assuming a utility-maximizing rational at-
tacker. We refer to this strategy as WSE Model, which assumes ra-
tional attackers.

For risk-averse attackers, prospect theory (Tversky and Kahne-
man, 1979) asserts that their decisions are governed by a value
transformation function R that is monotone increasing, and con-
cave. Any reward v (namely, attacked machine’s value), gets per-
ceived as R(v). A typical parametric form proposed in literature is
R, (v) = c(v/c)*, with A <1 capturing the risk-aversion of the at-
tacker, and c, a suitable constant. Learning the parameter A is a
challenging task. This can be done by obtaining attacker responses
on randomly generated strategies and computing a maximum like-
lihood estimate of A given the observed instances. Once X is es-
timated, the defender computes an optimal strategy for the risk-
averse attacker by simply modifying the WSE algorithm and re-
placing the valuations v with the transformed values R, (vf). We
refer to this strategy as Prospect Theory (PT) Model.

In this paper, we test the WSE and PT masking algorithms de-
veloped in Thakoor et al. (2020) using human-subject experiments.
We generated WSE and PT strategies using the algorithm briefly
discussed above (refer to Thakoor et al., 2019b for more details).
The generation of PT strategy requires a risk-aversion parameter A.
To learn the risk-aversion (parameter A), we collected human data
where attackers play against a random strategy. Different subjects
may have a different degree of risk aversion (parameter A). How-
ever, since defenders cannot estimate the level of risk-aversion of
an individual attacker in advance when deploying the strategy, we
aim to estimate a A that is representative of the whole population
(of attackers) and compute the optimal strategy against an attacker
with this A. We do so by obtaining the maximum likelihood esti-
mate given the data collected.

We recruited 35 subjects in the random condition playing 10
rounds each, we have |N| = 350 observations. To create a diverse
dataset, for each participant, matrices for 10 rounds were randomly
chosen from a pool for 50 matrices. Each observation n € A corre-
sponds to a particular round played by a particular human par-
ticipant — suppose the subject plays against a defense strategy
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Table 1
Attacker’s Rewards and Defender’s Losses per True Configuration.

TC Attacker’s Rewards Defender’s Losses
slackware 15 9
xbox 11 10
ubuntu8 2 6
winxpemb 13 4
avayagw 14 3
freebsd 11 10
winxp 2 14
win2008 11 2
win2k 7 8
win7pro 10 5
win7ent 9 8
openwrt 7 12
openbsd 15 15
linux 6 15
cisco2500 13 12

@, and decides to attack an (in, jn) that maximizes its prospect.
Based on the collected data, we computed the A parameter us-
ing the Maximum Likelihood Estimation approach described in
Thakoor et al. (2019b) and obtained A = 0.75. The data collected
in the random condition was only used to develop the & matrices
in the PT masking algorithm. Thus, we do not analyze the random
condition data otherwise.

As the PT model has been adapted to the risk aversion of the
participants, we expect that defenders’ losses using the PT model
would be smaller compared to the WSE model. Similar to the study
in Aggarwal et al. (2020b), we also expect to observe the risk aver-
sion bias in both models (WSE and PT), i.e., participants would pre-
fer a surer option even when the payoffs are lower. In what fol-
lows, we will evaluate the effectiveness of two masking strategies,
e.g., WSE and PT, against human attackers, before we present an
IBL model.

3. Human experiment

In this experiment, we tested two masking strategies against
human attackers: (1) WSE (i.e., “rational”) masking, and (2) PT
(i.e., “boundedly rational”) masking. The WSE strategy generates
the & matrices according to Thakoor et al. (2020)’s algorithm.
Thakoor et al. (2020)’s algorithm minimizes the utility of the per-
fectly rational attacker and reduces the expected losses for defend-
ers against a rational attacker. The PT strategy generates the & ma-
trices similar to the WSE algorithm, but it minimizes the expected
losses for defenders against a risk-averse attacker. The utilities for
each TC are defined in Table 1. The WSE strategy does not per-
form any transformations and assumes that attackers would per-
ceive the utilities as defined in Table 1. We compute an optimal
strategy for the attacker playing according to PT transformation by
simply modifying the WSE algorithm, replacing the valuation v{
with the transformed values R; (v{). Given the number of systems
in each matrix, the number of matrices to produce, and feasibil-
ity constraints (i.e., the list of TCs that cannot be masked with a
particular OC), the WSE and PT algorithms produce the strategy
matrices (®) with the mapping of TCs to OCs.

To test the effectiveness of these strategies, we develop a
task in CyberVAN, a realistic cybersecurity testbed for conducting
human-in-the-loop experiments (Chadha et al., 2016). The Cyber-
VAN testbed provides capabilities such as virtual networks, syn-
thetic traffic, substantial tools for scanning and attack, and a spe-
cific set of vulnerabilities to conduct sophisticated cybersecurity
research (Chadha et al.,, 2016). For this experiment, we use virtual
machines, scanning tools and Honeyd service for deploying decep-
tion.

Computers & Security 117 (2022) 102671
3.1. Experimental setup in cyberVAN

In the CyberVAN testbed, we assigned 5 honeyd servers where
we configure honeyd files to mask the TCs of virtual machines
to OCs using the strategy matrices. The honeyd configuration file
masks the operating systems and ports of TCs with OCs to trick the
network scanning tools (Provos, 2003). Each of the Honeyd servers
could communicate to a range of IP addresses via a router that as-
sociates various virtual machines to these Honeyd machines.

Participants were provided a link and login credentials to a vir-
tual machine running Kali operating system. As shown in Fig. 1,
step 1, participants login to the virtual machine using the creden-
tials provided to them. These virtual machines were configured
with a scanning tool (i.e., zenmap) and attack scripts. Using these
machines, participants scanned and attacked various machines. The
task consists of 10 rounds (preceded by 1 practice round). Partic-
ipants were provided a different pre-generated ® matrix in each
round that provides TC to OC mapping of 15 virtual machines.

After logging in to the virtual machine, participants were asked
to start the task via the start script as shown in Fig. 1. The start
script provides the IP address range and @ matrix for the prac-
tice round. Similar information is provided for the main rounds as
well. The & matrix describes the type and number of machines
present in the network (TC) and their corresponding masked con-
figuration (OC). The ® matrices were randomly selected for each
participant and the configuration of virtual machines was differ-
ent in each round. Specific details of the & matrices used in each
round are provided in the Appendix A. Fig. 2 presents an exam-
ple of a ® matrix used in one of the conditions. To help interpret
the matrix, participants were given information regarding the way
the TCs were mapped into OCs. For example, in the sample ma-
trix, there are 6 TCs (avayagw, Ubuntu8, Win7pro, Win7ent, WinXP,
Slackware) which are mapped to 3 OCs (freeBSD, Win7pro, and
Ubuntu8). In the given matrix, for example, 5 machines are shown
as freebsd, out of which 3 are actually avayagw and 2 are Ubuntus8.
In addition to the mapping information, we provide the utility of
each TC along with the matrix. Participants were allowed to use
this information to calculate their probability of success and ex-
pected utility of attacking a particular machine.

In each round, participants perform two phases: exploration
and attack. In the exploration phase, we provided Zenmap util-
ity for using nmap commands in the exploration phase as shown
in Fig. 1. Participants probe the machines using the nmap com-
mand to obtain information of the open ports, operating systems,
and running services (according to the OC). Participants are free
to probe any machines in any order. The participants received ob-
servable features on scanning the machines as a response from
the nmap command. After the exploration phase, participants go
through the attack phase, where they decide which machine to
attack and what type of exploit to use to conduct the attack. To
decide which machine to attack after exploration, rational attack-
ers are expected to consider the potential utility and probability
of success of using the correct exploit during an attack. Note that
the utility for the attacker is different than the losses of the de-
fender for each TC. Participants were provided the rewards that
they would obtain if they were successful in their attack. In real
scenarios, attacker’s usually gather information about the machines
during the reconnaissance phase and estimate the utility of the
machines. For the simplicity of our experiment, we provide the re-
wards for the successful attack of each system upfront. These re-
wards are presented in Table 1. Note, the participants were only
aware of their rewards, not the defender’s loss. The attacker’s utili-
ties are randomly allocated between a range of 2 and 15 to rep-
resent the low, medium, and high valued machines in the net-
work. The corresponding defender’s losses were assigned with an
assumption that the value of a TC may or may not be the same for



P. Aggarwal, O. Thakoor, S. Jabbari et al.

Step 1: Access to the Task Interface

S

APACHE GUACAMOLE

guestikal i
guestikal i

Please use

——

Thark you for proving the unique 1D: TestVermolD

IP Range: 172,16,100,18-32
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Step 2: Start the Task with Practice Round

guest@kall_2: ~/Desktop

2:"% cd Desktop
2:" /Desktop$ sh Start, sh TestVermolD

the following IP range and the matrix to start the practice round.

— I TONOC 1 xbox | winxpenb | winxp | c15c02500 | freebsd | Payoff |
| slackvare | 0 | 0 2 1 0 | 0 4 |
| winpesb | 0 | 0 1 1 1 | 0 I' 10 |

- b I wingp | 1 | 3 I 1 1 0 | 0 112
I wink 1 2 | 0 2 1 0 | 0 1 3 |
guest®ali_2:" /lesktops$ |}

Step 3: Scanning
;ry* Rois Profile  Hep ‘ guestéal i
guestSkal i
] o -
Please use

Nmap Outout | Ports/ Hosts | Topology | Host Detalls Scans

1
1
1
I winp
1
1
.
guestikal i

This was a

You earned
Your total

Thank you for proving the unique [D: TestVermolD
IP Range: 172.16.100.18-32
-

[s the Zennap window closed (Y or
Please clos
the Zennap window closed (Y or N)?Y

This attack wmas successful. You earned 3 points!

you Just completed round ©

PLERSE FEMEMEER
Do you want to attack asain in the practice round? Yes or No

Step 4: Exploitation and Feedback
guest@kall_2: ~/Desktop
2:"$ cd Desktop
2:"/Desktop$ sh Start.sh TestVermolD

the following IP range and the matrix to start the practice round.

B

. . .
| xbox | uinxpesd | winxp | c1sco2500 | | Payoff |
1o 1 o o2 0 1 14 1
1o o [ S| 1 1 1 10 1
11 3 - S o 1 1 2 1
2 o 2 o 1 13 1
1o 1 o 2 o 1 113
S S S S S — - PO -

2:" /Desktop$ sh attack.sh 172.16.100.18 win2k
NN
e the Zermap window before proceeding.

practice attack.
O points.

points are: O
TO CLOSE ZEN® UINDOU BEFORE LAUNCHING AN ATTRCK,

Fig. 1. Steps involved in the CyberVAN Task for Human participants.

- TC\OC  freeBSD win7pro Ubuntu8j
avayagw 3 0 0
Ubuntu8 2 0 0
win7pro 0 2 0
win7ent 0 2 0

winXP 0 2 0

LSlackware 0 0 1

Fig. 2. Sample ® Matrix: columns represent the observable configuration and rows
represent the true configuration.

the attacker and defender. Thus, some TCs have equal defender’s
losses and others are either lower or higher than the attacker’s
gain. The attacker’s rewards and defender’s losses for the TCs re-
mained the same across all 10 rounds. Participants earned the sum
of the points accumulated across the 10 rounds, which were di-
rectly translated into a bonus monetary earning to the participant.

3.2. Participants

Participants were recruited through advertisements via various
university email groups, social media, and cybersecurity targeted
groups. To be qualified to participate, participants were required
to pass an online test of basic cybersecurity knowledge, which in-
cluded questions on various attacks, network protocols, scanning
tools for networks, etc. The prescreening questions are included
in Appendix C of the paper. The questions were adopted from
previously published research by Ben-Asher and Gonzalez (2015).
Only qualified participants were scheduled for an online study of
90 min.

An a priori power analysis was conducted using pwr library in R
to test the difference between two independent group means us-
ing an ANOVA test, with a medium effect size (d = 0.40), and an
alpha of.05. Results showed that a total sample of participants with
two equal sized groups of n = 25 was required to achieve a power

of.80. Due to the highly specialized testbeds that require partici-
pants with good knowledge of cybersecurity, we could only recruit
25 participants in the WSE and 20 in the PT condition. In WSE con-
dition, 84% participants reported themselves as male, (Age: Mean =
24.4, SD = 4.2) and in the PT algorithm, 70% participants reported
themselves as male (Age: Mean = 28.7, SD = 5.8). Approximately
43% reported having or pursuing a bachelor’s degree, 44% reported
having or pursuing master’s degree, 7% reported Ph.D degrees, and
the rest reported to have another form of education. A majority
of the participants reported having a type of hands-on experience
(87%), 5% of participants reported themselves as experts, and only
5% of participants had no practical cybersecurity experience.

After the successful completion of the experiment, all partici-
pants were paid a base payment of $18. In addition, for each suc-
cessful exploit, participants received 1 point, which accumulated
and were converted to a monetary bonus ($1 per 10 points). Partic-
ipants could earn up to $15 in bonus based on their performance.
The maximum time taken to complete the experiment was 90 min.

3.3. Procedure

First, participants provided informed consent and completed
a demographic questionnaire. Next, they were asked to watch a
video with instructions regarding the goal of the task and the gen-
eral procedure. Participants were also provided with text instruc-
tions to which they could refer to during the experiment. Instruc-
tions were followed with a brief comprehension test. They received
feedback if they incorrectly answered a question in the test. Partic-
ipants were provided the contact details of the research assistant
and they could ask any clarification questions before proceeding
with the experiment.

During the instructions, participants were informed that the ex-
periment would take up to 90 min and would consist of 11 rounds.
After finishing the instructions, participants were provided with lo-
gin and password information for the virtual machine. Once logged
into their machine, participants could see a cheat sheet to help
them throughout the task. In the terminal window, participants
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Fig. 3. Attacker’s Success Rate: a) Average success and b) Matrix-wise success in WSE and PT conditions. The error bars represent the standard error.

Table 2
ANOVA Table for all the dependent measures.
Measure Effect WSE PT df F MSE p n?
M SD M SD
Success Condition 0.40 0.039 0.30 0.036 1, 42 3.02 0.33 0.08 0.07
Matrix 9, 378 1.49 0.22 0.14 0.03
Condition:Matrix 9, 378 1.76 0.21 0.07 0.04
Attacker’s Utility Condition 2.54 0.27 3.17 0.39 1, 42 1.83 23.90 0.18 0.04
Matrix 9, 378 1.56 21.92 0.12 0.03
Condition:Matrix 9, 378 0.70 21.92 0.70 0.02
Defender’s Loss Condition 4.04 0.47 2.16 0.28 1, 42 10.40 36.97 0.002* 0.20
Matrix 9, 378 2.22 22.11 0.01* 0.05
Condition:Matrix 9, 378 3.19 22.12 0.00* 0.07

Note: MSE: Mean Square Error, n?: partial eta-square.

started the task and received information such as IP addresses, the
¢ matrix, and payoffs during each round. In each round, partici-
pants were asked to probe the machines using an nmap command
like “nmap -O 172.16.31.31” to learn about open ports and oper-
ating systems on this IP address. They were also allowed to scan
a specified range of IP addresses in each round together using a
command like “nmap -O 172.16.31.31-61". After probing the ma-
chines, participants were allowed to calculate the likelihood of the
true configuration of the machines by looking at the utilities of
each of the configurations and the & matrices. Next, using the at-
tack script, they decided what IP addresses to attack by selecting
an appropriate exploit. Participants received points if the exploit
matched with the true configuration; otherwise, they received zero
points. Once they finished all rounds, we asked for their feedback
regarding the experiment.

3.4. Experiment results

Participants generally scanned all machines before launching an
attack. In the practice round, each participant exploited between a
minimum of 1 and a maximum of 7 machines.

We analyzed the data collected in the WSE and PT conditions
during the 10 actual rounds. We randomly allocated 10 matrices to
the participants during the 10 rounds. To measure the effectiveness
of each matrix, we measured the average attacker’s utility, their
success rate, and their attacker’s preferred option for the attack.
We also analyzed the algorithm (i.e., defender) loss.

3.4.1. Attacker’s success rate

We calculated the rate with which participants used the correct
exploit. Fig. 3(a) shows the average success rate of participants in
the WSE and PT conditions. The difference in participants’ average
success rate when paired with the WSE than the PT algorithm was
not statistically significant and an extremely low effect size was
found (0.40 ~ 0.30; F(1, 42) = 3.02, p = 0.09, n? = 0.07). The de-
tailed statistics are presented in Table 2. The success rates in each

matrix of 10 rounds are shown in Fig. 3(b). Although it appears
that human attackers exploited the machines more successfully in
the WSE than the PT condition (except matrix 1), in most of the
matrices the difference between WSE and PT was not significant.

The attacker’s utility for each condition is shown in Fig. 4(a &
b). For each successful exploit, the attacker gained points in accor-
dance to Table 1. We observe that although the attackers gained
slightly more points in the PT masking algorithm compared to WSE
algorithm, however, the statistical test revealed no significant dif-
ference between the masking conditions, (2.54 ~ 3.17; F(1, 42) =
1.83, p=0.18, 72 = 0.04) with a low effect size and power. None of
the differences within each matrix was significant (p > 0.05) (see
Table 2). The dotted line represents the utility when the best op-
tion based on expected values is selected. We observe in Fig. 4(a)
that overall human attackers earned fewer points compared to the
best option utility. The matrix-wise analysis in Fig. 4(b) shows that
human attackers consistently earned fewer points when working
against the WSE algorithm. We also observe lower attacker’s util-
ity compared to the optimal utility in the majority of the matrices
for WSE and PT algorithms.

3.4.2. Defender’s losses

The losses for each of the two defense algorithms against hu-
mans are shown in Fig. 5(a & b). For each successful exploit, the
attacker gained points and the defender lost points in accordance
with Table 1. According to Fig. 5(a), overall, the defender’s losses
were higher in WSE condition compared to the PT condition. We
also observed that defenders’ losses are higher than the expected
losses in both the conditions. To support these observations, we
conduct a mixed-ANOVA to evaluate the effect of conditions and
matrices.

The statistical test revealed a significant difference between
the masking conditions (4.04 > 2.16; F(1, 42) = 10.40, p<0.002,
n? = 0.20). We also found that there is a significant differences be-
tween matrices (F(9, 378) = 2.23, p=0.02, n2 = 0.05) and interac-
tion between conditions and matrices, (F(9, 378) = 3.19, p<0.001,
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n? = 0.07). The detailed statistics are presented in Table 2. The av-
erage defender’s losses per defense strategy (& matrix) are shown
in Fig. 5(b). The defender’s losses were higher for WSE algorithm
compared to the PT algorithm for all matrices except matrix 1. We
also performed the post-hoc analysis to evaluate the effect of the
condition in each matrix. The post-hoc analysis shows that Ma-
trix 1 (25 < 6.25; K1, 42) = 6.10, p<0.05, 2 = 0.13), Matrix 3
(5.71 > 1.5; F(1, 42) = 8.38, p<0.01, n%> =0.17), Matrix 5 (2.5 >
0.20; F(1, 42) = 7.02 p<0.01, 2 = 0.14), Matrix 7 (5.17 > 0.90; K(1,
42) = 8.06 p<0.01, n2 = 0.16) and Matrix 9 (6.75 > 1.5; F(1, 42) =
8.36 p<0.01, 2 = 0.17) shows a significant difference in defender’s
losses in the two conditions.

To explore the contrast between attacker utility and defender
loss, we plotted the frequency of attacks on each machine in each
of the matrices. Fig. 8 presents these results for WSE and PT in
human experiments (and IBL model discussed later). The machines
are sorted based on their expected value: in each matrix, the left-
most bar is the machine with the lowest expected value, and the
right-most bar is the machine with the highest expected value. The
corresponding attacker’s payoff and probability of success for each
of the TCs are provided at the top of each bar.

We observe that participants in the WSE condition prefer a
more certain option compared to the one with more uncertainty.
For example, in Matrices 3, 4, 6, and 7 in Fig. 8, a significant num-
ber of participants attacked the TC with utility 2 and probability
of success 1.0. This observation is in agreement with past findings
regarding risk aversion in Aggarwal et al. (2020b) where humans

tended to attack targets that were more likely to result in success,
regardless of reward.

In the PT condition of Fig. 8, only Matrix 1 has a TC with a
success probability of 1.0. We observe that even though the poten-
tial reward for this machine is low (i.e., only worth 2 points for a
successful attack), a significant number of participants chose that
machine compared to the other machines in that matrix. The sure
option resulted in the loss of 14 points to the PT defender, which
contributed to the heavy losses observed under phi Matrix 1. This
result suggests that the PT algorithm helped avoid the certainty ef-
fect by reducing the number of matrices that would have machines
with a certain outcome. However, even with the PT algorithm, one
of the matrices had one machine with a safe option, and we ob-
serve how human participants once again fell into the trap of the
risk aversion and certainty bias found in our previous experiment
with CyberVAN (Aggarwal et al., 2020b). Humans preferred a sure
option regardless of the low benefits.

4. Instance-based learning (IBL) model

To gain a better understanding of human decision making in
the task, we developed a cognitive model of attack decisions in
the CyberVAN scenario using IBLT (Gonzalez et al., 2003). Accord-
ing to IBLT, a human makes decisions by generalizing across past
experiences that are similar to the present decision situation. Each
experience (i.e, an instance) is represented as a triplet, including
the contextual features of the selected target, the decision, and
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outcome. Instances are accumulated in memory when options are
evaluated and decisions are made in the environment.

4.1. IBL Theory

Generally, the IBL procedure is as follows. When a new deci-
sion is to be made, the similarity is computed between the current
situation and the existing instances in memory. For each possible
decision, the model computes an expected utility, using a blending
mechanism involving the average across past outcomes weighted
by their probability of memory retrieval. The memory retrieval
probability is calculated by weighing the memory activation of an
instance against all the instances in memory. The activation of an
instance is a concept formalized in the ACT-R cognitive architecture
(Anderson et al., 2004). The activation depends on the contextual
similarity to past instances, on the frequency of experiencing simi-
lar instances, and on the recency with which an instance has been
experienced in the past. According to IBLT, after evaluating the al-
ternatives and determining their blended value, a decision is made
for the option that has the highest blended value (i.e., the highest
expected utility). Finally, the expected utility is updated with an
experienced utility once the outcome of a decision made is known.
These instances are reused for making future decisions.

The blended value V,, of option k at trial t is computed as fol-
lows:

n
Vir = ZPi,k,t *Xi k.t (1)
i=1
where X; ; , represents the outcome of an instance i for option k at
trial t and P, . represents the probability of retrieval of an instance
i for option k at any trial t (value of k is the options in each round).
The retrieval probability of an instance i is the ratio of activation
of the ith instance corresponding to the activation of all instances

(1, 2, ..., n; where n is total instances) created within the option k
at trial t. The retrieval probability is defined as:
eAi.k.z/-C
Pre==——= (2)
2 i €kt /T

Here, T = 0 %x+/2 and 1 is a free noise parameter. Noise captures
the inaccuracy of remembering past experiences from memory.

At each trial, t, activation of an instance i on option k repre-
sents the linear aggregation of three cognitive elements: frequency
and recency, the similarity of the instance to past experiences,
and the noise that introduces stochasticity in the activation value
(Anderson et al., 2004):

Ajge=1In > (t—ti)d+MPZSim(vk,ck)+o*ln(1_yi‘k‘t)

ti=1.t-1 K Vikt
(3)

The first term reflects the power law of experience and forget-
ting. t; represents all the previous trials where the instance i was
either created or its activation was reinforced due to its recurrence.
tj is the time since the jth occurrence of instance i and d is the
decay rate of each occurrence which is set to the default ACT-R
value of 0.5. The activation of an instance can increase with the
frequency of observing that outcome, as well as with the recency
(i.e., by small differences in t —t;). This term represents the fre-
quency and recency of events in the memory. The decay parame-
ter accounts for the rate of forgetting the experienced events: the
higher the decay, the faster will be the rate of forgetting the past
events and the reliance on recent events will increase.

The second term is a partial matching process reflecting the
similarity between the current situation (c;) and the instances that
are stored in memory(V,), scaled by a mismatch penalty (set to
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2.5). Similarity between numerical slot values are computed on a
linear scale from 0.0, an exact match, to -1.0. Symbolic values are
either an exact match or maximally different.

The third term represents the Gaussian noise mechanism for
capturing the variability in individual choices and y;;, is a ran-
dom number drawn uniformly between 0 and 1. The o (i.e. the
variance in the noise term) is set to the default ACT-R value of 0.5.

4.2. IBL model of attacker

Fig. 6, represents the IBLT decision process for the human at-
tacker model in CyberVAN. We learned through a post-survey
questionnaire and interactions with human participants that par-
ticipants combine the number of TCs and the number of OCs to
calculate the probability of success. Participants then use the prob-
ability of success and payoffs to decide among the options. The
contextual information in CyberVAN involves the TC, OC, the num-
ber of TCs, the number of OCs and payoffs, and in the instances we
used, TC, OC, and the expected value of the option (i.e. the ratio of
the number of TCs to the number of OCs multiplied by the payoff),
assuming that participants are able to calculate such probabilities
from the information provided and compute the expected values.
The decision in the instance is the OC/TC combination to exploit,
and the payoffs are the obtained utilities received after attacking
one of the available options (i.e., the attacker’s utility in 1).

To begin the task, the model is initialized with instances in the
practice round corresponding to either successful attacks or failed
attacks. These initial instances represent the payoff expectations
that human participants are likely to acquire during the practice
round, which are used in the task rounds after practice.

In each of the 10 rounds of the task, the model first processes
all decision options available in the & matrices. The attacker’s
model calculates the expected utility for each of the decision op-
tions using the blending mechanism. The model stores each of
these instances of the options evaluated and their blended values.
This process represents the way humans might scan different ma-
chines during the exploration phase and develop expectations by
processing the information given in the form of the & matrix.

Once the model has calculated the expected utility of all op-
tions, the model selects the option with the highest blended value
to attack. The selected option with the experienced outcome is
then stored in the memory.

The exploration and exploitation process is repeated for each
of the 10 rounds in the task. Using this IBL model, we ran indi-
vidual simulations representing each individual attacker and eval-
uated the model’s performance against the empirical results of the
two experimental conditions WSE and PT, explained above. The IBL
model described above was run 1500 times in each condition to
generate stable estimates of the participants’ performance during
the CyberVAN experiment. Due to the stochasticity in the model,
the data generated from the 1500 agents show variability just like
in human data, but the large number of agents run in this sim-
ulation help in providing “stable” predictions of the model. Each
run of the model (i.e., an agent) involved the same procedure that
each human participant went through. Next, we present the results
from the model’s simulation against empirical data in the WSE and
PT conditions.

4.3. IBL Model results

We analysed the model’s success rate, average points earned in
each matrix, and the target selection preferences. We also com-
pared the model’s results from each of these measures against hu-
man data using the Root Mean Square Error (RMSE). The RMSE is
calculated by subtracting the average human action from model
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IBL Model Process representing the 1) instance structure based on the task environment 2) process of comparing the new situation with existing instances using

partial matching and calculating blended values and 3) making decisions based on the highest blended values and storing new instances in memory for future decisions.
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actions using the following formula:

1 n
RMSE = - > (Human; — Model;)? (4)

i=1

Fig. 7 (a) and (b) show the overall average success rate and the
defender’s utility in the WSE and PT conditions, resulting from the
human data and the simulations of IBL model. As observed, the
general patterns of the model results correspond well with those
of human participants. The overall RMSE between the human data
and the model data is 0.079 for the success rate in the WSE strat-
egy and 0.106 for the PT strategy. Similar to human data, the model

predicts that the success rate is slightly higher for the WSE than
the PT strategies in most of the matrices. The RMSEs for the suc-
cess rates between human and model data for individual matrices
are shown in Table 3. These values suggest that the model is able
to predict the human data in most of the matrices quite accurately.

The defender algorithm’s losses calculated from the IBL simula-
tions are shown in Fig. 7(b). Again, the IBL model reproduces the
general trends found in human data: the model predicts greater
defender losses in the WSE than the PT defense strategy, overall
and for each of the matrices. The RMSE values comparing the de-
fender’s losses between the human and model data for each ma-
trix and overall are presented in Table 3. Note that we compute
the RMSEs for the defender’s loss after normalizing the defender’s
loss between 0 to 1. The corresponding values of RMSE for the de-
fender’s losses are 0.076 and 0.069 for the WSE and PT strategies,
respectively. Generally, the RMSE values for defender losses in both
WSE and PT algorithms suggest that the IBL model is able to pre-
dict the defender’s losses accurately in a majority of matrices.

Individual Selection Behaviour The results of the IBL model
showed that it is able to predict defender’s loss and success rate
reasonably well for both the PT and WSE conditions at the average
level. However, a model that makes good predictions at the aver-
age level, might not be able to predict the individual decision vari-
ability (Dutt and Gonzalez, 2015). In this section, we analyze the
distribution of the selection of individual machines as predicted by
the IBL model against the human data.

Fig. 8 shows the distribution of individual machines organized
according to their outcome (X-axis) and their probability of suc-
cess (Y-axis). The figure overlays the human data with the model’s
predictions of selection preferences. The size of the circle repre-
sents the normalized frequency of participants in that particular
option. The IBL model is generally able to capture the distributions
of human preferences in both the WSE and PT strategies. The IBL
model not only predicts human actions on the aggregate level but
also captures the selection behavior in both the conditions. The fig-
ure also makes some differences apparent and the possible reason
for those differences is the noise within the IBL model.
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Table 3

Average success rate and defender’s losses for each matrix and overall in WSE and PT algorithms for Human and IBL Model and their corresponding RMSE
values. The visual representation for this table is included in the Appendix B of the paper.

Matrix Success Rate Defender’s Loss

WSE PT WSE PT

Human IBL RMSE Human IBL RMSE Human IBL RMSE Human IBL RMSE
1 0.375 0.306 0.069 0.7 0.351 0.349 2.5 2.087 0.028 6.25 2.63 0.241
2 0.292 0.362 0.070 0.250 0.359 0.109 3.542 4.196 0.044 2.550 4238 0.113
3 0.542 0.446 0.096 0.25 0.321 0.071 5.708 4.409 0.087 1.501 2.052 0.037
4 0.458 0.691 0.232 0.2 0.345 0.145 5.167 8.063 0.193 2.601 2.493 0.007
5 0.333 0.350 0.016 0.101 0.326 0.226 2.501 1.805 0.046 0.201 1.179 0.065
6 0.375 0.412 0.037 0.25 0.252 0.002 2.5 2.695 0.013 1.701 1.260 0.029
7 0.458 0.351 0.108 0.301 0.299 0.002 5.167 2.627 0.169 0.901 1.444 0.036
8 0.333 0.374 0.041 0.350 0.318 0.032 4.458 4.455 0.004 3.150 3.517 0.024
9 0.458 0.396 0.062 0.250 0.346 0.096 6.750 4.801 0.130 1.501 3.365 0.128
10 0.375 0.325 0.049 0.400 0.372 0.027 2.083 1.291 0.053 1.250 0.999 0.017
Mean 0.399 0.401 0.0781 0.305 0.329 0.106 4.037 3.643 0.076 2.160 2.318 0.069

5. Discussion

In the cybersecurity domain, it is difficult to gain an un-
derstanding of the attacker’s decision-making due to the lack
of such decision data. Defense algorithms often rely on the as-
sumption that attackers are rational decision makers and that
they take the best course of action. Using human experiments,
Aggarwal et al. (2020b) demonstrated that human attackers have
a risk-aversion bias while making cyber-attack decisions. To exploit
the risk-aversion bias of human attackers, Thakoor et al. (2020) de-
veloped a masking strategy using Prospect Theory (PT). Specifi-
cally, Thakoor et al. (2020) developed two masking algorithms: one
strategy that assumes full rationality (WSE) while the other strat-
egy exploits bounded rationality in the form of risk-aversion (PT).
In this paper, we test PT and WSE masking strategies of defense
against human attackers in an experiment.

The PT strategy developed by Thakoor et al. (2020) was cal-
ibrated using human attacker’s data collected in an experiment
where humans were pitted against random strategies. This data
set helped in estimating the risk-averse parameter, A =0.75, for
the PT strategy. The results from the comparison between WSE
and PT strategies showed that the strategies were not different
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with respect to the attackers success, but they were different
with respect to the defender loss. The PT strategy resulted in
lower defender losses compared to WSE. These results against hu-
man attackers are in agreement with the numerical findings in
Thakoor et al. (2020) which evaluated these strategies against sim-
ulated risk-averse attacker populations. In other words, these re-
sults support the idea that game theoretic and ML methods that
account for human bounded rationality can produce better defense
strategies than methods that assume full rationality, both in theory
and in practice, against human attackers.

Importantly, the PT algorithm would try to avoid generating ¢
matrices in which there was a true configuration that would ex-
actly correspond to an observable configuration, given the human
bias towards a safe option (Aggarwal et al., 2020b). We observed
that the only situation in which the PT algorithm produced a larger
defender loss and larger attacker success than the WSE algorithm
was the case in which the matrix (Matrix 1, Fig. 5) had one sure
option. This again, suggests that such human bias towards cer-
tainty is inescapable for humans, and that the PT algorithm would
need to be revised to ensure that such cases are prevented.

According to Instance-Based Learning Theory, human decisions
in complex and uncertain environments, such as cyberdefense, are
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made through exploration of the available options and the aggre-
gation of past decisions using the similarity of situations, recency,
and frequency of events (Gonzalez et al., 2003). In this paper, we
used IBL models to replicate human attacker’s decisions in the
presence of a cyberdeception strategy (i.e., masking). Humans gen-
erate expectations while exploring machines using the nmap com-
mand and a ¢ matrix. Similar to humans, the IBL model also gen-
erates expectations about the utility of attacking various options
using the information in the ¢ matrix. The model makes a choice,
selecting a machine with the maximum value. The IBL model of
the attacker is able to predict human actions in both WSE and
PT algorithms. The IBL model also predicts the decision making
bias (i.e., risk-aversion as observed in human data). Past research
has also demonstrated the applications of IBL models in predicting
biases such as confirmation bias, probability matching, anchoring
bias and representativeness (Lebiere et al., 2013). The IBL model
in this paper reflects the probability matching behaviour and cap-
ture the risk averseness among human participants. Thus, the IBL
model could be used to predict attacker decisions and cognitive
biases, which could help build better defense algorithms.

Game theory/ML algorithms of defense are often data driven
and usually do not consider insights about human behavior. The
cognitive models in such situations could be used in multiple
ways, including providing interpretation of human behaviour and
acting as a data source for ML algorithms by generating accu-
rate predictions about human data. Through human experimenta-
tion, Aggarwal et al. (2020b) provided insights about human’s risk-
aversion bias and Thakoor et al. (2020) developed a masking al-
gorithm to exploit such behavior in attacker’s decisions. To accu-
rately represent the risk-aversion, we collected human data with a
random masking strategy and adapted the PT model to the risk-
aversion parameter. This research validates the numerical findings
of Thakoor et al. (2020)’s masking algorithm in a human experi-
ment. Furthermore, the IBL model of an attacker replicates human
decisions and provides a methodology to generate accurate pre-
dictions of human decisions when data is limited. The IBL model
with accurate representation of human data could help in validat-
ing new defense algorithms given that human data is challeng-
ing to collect. Moreover, the IBL model could be used to calibrate
model parameters in real-time and game-theory models could be
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adapted to new behavioral patterns. Similar to the adaptive decep-
tion strategies in Cranford et al. (2020), by leveraging the capabil-
ity of an IBL model, the masking algorithms could predict human
biases in real time and exploit them using defense algorithms. For
example, we demonstrated that IBL model agents also produced
certainty bias as observed in human data.

A potential limitation in our conclusions from the human ex-
periment comes from the fact that our experiment is underpow-
ered, given the low number of participants. Recruiting participants
with specialized expertise such as cybersecurity knowledge is al-
ways challenging, and collecting 45 participants implied a signifi-
cant effort in data collection. However, the close replication of the
decisions with the IBL model allows us to simulate many more par-
ticipants in each condition. Although the algorithm and the exper-
iments in this paper have been conducted for a limited number of
nodes and simple network structures, the masking algorithms are
capable of including network constraints that apply in other realis-
tic settings. Similarly, the IBL models could also adapt to different
cybersecurity scenarios with a possible limitation of the run time,
which could be a bottleneck for large applications. Through exper-
iments and models, we developed an understanding of how hu-
man attackers make decisions. Attackers are not rational; instead
they act according to decision biases including certainty and risk-
aversion. Human attackers shift from the expected optimal actions
that some defense algorithms assume; they make suboptimal deci-
sions. When defense algorithms are designed to exploit such biases
in attacker decision making, they could reduce the overall losses
incurred from cyberattacks.
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Appendix A. ® matrices for WSE and PT algorithms

We include the & matrices that were provided to human par-
ticipants during the experiment. Fig. A.1 represents the WSE con-
dition and Fig. A.2 represents the PT condition.
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Fig. A.1. WSE Matrices.
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Fig. B.1. Defender’s Losses in PT and WSE for IBL Model (matrix-wise).

Appendix B. Matrix-wise Comparison for Human and IBL
Model

We include a matrix-wise comparison of the average success
rate and defender’s losses obtained from IBL model and human
participants in WSE and PT algorithms. Fig. B.1 represents the de-
fender’s loss and Fig. B.2 represents the success rate.

Defender’s Loss for Human and IBL Model

Fig. B.1 presents the matrix-wise defender’s losses from human
participants (top panel) and IBL model (bottom panel). We observe
that, similar to human participants, IBL model also produces higher
defender’s losses except in matrix 1 in WSE condition compared
to the PT model. The difference of defender’s loss between WSE

and PT is not well captured by the IBL model. We have earlier dis-
cussed the RMSE values in Table 2 which reflect the model perfor-
mance across all matrices.

Attack Success Rate for Human and IBL Model

Fig. B.2 presents the matrix-wise attacker’s success rate for hu-
man participants (top panel) and IBL model (bottom panel). We
observe that similar to human participants, the IBL model also pro-
duces higher success in all matrices except in matrix 1 in WSE con-
dition compared to PT model. The model better captures humans
in WSE condition compared to the PT condition. The RMSE values
were earlier presented in Table 2, which reflect the model perfor-
mance across all matrices.

12



P. Aggarwal, O. Thakoor, S. Jabbari et al.

Computers & Security 117 (2022) 102671

(a) Matrix 1 Matrix 2 Matrix 3 Matrix 4 Matrix 5 Matrix 6 Matrix 7 Matrix 8 Matrix 9 Matrix 10
1.00
% 07
o 0751 0.54 =
» 0.46 0.46 0.46 T
@ 0.504 038 555 o5 0.38 e i3 0.38 s
o 0.25 0.25 ol 0.25 0.25 )
n ﬁ
000- T T T T T T T T T T T T T T T T T T T
W i i i i i} i i w i
2~ o 2~ 2~ 2~ 2 o [~ 2~ 2~
= b I I = B = & z o z o z o = o =2 0
(b) Matrix 1 Matrix 2 Matrix 3 Matrix 4 Matrix 5 Matrix 6 Matrix 7 Matrix 8 Matrix 9 Matrix 10
o 1.001
= 0.69
& 0.751
0.45 _
ﬁ 0.504 031 035 || 036 036 032 034 || 035 oa3 || %4 ok 035 4 037 43 04 035 || ga3 037 &
=l il a0 0a s Bn i B0l
Z I
kL _______}_____ L ___ | ____ Il ___.
] Ly L i} L [} L i} i} L
[ 0 o o o o = o 2~ o o
= & =z &8 g &8 =z B z b T B 3 & B 2 & 3z K
Condition

Fig. B.2. Success Rate in PT and WSE for IBL Model (matrix-wise).

Appendix C. Survey Questions

Screening Test

in

The following questions relate to your practical knowledge

network and information security.We have marked correct

answers in bold-italic font for the readers.

Note: In order to participate in the main study, you need to get

7 out 10 questions right. Please attempt carefully.

Q1: What does the “https://” at the beginning of a URL de-

note, as opposed to “http://” (without the “s”)?

That the site has special high definition

That information entered into the site is encrypted
That the site is the newest version available

That the site is not accessible to certain computers
None of the above

Not sure

Q2: Criminals access someone’s computer and encrypt the

user’s personal files and data. The user is unable to access this
data unless they pay the criminals to decrypt the files. This
practice is called:

Botnet
Ransomware
Driving

Spam

None of the above
Not sure

Q3: Which of the following statements are true?

Secure File Transfer Protocol (SFTP) runs by default on port 22

Secure Shell (SSH) runs by default on port 22

File Transfer Protocol over TLS/SSL (FTPS) runs by default on
port 22

Trivial File Transfer Protocol (TFTP) runs by default on port 22

Q4: TCP port 80 is assigned to:

Hypertext Transfer Protocol (HTTP)

Hypertext Transfer Protocol over TLS/SSL (HTTPS)
Internet Message Access Protocol (IMAP)
Lightweight Directory Access Protocol (LDAP)
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Q5: A command-line tool that can be used for banner grab-

bing is called:

tcpdump
netcat
Nmap
Wireshark

Q6: Which of the command-line utilities listed below can be

used to perform a port scan?

Zenmap
Nmap
tcpdump
nslookup

Q7: Zero-day attack exploits are:

New accounts

Patched software

Vulnerability that is present in already released software but
unknown to the software developer

Well known vulnerability

Q8: Which of the following is not checked by the Nmap com-

mand?

services different hosts are offering
what OS they are running

what kind of firewall is in use
what type of antivirus is in use

Q9: What are the port states determined by Nmap?

Active, inactive, standby
Open, half-open, closed

Open, filtered, unfiltered
Active, closed, unused

Q10: Which of the following is not an objective of scanning?

Detection of the live system running on network
Discovering the IP address of the target system
Discovering the services running on target system
Detection of spyware in a system
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Post-Survey Questions

Q1: What strategy did you use for attacking a machine?

Randomly chose among available options

o Calculated the probability of a OC being TC using phi matrix
Carefully studied the nmap command output

Used additional commands to identify the true configuration
o Attacked the option with highest payoff

Attacked the option with sure success

Q2: What strategy did you use for scanning the machines in
each round before launching an attack?

e Scanned all the systems and carefully studied output of nmap
command

e Scanned one machine at time and carefully studied output of
nmap command

» Did not scan the machines
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