
Rule Based Static Analysis of

Network Protocol

Implementations

Jeff Foster

University of Maryland, College Park

Joint work with Octavian Udrea and Cristian Lumezanu

2

Motivation

• Network protocols must be reliable and secure

• Lots of work has been done on this topic

– But mostly focuses on abstract protocols

– ==> Implementation can introduce vulnerabilities

• Goal: Check that implementations match specifications

– Ensure that the protocol we‟ve modeled abstractly

and thought hard about is actually what‟s in the code

3

Existing documents and code

Pistachio Architecture

RFC/IETF
Standard

C Source
Code

Bug
Database

Rule-Based
Specification Pistachio

Errors
Detected

Evaluate
Warnings

Theorem
Prover

4

Summary of Results

• Ran on LSH, OpenSSH (SSH2 implementations) and

RCP

• Found wide variety of known bugs and vulnerabilities

– Well over 100 bugs, of many different kinds

• Roughly 5% false negatives, 38% false positives

– As measured against bug databases

5

A Toy Protocol

• Alternating bit protocol

1. Start by sending n = 1

2. If n is received, send n + 1

3. Otherwise resend n

6

A Toy Protocol

int main(void) {

int sock, val=1, recval;

send(sock,&val,sizeof(int));

while(1) {

recv(sock,&recval,sizeof(int));

if (recval == val)

val += 2;

send(sock,&val,sizeof(int));

}

}

• Alternating bit protocol

1. Start by sending n = 1

2. If n is received, send n + 1

3. Otherwise resend n

7

A Rule Based Specification

Ø (program entry)

=>

send(_, out, _)

out[0..3] = 1

n := 1

• Alternating bit protocol

1. Start by sending n = 1

2. If n is received, send n + 1

3. Otherwise resend n

8

A Rule Based Specification

Ø (empty hypothesis)

=>

send(_, out, _)

out[0..3] = 1

n := 1

• Alternating bit protocol

1. Start by sending n = 1

2. If n is received, send n + 1

3. Otherwise resend n

Ghost variable

Conclusion

pattern

Rule variable

recv(_, in, _)

in[0..3] = n

=>

send(_, out, _)

out[0..3] = in[0..3] + 1

n := out[0..3]

9

A Rule Based Specification

Ø (empty hypothesis)

=>

send(_, out, _)

out[0..3] = 1

n := 1

• Alternating bit protocol

1. Start by sending n = 1

2. If n is received, send n + 1

3. Otherwise resend n

Ghost variable

Conclusion

pattern

Rule variable

recv(_, in, _)

in[0..3] = n

=>

send(_, out, _)

out[0..3] = in[0..3] + 1

n := out[0..3]

recv(_, in, _)

in[0..3] ≠ n

=>

send(_, out, _)

out[0..3] = n

10

Our Approach

• Use symbolic execution to simulate program execution

– Track facts about program variables

– Generated by assignments and branches

• Only simulate realizable paths

– Test branch conditions using theorem prover

• Check rule conclusions hold

– Using automatic theorem prover

11

1. Start by sending n = 1

Ø (empty hypothesis)

=>

send(_, out, _)

out[0..3] = 1

n := 1

Facts: {}

Matches the empty hypothesis

12

1. Start by sending n = 1

Ø (empty hypothesis)

=>

send(_, out, _)

out[0..3] = 1

n := 1

Facts: {val = 1}

13

1. Start by sending n = 1

Ø (empty hypothesis)

=>

send(_, out, _)

out[0..3] = 1

n := 1

Facts: {val = 1, out = &val}

Show: (val = 1) Λ (out = &val)
→ (out[0..3] = 1)

Action: n := 1

14

3. Otherwise resend n

recv(_, in, _)

in[0..3] ≠ n

=>

send(_, out, _)

out[0..3] = n

Facts: {val = 1, n = 1, in = &recval,

in[0..3] ≠ n }

15

3. Otherwise resend n

recv(_, in, _)

in[0..3] ≠ n

=>

send(_, out, _)

out[0..3] = n

Facts: {val = 1, n = 1, in = &recval,

in[0..3] ≠ n, recval ≠ val }

16

3. Otherwise resend n

recv(_, in, _)

in[0..3] ≠ n

=>

send(_, out, _)

out[0..3] = n

Facts: {val = 1, n = 1, in = &recval,

in[0..3] ≠ n, recval ≠ val,

out = &val }

Show: out[0..3] = n

17

2. If n is received, send n + 1

recv(_, in, _)

in[0..3] = n

=>

send(_, out, _)

out[0..3] = in[0..3] + 1

n := out[0..3]

Facts: {val = 1, n = 1, in = &recval,

in[0..3] = n}

18

2. If n is received, send n + 1

recv(_, in, _)

in[0..3] = n

=>

send(_, out, _)

out[0..3] = in[0..3] + 1

n := out[0..3]

Facts: {val = 1, n = 1, in = &recval,

in[0..3] = n, recval = val}

19

2. If n is received, send n + 1

recv(_, in, _)

in[0..3] = n

=>

send(_, out, _)

out[0..3] = in[0..3] + 1

n := out[0..3]

Facts: {val = 3, n = 1, in = &recval,

in[0..3] = n}

20

2. If n is received, send n + 1

recv(_, in, _)

in[0..3] = n

=>

send(_, out, _)

out[0..3] = in[0..3] + 1

n := out[0..3]

Facts: {val = 3, n = 1, in = &recval,

in[0..3] = n, out = &val}

Show: out[0..3] = in[0..3] + 1

Fails to verify!

21

How Much State to Keep?

• One option: Keep all knowledge of state

• Need to retain old information at assignment statements

– {val = 1, x = val} val = 2; {val = 2; x = val‟; val‟ = 1}

• Need to be path-sensitive

– { } y = 1; if (p) then x = 1 else x = 2 { y=1; p=>(x=1); !p=>(x=2) }

• These are both expensive!

22

Pistachio‟s Design

• Maintain must facts

– Subset of true facts; ones that definitely hold

– Implies always safe to take subset

• Kill facts at assignments

– {val = 1, x = val} val = 2; {val = 2}

• Intersect facts at join points

– { } y = 1; if (p) then x = 1 else x = 2 { y = 1 }

• Much more efficient

– Loses precision

– Aliasing issues cause some unsoundness

2323

Fact substitution

recv(_, in, _)

in[0..3] = n

=>

send(_, out, _)

out[0..3] = in[0..3] + 1

n := out[0..3]

Facts: {val = 1, n = 1, in = &recval,

in[0..3] = n, recval = val,

recval = 1}

val is killed in

the next

statement

Using substitution,

recval will still have a

value of 1

24

Fixpoint Example

recv(_, in, _)

in[0..3] = n

=>

send(_, out, _)

out[0..3] = in[0..3] + 1

n := out[0..3]

Facts: {val = 2, n = out[0..3],

in = &recval, in[0..3] = n,

recval = 1, out = &val,

n = val, n = 2}

val += 1

by substitution

25

Fixpoint Example

recv(_, in, _)

in[0..3] = n

=>

send(_, out, _)

out[0..3] = in[0..3] + 1

n := out[0..3]

Facts: {in = &recval, in[0..3] = n,

n = val} val += 1

We start the loop again

with the intersection of

the sets of facts from

the first two iterations

26

Fixpoint Example

recv(_, in, _)

in[0..3] = n

=>

send(_, out, _)

out[0..3] = in[0..3] + 1

n := out[0..3]

Facts: {in = &recval, in[0..3] = n,

n = val, recval = val} val += 1

27

Fixpoint Example

recv(_, in, _)

in[0..3] = n

=>

send(_, out, _)

out[0..3] = in[0..3] + 1

n := out[0..3]

Facts: {in = &recval, in[0..3] = n,

val = n + 1, recval = val} val += 1

28

Fixpoint Example

recv(_, in, _)

in[0..3] = n

=>

send(_, out, _)

out[0..3] = in[0..3] + 1

n := out[0..3]

Facts: {in = &recval, in[0..3] = n,

val = n + 1, recval = val,

out = &val}

Show: out[0..3] = in[0..3] + 1

val += 1

rule verifies

29

Challenges

• Loops

– Try to compute a fixpoint

– Gives up after 75 iterations

• For indirect assignments, only derive facts if write within

bounds

– And kill facts about the array otherwise

– ...but do not forget everything else

• Functions inlined

• C data modeled as byte arrays

• Assume everything initialized to 0

30

Implementation

• Approximately 6,000 lines of OCaml

– Uses CIL (http://manju.cs.berkeley.edu/cil/) to parse

C programs

– And Darwin as a theorem prover

(http://combination.cs.uiowa.edu/Darwin/)

• Pistachio also uses user-provided specifications of

library functions

– In the same rule-based notation

31

Experimental Framework

• We used Pistachio on two protocols:

– LSH implementation of SSH2 (0.1.3 – 2.0.1)

• 87 rules initially

• Added 9 more to target specific bugs

– OpenSSH (1.0p1 - 2.0.1)

• Same specification as above

– RCP implementation in Cygwin (0.5.4 – 1.3.2)

• 51 rules initially

• Added 7 more to target specific bugs

• Rule development time – approx. 7 hours

32

Example SSH2 Rule

“It is STRONGLY RECOMMENDED that the „none‟ authentication method not be
supported.”

recv(_, in, _)

in[0] = SSH_MSG_USERAUTH_REQUEST

isOpen[in[1..4]] = 1

in[21..25] = “none”

=>

send(_, out, _)

out[0] = SSH_MSG_USERAUTH_FAILURE

If we get an auth

request

For the none method

Then send failure

33

Example Bug

1. fmsgrecv(clisock, SSH2_MSG_SIZE);

2. if(!parse_message(MSGTYPE_USERAUTHREQ, inmsg, len(inmsg),
&authreq))

3. return;

...............

4. if(authreq.method == USERAUTH_PKI) {

...............

5. } else if (authreq.method == USERAUTH_PASSWD) {

...............

6. } else {

...............

7. }

8. sz = pack_message(MSGTYPE_REQSUCCESS, payload, outmsg,
SSH2_MSG_SIZE);

9. fmsgsend(clisock,outmsg,sz);

Message received

Handle PKI auth method

Handle passwd auth method
Oops – allow any other method

Send success; not supposed

to send for none auth method

34

Another SSH2 Rule

“The server MUST respond to a TCP/IP forwarding request with the wantreply flag
set to 1 and the port set to 0 with a request success message containing the
forwarding port.”

recv(in_sock, in, _)

in[0] = SSH_MSG_GLOBAL_REQUEST

in[1..14] = “tcpip-forward”

in[15] = 1

in[(len(in) - 4)..(len(in) - 1)] = 0

=>

send(out_sock, out, _)

in_sock = out_sock

out[0] = SSH_MSG_REQUEST_SUCCESS

Given a forwarding request

with wantreply = 1

and the port = 0

send success

35

Example Buffer Overflow Bug

0. char laddr[17]; int lport;

...............

1. fmsgrecv(clisock,inmsg, SSH2_MSG_SIZE);

2. if(!parse_message(MSGTYPE_GLOBALREQ, inmsg,

len(inmsg), &globalreq))

3. return;

...............

4. if(globalreq.msgtype==MSGSUBTYPE_TCPIPFORWARD)
{

5. strcpy(laddr,getstrfield(globalreq,payload,0));

6. lport=getuint32field(globalreq,payload,1);

...............

7. if(!create_forwarding(clisock,laddr,lport))

8. return debug_error();

9. if(globalreq.wantreply==1) && (lport == 0)) {

10. payload.msgid=SSH_REQUEST_SUCCESS;

11. payload.reason=lport;

12. sz = pack_message(MSGTYPE_REQSUCCESS,

payload, outmsg, SSH2_MSG_SUZE);

13. msgsend(clisock,outmsg,sz);

Watch this buffer

Receive message

If it‟s a forwarding req

Uh-oh: strcpy to fixed buf

(getstrfield may return >17 bytes)

Pistachio thinks this may fail,

hence no msg sent

36

37

38

Causes of False Positives (LSH)

39

Discussion

• Network protocol implementations are a great target

– Detailed specification available

– Relatively small amount of code

– Multiple implementations of the same protocol

• Better measurements of the utility of this analysis?

– Able to find bugs that developers care about

– How important were they?

• Could we eliminate these bugs in some other way?

– A new language for network protocols?

– What if used Pistachio during development?

40

Summary

• Rule-based specification closely related to RFCs and
similar documents

• Initial experiments show Pistachio is a valuable tool

– Very fast (under 1 minute)

– Detects many security related errors

– ...with low false positive and negative rates

http://www.cs.umd.edu/projects/PL

